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Training for Emergencies

Cleotilde Gonzalez, PhD, and Angela Brunstein, PhD

Background: Disaster triage embodies all key features of dynamic decision
making. Multiple decisions have to be made under time pressure and
workload. Situations are often unpredictable requiring trainees to apply
learned routines to novel conditions. Up to this point, psychologic theories of
learning can provide only little support on how to train disaster responders
for these challenging situations.

Methods: We summarize and illustrate several examples of dynamic
decision-making research using simulations and microworlds as a starting
point for a new theory of learning and skill acquisition in disaster triage. We
describe MEDIC, a microworld in the context of medical diagnosis, and
other simple tasks designed to gather people’s understanding of accumula-
tion, a basic component of dynamic tasks.

Results: Using a microworld called MEDIC, we demonstrate the difficulties
of learning to be effective at medical decision making and present a set of
theoretical constructs that help to explain those difficulties. Implications for
how to overcome them are also discussed. On the basis of this kind of
research and our instance-based learning theory, we develop principles for
the design of effective disaster training and for building a theoretical
framework that can systematically predict how to best train for successful
performance in disaster situations. Finally, we also demonstrate the difficulty
of understanding dynamic systems; educated adults with medical expertise
have trouble understanding even simple dynamic medical problems.
Conclusions: Dynamic decision-making research can be used as a theoret-
ical and empirical reference for advancing pediatric triage training to prepare
trainees for disaster triage. Recommendations for effective learning derived
from dynamic decision-making research are presented.

Key Words: Dynamic decision making, Triage, Emergency training, Disas-
ter training, Instance-based learning theory, microworlds.
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Disaster situations are characterized by a casualty load
exceeding the available resources. These situations are
becoming more relevant and often negatively impact human
physical and psychologic well being. Often disaster respond-
ers must make multiple decisions while the situation is
rapidly changing or evolving. Furthermore, decisions in di-
saster situations are frequently made under extreme uncer-
tainty and in real time, meaning that the timing of the
decisions determines their value.
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Triage is a critical element of emergency care, and a
great deal of work has been done on developing triage
techniques and on training medical personnel to do triage.'-¢
Nevertheless, little is known about the reasoning skills re-
quired and the difficulties of acquiring those skills—a critical
element if training is to be effective. This research is a first
look at some of those issues based on the instance-based
learning theory (IBLT), a theory of decision making in
dynamic and complex situations.” We will demonstrate how
difficult it can be to acquire the necessary skills for disaster
triage, and we will suggest several important principles that
promise to improve training based on the IBLT and previous
research described below.

The characteristics of emergency and disaster situations
are the key features of dynamic decision making (DDM), a
field of research that has been described and studied by
psychologists and decisions scientists since the 1960s.7-°
Examples of DDM research contexts include the following:
firefighting resource allocation and management in real time;
triage decisions in a medical emergency room; 911 operators
determining relative urgency and deploying resources; and
supply chain management, among others. In general, DDM
often involves a dynamic allocation of limited resources in
real time.!°

Up to this point, there are few theories of DDM, and
psychologic theories have little to say about how to prepare
and train individuals for disaster triage.!! Typical emergency
training procedures involve rigorous classroom instruction
where students receive information about the general emer-
gency response planning. Training performance is often eval-
uated through the administration of written or oral exams and
sometimes by hands on performance during drills and prac-
tical exercises. An initial step toward the development of a
new theory of learning and skill acquisition in triage and
disaster situations is the instance-based learning theory
(IBLT).?

IBLT is a theory based on cognitive science and memory-
based decision-making ideas, developed to explain performance
and learning in dynamic decision-making situations. This theory
proposes that decisions in DDM situations are made from
experience, retrieving the best decision from memory made
in a situation that is similar enough to the situation being
confronted. IBLT is a psychologic theory that basis its pre-
dictions on the characteristics of human memory and cogni-
tion. A basic element from this theory is an instance. IBLT
proposes that in each decision-making situation, we save an
instance in our memory, structured in the form of situation-
action-outcome triplet.
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The situation in an instance consists of a set of cues.
For example, in triage decision making, an instance can be a
case of a patient in the emergency room, the classification
decision made regarding this patient and the resulting out-
come from that decision. The patient is defined by a set of
cues such as walking conditions, respiratory rate, pulse,
mental status; and the healthcare worker needs to make a
decision (action) about the urgency for care of the patient
(e.g., immediate priority, minor priority, delayed, and de-
ceased). If provided, feedback (often delayed) helps to deter-
mine the accuracy of the decision made. In IBLT, an outcome
is associated with the decision-situation relationship; in a way
that, in future triage experiences the healthcare worker would
retrieve similar cases that produced best outcomes.

Figure 1 shows the detail of an instance representation
in IBLT. Instances are discrete units of knowledge, which are
constructed, upgraded, and reused through experiential learn-
ing. According to IBLT, decision instances progressively
accumulate in memory with experience. Therefore, when the
conditions of the disaster situation are stable (similar across
practice) and paired with feedback, decision making will
gradually improve. In general, the applicability of past deci-
sions to a situation will be determined by the similarity
between a situation confronted in the environment and the
situations stored in memory; the accuracy of past decisions
will be determined by the feedback received from the envi-
ronment; and the appropriate application of the feedback to
the right instances. Although IBLT can make some sugges-
tions that would improve triage training, the theory needs to

A # Sa

Situation Decision | Outcome
+  Situation- | 4+ Outcome- |
\ Decision | \ Decision
\_ Cycle ~ \_ Cycle o
- Future e
, Decision ]
[c 1o L\
Similarity s—|‘\ e |l n | o
1 \ I Q | D | ——*Outcomes /
‘ ‘
S D O Time
\ - _Environment e ,F,,egdbac'(

Figure 1. Instance-based learning. Instances are composed
of three parts: situation, decision, and outcome. The in-
stances accumulate over time. At each time point, a situa-
tion is compared with past instances and based on similarity
past instances are reused for future decisions.
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be molded and extended to make more complete and precise
predictions of the effects that different training programs
would have on the transfer to triage disaster situations.

Triage in disaster situations and other emergency med-
ical procedures are DDM tasks that present several challenges
to the current theories of human learning and to existing
training programs.!! First, mass casualty incidents are unique,
infrequent events that present the trainees with rare opportu-
nities to put into practice what they have trained for. Thus, a
challenge is to help the trainee maintain and activate the
knowledge and skills learned. Second, despite the great ef-
forts to prepare trainees, accidents and disaster situations are
by their nature unpredictable. Thus, the training will com-
monly be incomplete and trainees will often confront unex-
pected and unforeseen demands.

Current research in learning in DDM situations and
IBLT? helps define a number of initial steps to improve
training for disaster conditions and triage decision making.
These are summarized below.

FACTORS THAT IMPEDE LEARNING ABOUT
DYNAMIC SYSTEMS

Learning in dynamic systems is difficult.> Although hu-
mans can learn to perform dynamic, complex tasks, learning in
dynamic systems occurs gradually and slowly.'>!3 In the Dy-
namic Decision Making Laboratory (www.cmu.edu/ddmlab),
we have empirically investigated how a number of factors
suggested by IBLT7 influence learning in dynamic systems.
These are some examples that are of special relevance to triage
disaster situations:

1. Learning under time constraints. IBLT recommends that
slow is fast when it comes to learning to perform under
time constraints. In a dynamic resource allocation task like
triage, Gonzalez'4 has demonstrated that individuals who
trained a task at a slow pace were able to perform more
accurately at transfer and under high time constraints than
did those who only trained under high time constraints.
These results come from a study using a dynamic resource
allocation task similar to triage. Thirty-three graduate and
undergraduate college students recruited from local uni-
versities were randomly assigned to either the fast or slow
condition group. The Water Purification Plant simulation
was used for this study. The goal in this task is to
distribute all the water in the system on time and under
time constraints by activating and deactivating pumps.
The environment is opaque, so the user is uncertain about
some key variable values. For example, water appears in
the system according to a scenario defined by the exper-
imenter and unknown to the user. The environment
changes autonomously and in response to the user’s deci-
sions. Because a maximum of five pumps can be activated
at any one time, the decision maker’s actions are interre-
lated. This task translates directly to disaster triage situa-
tions because it involves time pressure, limited resources,
incomplete knowledge about the situation, unexpected
events, and the need to coordinating efforts to meet the
demands. All participants ran the model on 3 consecutive
days. Under the fast condition, each simulation trial lasted
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8 minutes. Participants under this condition completed 18
trials during the 3-day period (6 trials/d). Under the slow
condition, each simulation trial on the first 2 days lasted 24
minutes (2 trials/d), whereas each trial on the last day
lasted 8 minutes (6 trials). For all the participants, the first
2 days were training days, and the last day was the test
day. The results show that slow training led to better
performance than fast training on day 3 with fast perfor-
mance for both the groups. Studies like this do not only
generate fundamental understanding of triage training but
also to formulate training recommendations. In this case,
Training for high time pressure tasks is more effective if
performed at a slow pace before releasing learners to
realistic time-constrained conditions.

2. Learning under workload. Similar to the results on time
constraints, Gonzalez!> found that individuals who trained
a task under low workload were able to perform more
accurately at transfer and under high workload than did
those who trained under high workload conditions all
along. Thus, these two studies demonstrated the fact it is
not a good idea to train individuals in conditions “close to
the real conditions” when it comes to workload and time
constraints. Slow and low workload is best during training
for fast and high workload tasks.

3. The similarity and diversity of experiences. In other stud-
ies, Gonzalez and and coworkers!®17 found that the sim-
ilarity between situations people confront influences how
fast and how well they learn. Gonzalez and Quesada!®
demonstrated the influence of the similarity of past deci-
sions on future decisions. In another study, Gonzalez and
Madhavan'” used a luggage screening task for investigat-
ing effects of similarity of experience on learning. In such
a task, each piece of luggage can have distractors and
targets. Targets could be of different kinds: knives, guns,
glass objects, liquids, etc. This task resembles disaster
triage situations in their key features: disaster responders
have to discriminate between patients who would profit
most by treatment based on their symptoms and available
resources (targets) and patients who would not (distrac-
tors). As a dynamic decision-making task, the condition of
a patient might change over time resulting in a different
category membership. Gonzalez and Madhavan demon-
strated that a condition where target change (targets can be
targets in some trials and distractors in others) results in
better learning and transfer compared with more consis-
tent conditions (in which targets are always targets). In
addition, Gonzalez and Madhavan demonstrated that a
larger diversity of instances during training helped indi-
viduals detect unknown and novel targets more accurately
at transfer than did those trained with a consistent set of
targets. According to IBLT,” heterogeneity of practice
implies a larger diversity of instances in a multidimen-
sional space of the cues that define the instances. The more
diverse those instances are, the better the chances will be
of finding similarity to past decisions when a novel in-
stance is confronted.

4. The type of feedback. This study'> suggests that simple
knowledge of results is not enough for learning. In addi-
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tion, reflecting on our own performance during training
might not be good enough for learning in dynamic and
complex tasks. What improved learning best in this study
was to reflect on an expert’s performance, which helped
improved the own person’s performance.

All the factors described above were studied using
simulations of complex, dynamic tasks, called microworlds.!#
The design of simulations and games for training is common
and microworlds are becoming more prevalent in the class-
room, for research, and for practitioners. Many disciplines are
now adopting simulations and games in the classroom, such as
Engineering!®; Business and Management?°; Medicine?!??; and
Political Science.?*2* The usage of microworlds for research
goes back several decades and was introduced by Turkle.?>
Recently, we developed a microworld in the context of
medical diagnosis, MEDIC, to study probability learning and
perceptions of probabilities for hypothesis generation and
testing. The design of MEDIC is discussed in a recent publica-
tion.?¢ In correspondence with Kleinmuntz,2” MEDIC represents
decision making in medical diagnosis and treatment. MEDIC
has some key features of complex decision-making scenarios:
the task is complex with numerous diseases and symptoms;
there are base rates for symptoms associated with diseases,
making associations probabilistic; and decisions need to be
made in real time (i.e., the status of the patient deteriorates
unless an action is taken). The system allows investigation of
the effects of different degrees of test diagnosticity, treatment
effectiveness, and treatment risks on participants’ perfor-
mance and learning. In addition to Kleinmuntz’s criteria,
MEDIC has feedback delays implemented (e.g., for receiving
test results) and it can be potentially used for dynamic
diagnostic cues or dynamic symptoms. A learning study with
MEDIC and other aspects of learning in the medical context
are presented next.

LEARNING AND PERFORMANCE IN THE
MEDICAL CONTEXT

In a recent study, college students learned to diagnose
four possible diseases among simulated patients, with varying
degrees of associations between symptoms and diseases (see
Table 1).

As shown in Table 1, associations between symptoms
and diseases varied between 0.1 and 0.9. After deciding on a
diagnosis, deterministic treatment for that disease had to be
provided by participants. A laboratory study was conducted
similar to that reported in Gonzalez and Vrbin.?¢ In this study,
12 college students from a local university participated in this

TABLE 1. Disease Symptom Associations for Four Diseases
of Simulated Patients in MEDIC

Disease 1 Disease 2 Di 3 Di 4
Base rates 0.25 0.25 0.25 0.25
Symptom 1 0.5 0.5 0.5 0.5
Symptom 2 0.9 0.1 0.5 0.5
Symptom 3 0.9 0.9 0.1 0.1
Symptom 4 0.5 0.5 0.9 0.1
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study for a flat payment rate. Each participant solved cases,
where each case represented one patient. Participants were
presented with a simulated patient and were asked to give a
diagnosis by testing for the presence or absence of as many
symptoms as needed according to the symptom-disease ma-
trix (available to them). Thereafter, they had to prescribe a
treatment, once again according to a probability table indi-
cating the effectiveness of a treatment for each possible
disease. Each case ended once a treatment was prescribed.
The treatment could be either effective or not effective, and
participants received feedback about the effectiveness of the
treatment and the accuracy of their diagnosis before seeing
the next simulated patient. Performance was measured by the
final health of simulated patients, after the treatment had been
prescribed.

Participants improved their performance with repeated
trials (patients) as shown in Figure 2. That means they
learned to come up with the appropriate diagnosis and the
appropriate treatment for that diagnosis faster, resulting in the
better final health of their patients. Nevertheless, the perfor-
mance of participants remained suboptimal even after 56
cases. In Table 1, there are three diagnostic symptoms (2, 3,
and 4) where the presence of the symptom is strongly asso-
ciated with just one disease. In contrast, symptom 1 was
associated at chance level with all four diseases. Therefore,
this symptom was not diagnostic. While students learned with
practice to favor testing for diagnostic symptoms, they did
not stop testing symptom 1 despite associated costs in time
and patients’ health and the lack of information that this
symptom resulted in. In 32% of the patients, participants
tested symptom 1; in 69%, they tested symptom 2; in 97%,
symptom 3; and in 64%, symptom 4.

These results illustrate an effect that is well known in
dynamic decision-making tasks: humans have great difficul-
ties learning these tasks; learning is slow and suboptimal; and
humans are not maximizers or optimizers, but rather they are
satisficers in the way that they often adopt “good enough”
solutions, a concept known as bounded rationality.

Recently, Gonzalez and coworkers have found that
learning can be difficult even in situations defined as “simple”
by traditional means: few variables and components in-

100

90

80 i . - Ty “

. AR & Ak A g 7 W VY
” PO vAAYE SR OSSN

. ;J- 5 3 LI

40¥

30

Average Final Health %

20

L B B L e B
13 5 7 911131517 19 21 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Trial

Figure 2. Average final health for 56 patients diagnosed and
treated in the MEDIC simulation.
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volved, no time constraints and workload, no uncertainty,
complete feedback, and no need for real-time decisions.
Highly educated adults were tested for their understanding of
the basic building blocks of dynamic systems that can scale
up to disaster situations and triage: accumulations and
flows.”-282% The regulation of a stock or a system state is one
of the most common DDM tasks.3? In a disaster, the number
of patients to be treated can be understood as a stock that
accumulates with patients coming in and leaving the ER after
treatment. Another example of the relevance of understand-
ing accumulation and flows concerns the amount of fluids in
a patient’s body. This is often an important indicator of health
and thus important to monitor. The amount of fluids in the
body increases when the intakes exceed the outflows and
decreases when the outflows exceed the inflows. Thus, in
medicine as well as in many other contexts, the regulation of
a system state, the perception of the system state, and the
effect of the flows on the system are essential skills for
dealing with dynamic tasks'? and an essential skill for allo-
cating resources in real time.

The regulation of stocks can be understood as a closed-
loop learning process in which the status of the situation is
influenced by our goals, external events, and previous deci-
sions (see Fig. 3). For example, for regulating a stock or a
system, decisions are made to correct for the discrepancy
between the goals and the current status of the system, and
thus learning depends on feedback or the associations be-
tween the results and our actions.?® This feedback is often
spaced out and separated in time from the actual decisions,
making it difficult to understand the cause-effect relationships
over time.'5 This lack of understanding is a serious obstacle
for disaster response that hinders learning from experience.

It is known from several studies!3-28:2° that well-
educated adults have difficulties understanding even sim-
ple dynamic systems like a bathtub with just one inflow,
the faucet, and one outflow, the drainage. In a current
study, we investigated whether medical students would
perform better when estimating stock dynamics than other
college students for medical domains.

A group of medical students and a group of college
students were asked to answer four questions for one of six
scenarios like the one illustrated in Figure 4. That scenario
involved the judgment of the amount of fluids in a human

Decision

Goals \
Status of the
/ system

External events

Delay

Figure 3. Dynamic decision making is a close-loop learning
process. Goals, external events, and the outcome of prior
decisions determine the status of the system. Decisions are
made to correct for the discrepancy between the goal and
the status of the system.
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Figure 4. Diagram from a recent stocks and flows study
with medical and nonmedical students that shows the
amount of intravenous fluid and urination for a patient and
a 30-hour period of time.

body according to the rate of intravenous fluids administered
and urination over a 30-hour period of time.

For this scenario, participants had to estimate when the
most IV fluid was administered, when the most urination
occurred, when the amount of fluid in the body was highest,
and when it was lowest (correct answers: 4, 21, 14, 30).

Medical students and college students did quite well
answering the first two questions: the majority of medical
students answered these questions correctly (95.5% and
95.5% for questions 1 and 2, respectively). The same holds
for college students (96.7% and 96.7% for questions 1 and 2,
respectively). This essentially indicates that both groups,
medical students and generic students, were able to read the
graphs. However, only a small minority could correctly
answer the last two questions (27.3% and 18.2% of medical
students as well as 3.3% and 13.3% of college students for
questions 3 and 4, respectively). Comparisons of these num-
bers show a significant difference only in the question re-
garding when the amount of fluid in the body was highest
(Exact Fisher test Chi-square (1) = 6.24, p = 0.033), but no
difference in the other questions. In any case, the fact that the
percent correct in questions 3 and 4 was lower than 30% for
medical students is worrisome. Therefore, medical students
did not profit from their medical knowledge and experience
when answering these questions. These results suggest that
medical students have to cope with the same cognitive limi-
tations as lay students when interpreting and judging flows.
We are currently working on designing learning and training
routines to help people acquire a deep understanding of these
dynamic relationships.

SUMMARY AND CONCLUSIONS

Despite triage’s critical role for emergency care, little is
known about the decision-making skills required and the
conditions for acquiring those skills. This research is a first
look at some of those issues. We have demonstrated with
MEDIC that acquiring the necessary skills is much more
difficult than one might first think. We suggest a number of
important principles that promise to improve training. These
include diversity of training practice cases and a careful mix
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of slow training under thoughtful conditions with more rapid
training under realistic conditions.

We have argued that responding to disaster situations can
be understood as dynamic decision making with demands ex-
ceeding available resources and with multiple decisions that
have to be made under time pressure and uncertainty. We have
illustrated how research on dynamic decision making using
microworlds and instance-based learning theory can be ap-
plied to generating principles for disaster training. The factors
of DDM that are of special relevance for emergency training
are time constraints, workload, similarity or diversity of
experiences, and types of feedback. For these factors, we
found that what best prepares people for novel situations is
not to train under maximal realistic conditions but under
conditions that foster skill acquisition and a deeper under-
standing of the situations confronted.

Some examples of principles for emergency training
derived from DDM research are the diversity of practice and
the slow is fast principles. Larger diversity of instances
during training helped individuals detect unknown and novel
targets more accurately at transfer than did those trained with
a consistent set of targets.!” In addition, slow training led to
better performance than fast training.'> Thus, training for
high time pressure tasks is more effective if performed in a
slow path before releasing learners to realistic conditions. We
also illustrated that training routines have to take into con-
sideration the cognitive abilities and constraints that trainees
cannot overcome with domain experience.

IBLT7 and DDM research can be used as an initial step
toward a new theory of learning and skill acquisition in triage
and emergency situations as a theoretical and empirical
framework to account for and make accurate predictions
about the effectiveness of different training methods for
pediatric emergency triage activities.
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