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Introduction

All accumulation problems are ruled by the same principles. A stock
increases when the inflow is greater than the outflow, decreases when the
outflow is greater than the inflow, and is stable when the inflow and the
outflow are equal over a time period. For example, to maintain our weight,
we must burn as many calories as we consume; to lose weight, we must burn
more calories than we consume; and to gain weight, we must consume more
calories than we burn. This reasoning seems almost too simple to be a problem
for study, but research has shown exactly the opposite. In the past decade,
evidence has mounted demonstrating our inability to understand these basic
concepts of accumulation (Abdel-Hamid et al., 2014; Brunstein et al., 2010;
Cronin and Gonzalez, 2007; Cronin et al., 2009; Gonzalez and Wong, 2012;
Sweeney and Sterman, 2000). This problem, called stock—flow (SF) failure,
is robust and difficult to overcome (Cronin et al., 2009). People fail to integrate
the information about the inflow and outflow over time and consequently
make erroneous judgments about the levels of a stock at different points in
time. Researchers have found that people often use a correlation heuristic
(Cronin et al., 2009) that leads them to make judgments about the level of a
stock based solely on the pattern of the flows.

A number of researchers have questioned whether SF failure results from a
difficulty interpreting graphs of behavior over time or from the type of
graphical representation used in these problems. For example, Cronin and
Gonzalez (2007) suggested that the type of representation of dynamic systems
is a critical source of errors in judging the relationship between flows and the
stock. Cronin et al. (2009) varied the graphical pattern of behavior over time of
inflows and outflows, and concluded that more complex patterns between
inflows and outflows (e.g., an inverted U-shape and a line versus two parallel
lines) result in less accurate judgments of accumulation and more reliance on
the correlation heuristic. In their study, however, the variations in the patterns
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Fig. 1. The department
store (DS) task. [Colour
figure can be viewed at
wileyonlinelibrary.com]

of behavior of the flows also changed the resulting pattern of stock behavior
over time (i.e., the shape of the stock line). These changes make it difficult
to conclude whether the increased difficulty results from the more
sophisticated graphical patterns of inflow and outflow or from the more
complex pattern of the resulting stock. The present research provides
additional insights into SF failure by demonstrating that when the resulting
pattern of stock behavior over time is kept constant the graphical features of
the patterns of inflow and outflow do not relate to the SF failure.

We used a common simple stock-and-flow task: the “department store” (DS)
task, illustrated in Figure 1 (Sterman, 2002). A graph shows the number of
people entering and leaving a department store each minute over a 30-minute
interval, and participants are asked four questions. Two questions of interest
(questions 3 and 4) test whether participants can infer the stock’s behavior

The graph below shows the number of people entering and leaving a department store over a 30-
minute period.
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Please answer the following questions.
Check the box if the answer cannot be determined from the information provided.

1. During which minute did the most people enter the store?

Minute [1 Can’t be determined
2. During which minute did the most people leave the store?

Minute ] Can’t be determined
3. During which minute were the most people in the store?

Minute [] Can’t be determined
4. During which minute were the fewest people in the store?

Minute [] Can’t be determined
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from the behavior of the flows (Cronin and Gonzalez, 2007; Cronin et al., 2009;
Sterman, 2002). Evidence for SF failure is based on the low percentage of
correct responses to these questions.

To answer questions 3 and 4 correctly, one needs to observe the relationship
between the inflow and outflow, their crossing point, and the size of the areas
before and after the two lines cross (Sterman, 2002). People should recognize
that more people leave than enter the department store for a longer time
period after the crossing point; therefore the minute at which there are the
most people in the store is the crossing point (¢ = 14) and the minute where
there are the fewest people in the store is the last minute (¢ = 30). People
should be able to visually perceive the crossing point of the flows to
discriminate the size of the areas between the curves and to determine which
area is bigger (in Figure 1 the area after the crossing point is twice the size of
the area before the crossing point, 1:2).

Fischer and Gonzalez (2016) suggest that the graphical elements of the DS
task may influence the way humans process information (i.e., whether they
look at the “forest” or the “trees”). Research by Korzilius et al. (2014), in
which participants were asked to think aloud while solving the DS task,
suggests that most people do focus on the local elements: participants
concentrated on the peaks and the difference between the peaks. Relatedly,
Fischer and Gonzalez (2016) found that global priming decreased SF failure
relative to local priming. Presumably, global priming led participants to focus
on the gestalt of the DS task—that is, the areas between the flow curves—
rather than on the local elements (i.e., the peaks in the curves).

The present study tests how the features of graphical patterns of flow
behavior over time may influence SF success. If more attention to the area
between the curves suggests global processing, it follows that increasing the
salience of the difference in the areas between the curves and the ease of
discrimination of graphical patterns would increase SF success. Importantly,
in this study, the behavior over time of the resulting stock in the DS task
(initially increasing to a maximum point, and then decreasing) was the same
in all conditions; we only manipulated the graphical representations of the
inflow and outflow behavior over time and the salience of the difference in
the areas between the flow curves. Specifically, we manipulated the point of
the crossing of the flows, the scale of the areas between the flows, and the
location of the bigger area between the flows.

Method

Participants

There were 957 participants. Their mean age was 28 years (standard
deviation = 12.08), and 66.04 percent were female. The median education
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level of participants was “some college” and the mean education level was a
2-year college degree. All participants were recruited online through Amazon
Mechanical Turk and paid $0.50 for participation.

Procedure

After completing a consent form, participants performed a visual judgment
accuracy task. In this part of the experiment, our aim was to determine
which combinations of graphical elements led to better discernment of
which area between the two flow curves was larger. To this end, we created
18 versions of the original DS graph (see Figure 2) by manipulating three
graphical elements: placement of the crossing point of the flows (left,
middle, or right side of the graph); scale of the bigger area (two, three, or
four times as big); and location of the bigger area (before or after the
crossing point). Crossing was coded as L (left, t = 10), M (middle, t = 15),
or R (right, t = 20). Scale was coded as ratios: 1:2, 1:3, and 1:4. Finally,
the location of the bigger area was indicated by the order of the numbers
in the ratios. For example, R1:2 denotes a graph whose right area (i.e., the
area after the crossing) is twice as big as the left and whose crossing occurs
on the right side of the graph. In contrast, R2:1 denotes a graph whose left
area (i.e., before the crossing on the right side of the graph) is twice as big
as the right. In the visual judgment task, participants were asked to indicate
as quickly as possible which area of the graph was bigger (left or right). They
were asked to judge the size of the area for all 18 versions in random order.

Next, to determine whether visual judgment accuracy predicted success on
the SF questions, we gave participants one of the 18 versions of the DS graph
selected at random and asked them to solve the DS task with the four SF
questions. For each question, participants typed in a number indicating a
minute in the graph or selected the “Can’t be determined” box if they believed
the information could not be determined from the graph. Responses to the SF
questions were coded as correct if they were between —1 minute and
+1 minute away from the correct answer.

Results

The results answer four questions. First, how does the manipulation of
crossing, scale, and location affect visual judgment accuracy (measured
dichotomously: correct or incorrect) on the DS graph? Second, what effect
does the manipulation of the patterns of behavior-over-time graphs have on
SF accuracy (measured dichotomously)? Third, does visual judgment accuracy
predict SF accuracy? Fourth, what types of SF judgment errors do participants
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Fig. 2. Eighteen versions of the DS task graph used in the experiment. The solid lines represent people entering and the dotted
lines represent people leaving over the course of 30 minutes (x axis). The y axis denotes the total number of people per minute.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Table 1. Coefficients for the
multilevel model predicting
visual judgment accuracy
using the graphical manipu-
lations and varying intercept
by participant. Intercept cor-
responds to the condition in
which the crossing point is
on the left of the display,
the larger area is twice as
big as the smaller area,
and the larger area is after
the crossing point (L1:2 in
Figure 2)

make? All analyses were conducted using the R statistical computing language
(R Core Team, 2016) and the lme4 package (Bates et al., 2015).

Visual judgment accuracy

Overall, participants were very accurate on the visual judgment task. The 95
percent confidence interval (CI) for success rate across all conditions was
between 97.7 percent and 98.4 percent. (All ranges are 95 percent ClIs unless
otherwise noted.) We built a multilevel logistic regression using graphical
elements (crossing, scale, and location) to predict visual judgment accuracy.
This model included varying intercepts by participant to account for the
dependence between repeated observations from each participant (i.e., the
18 trials) (Gelman and Hill, 2006). Perfect accuracy for all 18 responses in
roughly 59 percent of participants prevented us from fitting any interaction
terms. As shown in Table 1 and Figure 3, the model predicts significantly
higher accuracy when the crossing point was on the right or in the middle
(as opposed to on the left); when the larger area was three or four (as opposed
to two) times larger than the smaller area; and when the location of the larger
area was before the crossing (as opposed to after).

Stock-flow accuracy

The group accuracy rates for each of the four SF questions were calculated by
dividing the number of correct responses by the total number of participants.
These rates and their frequencies can be found in Table 2. The vast majority of
participants responded correctly to Q1 (95.9-96.5 percent) and Q2 (92.3-93.1
percent), and overall accuracy was very poor for Q3 (17.6-18.8 percent) and

Fixed effects

Coefficient Coefficient SE z-value p-value
Intercept (L1:2) 3.09 0.12 25.60 <2 x 10
Crossing (M) 0.87 0.094 9.24 <2 x10 '°
Crossing (R) 0.30 0.084 3.59 0.0003
Scale (1:3) 0.65 0.086 7.57 4ax10
Scale (1:4) 1.00 0.093 10.75 <2x10°1°
Location (before) 0.16 0.073 2.19 0.028

Random effects

Variance
Participant 3.219
Residual 1
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Fig. 3. Average accuracy
rates in each condition of
the visual judgment task.
The horizontal axis
corresponds to the scale
factor, while the
horizontal facets
correspond to the location
factor and the vertical
facets correspond to the
crossing factor

Table 2. Distributions of
correct responses to the
four questions in the DS
task
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Correct responses
Frequency

Q4 (12.5-13.5 percent). The scores of the MTurk workers for Q3 and Q4 were
lower than any of those reported in past research (Sterman, 2002; Cronin
et al., 2009; Cronin and Gonzalez, 2007), but they are similar to the rates found
in other studies conducted on MTurk recently (Fischer and Gonzalez, 2016;
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Table 3. Slope coefficients
from the multilevel models
predicting Q3 and Q4 ac-
curacy using either the in-
tercept estimates from the
model in Table 1 (MLM) or
the proportion of correct
responses on the visual judg-
ment task [p(Cor)]. Bayes
factors are presented as rel-
ative support for the null
hypothesis of a coefficient
value of zero

Qi and Gonzalez, 2015). As discussed in Qi and Gonzalez (2015), these
differences may be due to the variances in settings and methods, as well as
the level of education of the participants involved.

We used a logistic regression to assess whether graphical elements
predicted accuracy on Q3 and Q4 from Table 2. Each participant answered
each of these questions only once with regard to a particular combination of
graphical elements, so no multilevel model was necessary. For each of these
models, we used crossing, scale, location, and their two-way and three-way
interactions to predict SF question accuracy. None of these predictors reached
significance.

Effect of visual judgment accuracy on stock—flow accuracy

We built another regression model to test the effect of visual judgment
accuracy on SF question (QQ3 and Q4) accuracy. We scored visual judgment
accuracy in two ways. The multilevel model (MLM) method used the
individual intercept estimates from the model reported in Table 1 as an
indicator of accuracy. For robustness, we also ran similar models with
individual accuracy calculated as the proportion of correct visual judgments.
Because the SF questions were associated with different arrangements of the
DS graph, we again used multilevel logistic models to control for the
experimental effects of crossing, scale, and location. Finally, we calculated
Bayes factors on the relationship between visual judgment accuracy and SF
question accuracy to assess the relative support for or against the predictive
value of visual judgment accuracy for SF question accuracy (Rouder et al.,
2009). Contrary to predictions, as shown in Table 3, neither the multilevel
models nor the Bayes factors supported a relationship between visual
judgment accuracy and accuracy on either Q3 or Q4. In fact, the Bayes factors
indicated that regardless of the method of scoring visual accuracy the data

Question Accuracy calculation method Coefficient Coefficient SE z-value p-value Bayes factor

3 MLM 0.012 0.026 0.48  0.63 19.00
p(Cor) 0.22 0.28 0.78  0.44 24.59
4 MLM 0.026 0.025 1.01 031 27.82
p(Cor) 0.38 0.32 1.20  0.23 28.58
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Table 4. Distributions of
error types in the DS task
for each question

strongly favored the null hypothesis of no effect of visual judgment accuracy
on SF accuracy (Jeffreys, 1998; Kass and Raftery, 1995).

SF error types

Incorrect responses were coded into different error types according to a
scheme from previous research (Cronin and Gonzalez, 2007; Cronin et al.,
2009, Qi and Gonzalez, 2015). The rates for each error type were calculated
by dividing the number of times the error was committed for each question
by the total number of errors (n = 1720). The distribution of errors is shown in
Table 4. In agreement with past research, common errors in Q3 and Q4 were
indicative of the correlation heuristic. Participants answered with the time
of peak inflow (5.99 percent) or the time of peak net inflow (17.44 percent)
in Q3. They answered with the time of peak outflow (2.44 percent) or the time
of peak net outflow (12.15 percent) in Q4. Thus our findings demonstrate a
modestly high usage of the correlation heuristic.

Discussion

While the design of the graphical patterns of flow behavior over time
determined the visual discriminability of the areas, we found no evidence of

Error type Q1 Q2 Q3 Q4

0 1 103 5

Peak inflow 0.00% 0.06% 5.99% 0.29%
0 16 300 22

Peak net inflow 0.00% 0.93% 17.44% 1.28%
1 0 9 42

Peak outflow 0.06% 0.00% 0.52% 2.44%
0 9 9 209

Peak net outflow 0.00% 0.52% 0.52% 12.15%
2 3 3 28

Start point (t = 1) 0.12% 0.17% 0.17% 1.63%
0 1 5 94

End point (¢ = 30) 0.00% 0.06% 0.29% 5.47%
0 3 0 12

Crossing point 0.00% 0.17% 0.00% 0.70%
5 5 255 270

Cannot be determined 0.29% 0.29% 14.83% 15.70%
28 32 98 150

Other 1.63% 1.86% 5.70% 8.72%
36 70 782 832

Total 2.09% 4.07% 45.47% 48.37%
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a relationship between the accuracy of visual judgment in these graphs and
success on judging the stock behavior in Q3 and Q4.

The areas in the DS graph were easier to discriminate when the crossing
point was on the right, and when the larger area on the left was at least three
times larger than the smaller area on the right (after the crossing point).
Examples of easier graphs are R3:1 and R4:1; other graphs had area sizes that
were more difficult for people to discriminate. These results generally agree
with findings on visual discrimination from graphs (e.g., Treisman and
Gelade, 1980; Wickens, 1992). However, our results strongly suggested no
effect of visual judgment accuracy on SF success. Participants were near-perfect
in their visual judgment accuracy but exhibited extremely poor performance on
the SF accumulation questions. Thus the patterns of flow behavior over time do
not relate to SF failure, suggesting that the difficulty in judging accumulation
may be rooted in the pattern of stock behavior over time itself.

An analysis of the errors that participants committed on the SF
accumulation questions suggests a moderate incidence of the correlation
heuristic. Specifically, the frequencies of peak inflow and peak net inflow
errors for Q3, and peak outflow and peak net outflow errors for Q4 suggest
that the correlation heuristic contributed to SF failure. However, these
incidences were lower than those reported in prior studies with a similar
population (e.g., Qi and Gonzalez, 2015), such as 59.1 percent for Q3 and
44.7 percent for. Moreover, the “cannot be determined” error occurred more
frequently for Q4 than in these prior studies. These errors may occur due to a
general tendency to concentrate on the details of the graph rather than on the
gestalt: being “local” rather than “global” processors (Fischer and Gonzalez, 2016;
Korzilius et al., 2014). The lower error rate compared to prior studies may be
due to a possible priming of “global” processing caused by the visual judgment
task presented before the DS task. It is also possible that in this study, given the
design of the behavior-over-time graphs, participants could not always rely on
local elements (i.e., the peaks in the curves) as in previous studies, and they felt
more compelled to check the “cannot be determined” box.

While we conclude that the graphical features of the behavior of flows over
time in the DS task do not relate to SF failure, there are open questions that
require further empirical investigation. For example, Fischer and Gonzalez
(2016) found a lower rate of SF failure when Q3 and Q4 were worded to
highlight the global trend of the flows rather than the local, one-point-in-time
aspects. The difficulty originating from the format of the questions needs to be
investigated further through experimentation.

Biographies

Cleotilde Gonzalez is a research professor in the department of Social and
Decision Sciences and the founding Director of the Dynamic Decision
Making Laboratory at Carnegie Mellon University. Her research focuses on

Copyright © 2017 System Dynamics Socie(tly
DOI: 10.1002/sdr



C. Gonzalez et al.: Behavior-over-time graphs and Stock and Flow Failure 69

behavioral studies of human dynamic choice and computational
representations of cognitive processes of dynamic decision making.

Liang Qi is a researcher sponsored by Shanghai Pujiang Program and a
lecturer in Department of Health Service at Second Military Medical
University, Shanghai, China. His research focuses on dynamic system
cognition, system dynamics, and judgment and decision making.

Nalyn Sriwattanakomen is a research associate at the Dynamic Decision
Making Laboratory at Carnegie Mellon University.

Jeffrey Chrabaszcz is a postdoctoral researcher at the Dynamic Decision
Making Laboratory at Carnegie Mellon University. His research focuses on
Bayesian modeling of human memory, judgment, and choice.

References

Abdel-Hamid T, Ankel F, Battle-Fisher M, Gibson B, Gonzalez-Parra G, Jalali M,
Kaipainen K, Kalupahana N, Karanfil O, Marathe A, Martinson B. 2014. Public
and health professionals’ misconceptions about the dynamics of body weight gain/
loss. System Dynamics Review 30(1-2): 58—74. https://doi.org/10.1002/sdr.1517

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models
using lme4. Journal of Statistical Software 67(1): 1—48.

Brunstein A, Gonzalez C, Kanter S. 2010. Effect of domain experience in the stock-flow
failure. System Dynamics Review 26(4): 347—354. https://doi.org/10.1002/sdr.448
Cronin M, Gonzalez C. 2007. Understanding the building blocks of system dynamics.

System Dynamics Review 23(1): 1-17.

Cronin M, Gonzalez C, Sterman JD. 2009. Why don’t well-educated adults understand
accumulation? A challenge to researchers, educators and citizens. Organizational
Behavior and Human Decision Processes 108: 116—130.

Fischer H, Gonzalez C. 2016. Making sense of dynamic systems: How our
understanding of stocks and flows depends on a global perspective. Cognitive
Science 40: 1-17.

Gelman A, Hill J. 2006. Data analysis using regression and multilevel/hierarchical
models. Cambridge University Press: Cambridge, U.K.

Gonzalez C, Wong H. 2012. Understanding stocks and flows through analogy. System
Dynamics Review 28(1): 3-27. https://doi.org/10.1002/sdr.470

Jeffreys H. 1998. The Theory of Probability. Oxford University Press: Oxford.

Kass RE, Raftery AE. 1995. Bayes factors. Journal of the American Statistical
Association 90(430): 773-795.

Korzilius H, Raaijmakers S, Rouwette E, Vennix J. 2014. Thinking aloud while solving
a stock—flow task: surfacing the correlation heuristic and other reasoning patterns.
Systems Research and Behavioral Science 31(2): 268-279.

Qi L, Gonzalez C. 2015. Mathematical knowledge is related to understanding stocks
and flows: results from two nations. System Dynamics Review 31(3): 97—114.

Copyright © 2017 System Dynamics Socie(tly
DOI: 10.1002/sdr


https://doi.org/10.1002/sdr.1517
https://doi.org/10.1002/sdr.448
https://doi.org/10.3758/PBR.16.2.225

70 System Dynamics Review

R Core Team. 2016. R: a language and environment for statistical computing. R
Foundation for Statistical Computing: Vienna, Austria Available: https://www.R-
project.org/.

Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. 2009. Bayesian t tests for
accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review 16(2):
225-237. https://doi.org/10.3758/PBR.16.2.225

Sterman JD. 2002. All models are wrong: reflections on becoming a systems scientist.
System Dynamics Review 18: 501-531.

Sweeney LB, Sterman JD. 2000. Bathtub dynamics: Initial results of a systems thinking
inventory. System Dynamics Review 16(4): 249-286. https://doi.org/10.1002/
sdr.198

Treisman AM, Gelade G. 1980. A feature-integration theory of attention. Cognitive
Psychology 12(1): 97-136.

Wickens CD. 1992. Engineering Psychology and Human Performance. (2nd ed.)
HarperCollins Publishers Inc.: New York.

Copyright © 2017 System Dynamics Socie(tly
DOI: 10.1002/sdr


https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1002/sdr.198
https://doi.org/10.1002/sdr.198

