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Training Decisions from Experience 
with Decision-Making Games 

Cleotilde Gonzalez 

The research reported here is relevant to 
human decision making in disaster, emer­
gency, and generally dynamic and changing 
conditions. In emergency conditions, both 
external resources and cognitive capabilities 
are limited. A decision maker must man­
age his/her cognitive load, that of others in 
the situation, and allocate the often limited 
resources in a short period of time. The main 
job of a decision maker in an emergency sit­
uation is to allocate resources wisely where 
the situation changes constantly, outcomes 
are delayed, decisions are interdependent, 
priorities change over time, and there is high 
uncertainty of outcomes. 

These types ofdecision-making conditions 
are part of a field of research called Dynamic 
Decision Making (DDM) (Brehmer, 1990; 
Edwards, 1962; Rapoport, 1990). Some 
classical examples of DDM include, among 
others: firefighting resource allocation and 
management in real time; triage decisions in 
a medical emergency room; 911 operators 
determining relative urgency and deploy­
ing resources; and supply-chain manage­
ment. In general, DDM often involves a 
dynamic allocation of limited resources in 

real time. Disaster and emergency responses 
are examples of decision making in dynamic 
conditions. For instance in an emergency 
room, doctors must allocate limited hospi­
tal resources (i.e., nurses, doctors, beds) in 
the presence of a large number of patients 
in need of help. The rate and timing of the 
inflow of patients is unknown, and physi­
cians must make assignments in real time. 
These allocations are interdependent, per­
haps producing suboptimal decisions like 
when a mildly injured patient is given pri­
ority over future unknown severely injured 
patients. 

A common paradigm in the behavioral 
decision sciences has been that of decisions 
from description (DFD, Hertwig, Barron, 
Weber, & Erev, 2004). A human is given 
access to descriptive information, often 
including probabilities and outcomes, and 
asked to make a choice based on the con­
ditions described. This is also a common 
paradigm in the real world. For example, to 
make an investment decision, people often 
read brochures with the different pros and 
cons of the alternatives while considering 
the risk of the different alternatives. These 
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Figure 8.1. Example of a common problem structure studied in behavioral decision-making research. 

type of decisions are one-shot (open-loop, 
no-feedback) decisions, illustrated in Figure 
8.1, where people are expected to act 
"rationally" and select the alternative that 
results in the best outcome. 

In emergency and DDM conditions, 
DFD are quite uncommon. One rarely finds 
well-defined alternatives; one rarely under­
stands or is able to correctly predict all pos­
sible outcomes; and often high uncertainty 
prevents one from calculating or estimating 
any probabilities involved in the occurrence 
of those alternatives (Gonzalez, Lerch, & 
Lebiere, 2003; Klein, 1989). Traditional 
behavioral decision research often makes 
predictions based on "rational theory," the 
simple and intuitive idea that people search 
for the optimal outcome (often monetary 
outcome) in decision situations. Drawing 
conclusions from controlled experiments in 
very simplified decision-making situations 
has multiple advantages. It allows us to iden­
tify clear strategies and measures of human 
decision making, and thus make theoreti ­
cal progress by drawing generic inferences 
about how people make decisions. However, 
this approach has some limitations, notably 
their applicability in disaster, emergency, and 

dynamic environments in general. Thus, the 
many years invested in studying DFD in the 
behavioral decision sciences have resulted in 
practically no concrete guideline for appli­
cation to train people that deal with emer­
gency, disaster, and DDM in general. 

In contrast, Naturalistic Decision Making 
is a field that has been concerned with study­
ing decision making in the "Wild," in contexts 
in which proficient decision makers draw 
conclusions from realistic cases and sce­
narios that are relevant to their experience 
and knowledge (Lipshitz, Klein, Orasanu, & 
Salas, 2001). Those who study naturalistic 
decision making are confronted with serious 
challenges. They often study large groups 
and real decision makers in complex deci­
sion situations. Real-world decision makers 
typically confront many uncertainties about 
the available options; they have inadequate 
information about their options; they rarely 
know the likely costs and benefits, and the 
value trade-offs they entail. Although one 
could expect decision makers in the real 
world to have clear goals and to promote 
those goals with their decisions, the real­
ity is that decision making in real-world 
situations is seldom rational, and in fact it 
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is often hard to understand what constitutes 
rational choice under such conditions. Thus, 
these studies have multiple limitations. 
Realistic studies demonstrate only particu­
lar examples of decision-making situations 
from which general predictions and infer­
ences are hard to derive. 

Recently in the behavioral decision sci­
ences, there has been some progress to study 
decision making in "less ideal" conditions, in 
situations where there are repeated deci­
sions and uncertainty about the outcomes 
and probabilities of events. This paradigm, 
named Decisions from Experience (DFE), 
has revealed that many assumptions of the 
perceptions of risk and human preferences 
in one-shot static decisions do not hold for 
DFE (Hertwig et aI., 2004). Although this 
work brings a very optimistic view of the 
application of behavioral decision sciences 
to DDM situations, there are many years of 
research ahead to clearly understand all the 
aspects involved in these tasks in a system­
atic way (Lejarraga, Dutt, & Gonzalez, in 
press). 

I conceptualize DDM as a control pro­
cess; a closed-loop learning process where 
decisions are intluenced by goals, external 
events, and previous decisions. Thus in my 
view, decision making is a learning process 
where decisions are made from experience 
and are feedback-dependent (feedback 
here is the association that a human makes 
between actions and their outcomes) (see 
Figure 8.2). In this paradigm, alternatives 
are not presented at the same time, but 
rather unfold over time, and decision mak­
ing is a learning loop: Decisions depend 

on previous choices as well as on external 
events and conditions. 

DFE is, very likely, the only method by 
which decisions can be made in dynamic 
conditions. In fact, a recent study demon­
strates that as the compleXity of a problem 
increases, people prefer to make decisions 
from experience rather than interpreting the 
given probabilities and outcomes of a one­
shot decision (Lejarraga, 2010). My research 
has focused on the study of DFE in DDM 
situations. I have used quite diverse research 
approaches, different from those used in the 
behavioral decision sciences and those used 
in naturalistic decision making, including 
laboratory experiments with complex inter­
active decision-making games, and compu­
tational cognitive modeling. I believe that 
these approaches improve the degree of con­
vergence between the traditional behavioral 
decision sciences experiments and the natu­
ralistic decision-making studies. In what fol­
lows 1 summarize what I have learned in the 
past years from using these two approaches 
and present the practical and concrete les­
sons for application to training decision 
makers that deal with emergency, disaster, 
and dynamic environments in general. 

Learning in DDM 

Research on learning in and about dynamic 
systems indicate that humans remain subop­
timal decision makers even after extended 
practice and after being given unlimited 
time and performance incentives (Diehl 
& Sterman, 1995; Sterman, 1994); that is, 
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humans do not always and frequently do and the outcomes received from feedback, 
not improve their decisions from experience whereas the choice submodellearns by min­
(Brehmer, 1980). One main impediment to imizing the differences between the alter­
learning in dynamic tasks is the difficulty in natives predicted by the judgment model 
processing feedback, particularly delayed and the alternatives actually selected. This 
feedback (Brehmer, 1992; Sterman, 1989). model provides a good account of individu­
However, many other difficulties have also als' learning in dynamic situations and their 
been documented, including our abilities to transfer of knowledge to novel situations 
deal with time constraints, high workload, (Gibson, 2000). 
and limitations in our inherent cognitive A third theory is the Instance-Based 
abilities (Gonzalez, 2004, 2005a; Gonzalez, Learning Theory (IBLT) (Gonzalez & 
Thomas, &Vanyukov, 2005). Lebiere, 2005; Gonzalez et al., 2003). 

Various accounts have been proposed IBLT was developed to reproduce decision­
regarding how a human learns in dynamic making behavior in dynamic tasks. IBLT 
systems (for summaries of these, see characterizes learning by storing in mem­
Busemeyer, 2002; Gonzalez, 2005b). One ory a sequence of action-outcome links 
theory is that specific instances are used to produced by experienced events through a 
control dynamic systems (Dienes & Fahey, feedback-loop process of human and envi­
1995). This learning model was based on ronment interactions. This process increases 
two cognitive mechanisms that compete knowledge and allows decisions to improve 
every time someone encounters a decision­ as experience accumulates in memory. 
making situation: an algorithm and a set of IBLT assumes the following components. 
context-action exemplars. The algorithm is Instances are examples of choices that are 
a general heuristic or rule that one uses in stored in memory. Each instance contains 
a novel situation; the context-action exem­ cues about the situation in which a deci­
plars are discrete representations of knowl­ sion was made, the decision itself, and the 
edge that are called "instances," a name subsequent outcome. Situational cues are 
derived from Logan's (1988) instance the­ relevant in dynamic environments because 
ory of automatization. In this model, an situations are continuous and variable, and 
implicit assumption is that a decision maker not all experiences are informative for 
stores actions and their outcomes together future choice situations. Learning resides in 
in memory and retrieves them on the basis the Activation (e.g., frequency and recency) 
of their similarity to subsequently encoun­ of experienced choices and outcomes. IBLT 
tered situations. assumes that the instances experienced by 

Another theory of learning is proposed the decision maker are activated in mem­
by the connectionist approach, in which ory as a function of their occurrence. More 
decision making is built from intercon­ recent and frequent instances are more 
nected units (Gibson, Fichman, & Plaut, active in memory than less recent and less 
1997). This model of learning in DDM frequent ones. Choice situations are never 
is based on the control theory approach equivalent in dynamic tasks as environ­
proposed by Brehmer (1990) and was ments change over time. Thus, past experi­
implemented computationally via neural ences are not necessarily directly applicable 
networks. This theory assumes that deci­ in new conditions. A similarity rule, defined 
sion makers use outcome feedback to form on situational cues, is specified to evalu­
two submodels: the judgment submodel that ate the resemblance of previous situations 
represents how the decision maker's actions with respect to the current situation being 
affect outcomes, and the choice submodel evaluated. Finally, IBLT uses blending as a 
that represents which actions are taken to mechanism to average the value of differ­
achieve desired outcomes. The judgment ent observed outcomes in previous simi­
submodel learns by minimizing the differ­ lar situations (Lebiere, 1999). The value of 
ences between the outcomes it predicts an option is the addition of the subjective 
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value of each possible outcome weighted Because IBLT is the basis for my pro­
by its subjective likelihood. posed guidelines to training decisions from 

The three learning models summarized experience with decision-making games, we 
earlier incorporate at least two common explain IBLT's principles and its f()rmula­
characteristics; all three models take into tions in more detail next. 
account the need for two forms of learning:
 
explicit (i.e., decision making based on rules
 
of action) and implicit (i.e., decision making
 Instance-Based Learning Theory
based on context-based knowledge and rec­

ognition). There is some evidence that indi­
 An instance in fBLT consists of environ­
viduals who have completed a dynamic task mental cues (the situation), the set of 
are not always aware of the task structure actions that are applicable to the situation 
(i.e., their knowledge is implicit), which (the decision), and the evaluation of the 
suggests that the knowledge they acquired goodness of a decision in a particular sit­
was not in the form of rules about how uation (the utility) (see Figure 8.3). Thus, 
the system works (Dienes & Fahey, 1995). the accumulation of instances involves 
Often, individuals performing DDM tasks storing situation-decision-utility (SOU)
are unable to describe the key elements of triplets in memory. Figure 8.4 presents the 
the task or verbalize the ways in which they generic fBLT process by which decisions 
make decisions (Berry & Broadbent, 1987, are made in an interactive environment,
1988). Second, these models rely on a sim­ consisting of the Recognition, Judgment,
ilarity process that determines the applica­ Choice, Execution, and Feedback steps.
bility of accumulated experiences to familiar When faced with a particular decision sit­
situations. Research in analogical reason­ uation, people are likely to retrieve simi­
ing has demonstrated the high relevance lar SDUs (SDUs with similar situations) 
of analogy to learning and decision-making from memory (Recognition step). In a 
processes (Kurtz, Miao, & Gentner, 2001; typical situation (situation similar to past
Medin, Goldstone, & Markman, 1995). SDUs), the expected utility of an action 

In summary, there are well-documented is calculated by combining the utility of 
difficulties when humans make decisions similar instances retrieved from memory
in dynamic systems. Humans remain sub­ (a procedure called Blending). In atypical 
optimal or learn very slowly, often due to situations, however, people fall back on 
feedback delays, time constraints, and the heuristics in their evaluation of expected
cognitive workload required by these envi­ utility of the action. The evaluation of the 
ronments. To be able to understand and expected utility of a decision in a situation 
improve training protocols and guidelines, is done in the Judgment step. Alternative 
one needs to first understand how humans actions are evaluated sequentially, and after 
make decisions in these tasks. Fortunately, each evaluation, the decision of whether or 
the similarities across the most prominent not more alternative should be evaluated 
theories of learning in DDM help converge is determined by a necessity mechanism. 
in some issues. All models agree in that Necessity may be subjectively determined 
humans learn facts, cause-and-effect knowl­ by the decision maker's own preferences
edge related to the context, and none of the or by exogenous factors such as lack of 
models present the main form of learning time or changes in the environmental con­
as being structural knowledge or rules. Also, ditions. The alternative with the highest
all of the models agree on the relevance of utility among the evaluated alternatives is 
some form of recognition of familiar pat­ then selected (the Choice step) and exe­
terns from past experience; that decisions cuted (the Execution step), changing the 
are made from experience by retrieving environment and noting which SOU was 
a solution from similar situations in past executed in memory. Once a decision has 
experience. been made, the outcome of the decision is 

~;'"' 

\ 



173 

& Carnes, 1997). Microworlds were devel­
oped to study DDM, and through the years, 
technological advancements have allowed 
for the development of more graphical and 
interactive tools for research, which are also 
more fun. OMGames may incorporate tem­
poral dependencies among system states 
(i.e., dynamics), feedback delays, nonlinear 
relationships among system variables, and 
uncertainty (in the form of exogenous dis­
turbances). They are interactive and allow 
repeated, interrelated decisions. They also 
may incorporate external events and time 
pressure. Thus, DMGames are essential to 
compress time and space in the laboratory 
setting. They reproduce difficult learning 
in conditions with rare, novel events and 
unpredictable timing, such as in disaster 
and emergency situations. DMGames may 
speed up learning and help people acquire 
the instances they cannot acquire from the 
real world. DMGames may help a human 
acquire the skills needed to be alert and 
become adaptable in the real world. 

The training recommendations that fol­
low are based on the use of DMGames in 
laboratory experiments where we have 
manipulated experience (type of instances 
stored) and the dynamic conditions on 
which decisions are made, such as timing, 
workload, and feedback delays. All rec­
ommendations come from IBLT and the 
empirical work done through the years to 
test IBLT's predictions on ways to speed up 
learning and facilitate prompt adaptation to 
novel and rare situations. 

Slow Is Fast 

IBLT recommends that slow is fast when it 
comes to adapting to time-constrained envi­
ronments (Gonzalez, 2004). In a dynamic 
resource allocation task like disaster and 
emergency situations, it has been demon­
strated that individuals trained on a task at 
a slower pace were able to adapt more suc­
cessfully to greater time constraints, com­
pared to those who only trained under high 
time constraints, regardless of exceedingly 
large number of practice sessions given to 
those trained under time constraints. Thus} a 
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computational models' data often agree with 
human data (e.g., Gonzalez & Lebiere, 2005; 
Gonzalez et al., 2003; Martin, Gonzalez, & 
Lebiere, 2004). 

Training and Decision-Making Games 

Given the similarity of the different the­
ories of learning in DDM and the known 
difficulties of human learning in these envi­
ronments, the question we address here is: 
What are the recommendations that can be 
drawn from these theories to address the 
learning difficulties in DDM tasks? Because 
each DDM situation is unique and the reus­
ability of good past instances from memory 
depends on the similarity between the cur­
rent situation and those stored in memory, 
disaster and emergency situations present a 
challenge to the improvement of decision 
performance over time: There are not many 
similar instances stored in our memories. 
In addition, the unpredictability of events 
in dynamic situations makes it difficult to 
determine the timing of major events, with 
possibly severe consequences. Thus, our 
main concern in this section is to present 
guidelines and suggestions from the IBLT 
to help individuals become alert and able to 
perform as best as possible in disaster and 
emergency situations. 

In my view, an essential way to achieve 
successful training for dynamic tasks 
is the use of Decision-Making Games 
(DMGames). DMGames are graphical 
models (abstractions of reality) used for 
experimentation with human decision mak­
ers. My concept of DMGames has evolved 
from that of Microworlds, a term commonly 
used in the DDM field (Brehmer & Dorner, 
1993; Gonzalez et al.} 2005; Turkle, 1984), 
and the more recent developments of seri­
ous games and serious games initiatives 
(Cannon-Bowers & Bowers, 2010). Many 
disciplines are now adopting simulations 
and games in research, including engineer­
ing (Foss & Eikass, 2006)} business and 
management (Zantow, Knowlton, & Sharp, 
2005), medicine (Bradley, 2006), and politi­
cal science (Kelle, 2008; Mintz, Geva, Redd, 

TimeBlending 
of Past 

Outcomes 

SOUtO 

degree to which the chunk matches a con­
text (i.e., the extent to which a given chunk 
is similar to previously presented chunks in 
each chunk position). ACT-R architectural 
mechanisms underlie and constrain the 
various steps of the IBLT process. Learned 
instances and their accessibility provide for 
the accumulation of instances in memory; 
similarity-based retrieval from memory 
drives the recognition process} and so on. 
We have used the computational imple­
mentation of IBLT to confirm and predict 
human performance in many tasks. IBLT's 
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Figure 8.4. The IBLT process. 

Decision 

Figure 8.3. Instance-based learning. Instances (SDUs) accumulate over 
time. At a decision point, a situation is compared to past instances, and 
based on its similarity to past instances} these are reused and blended to 
determine the expected utility of the current decision situation. Good 
instances are reinforced through feedback from the environment. 

Similarity 

used as feedback to modify the utility value 
of the original SDUs (Feedback step). 

The computational implementation of 
the IBLT relies on several mechanisms pro­
posed by the ACT-R cognitive architec­
ture (Anderson & Lebiere} 1998), notably 
the Activation mechanism. Activation in 
ACT-R is a value assigned to each "chunk" 
(i.e., instance) that reflects the estimate of 
how likely the chunk would be retrieved 
and the speed of retrieval for the chunk. The 
activation of a chunk reflects the frequency 
and recency of use of the chunk and the 
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few slow practice sessions were more benefi­
cial than a larger number offast practice ses­
sions because they enable people to acquire 
more complex and useful knowledge. 

Thirty-three graduate and undergraduate 
college students recruited from local uni­
versities were randomly assigned to either 
the fast or slow condition group. The Water 
Purification Plant simulation™ was used for 
this study. The goal in this task is to distrib­
ute all the water in the system on time and 
under time constraints by activating and 
deactivating pumps. The environment is 
opaque, so the user is uncertain about some 
key variable values. For example, water 
appears in the system according to a scenario 
defined by the experimenter and unknown 
to the user. The environment changes both 
autonomously and in response to the user's 
decisions. Because a maximum of five 
pumps can be activated at anyone time, the 
decision maker's actions are interrelated. 
This task translates directly to disaster and 

Less Workload Helps Adaptation 

Similar to the results on time constraints, it 
has been found that individuals who trained 
on a task under low workload were able to 
perform more accurately during transfer 
with a high workload than those trained 
under high-workload conditions all along 

evaluated. Second, when an individual is 
trained at a slower pace and then asked to 
perform at a faster pace, she can retrieve and 
rely on the larger and possibly more diverse 
set of instances in memory, which may be 
applied during a time-constrained condition. 
In contrast, when someone is trained under 
high time constraints, there is no chance of 
getting more instances representing differ­
ent alternatives in memory during training. 
Performance under time constraints is thus 
limited to the possible retrieval of a few, 
selected sets of instances in memory, leading 
to poorer performance. 

when it comes to workload and time con­
straints. Slower pacing and low workload 
are best during training for people to per­
form well in fast and high-workload tasks at 
test. Once again, from the lELT perspective, 
this study demonstrates the effects of work­
load on the recognition-choice cycle, which 
under workload inhibits the generation of 
instances that can then be reused at test. 

Heterogeneity Helps Adaptation 

In several studies together with my col­
leagues (Brunstein & Gonzalez, in press; 
Gonzalez & Madhavan, 2011; Gonzalez 
& Quesada, 2003; Madhavan & Gonzalez, 
2010), I have found that the variation in 
the situations that people confront during 
training influences how fast and how well 
they learn to adapt to novel and unexpected 
situations, with higher variation leading to 
better transfer. For example, Gonzalez and 
Quesada (2003) demonstrated the influence 

lead to better adaptation to novel and unex­
pected situations. For example, training con­
ditions in which the targets change (targets 
can be targets in some trials and distractors 
in others) or training conditions in which 
targets are drawn from diverse categories 
result in better adaptation to novel and rare 
situations, compared to training in consis­
tent conditions (in which the targets set is 
constant and are items from a narrow set of 
categories). 

Heterogeneity in lELT increases the 
chance that a similar instance will be 
retrieved in future choices. The heterogene­
ity is defined by the multidimensional space 
of the cues that form the situation of the 
instances. The more diverse those instances 
are, the better the chances will be of find­
ing similarity to past decisions when a novel 
instance is confronted. Thus, the greater 
the possibility of reusing well-matching 
stored instances instead of merely general 
heuristics. 

emergency situations because it involves (Gonzalez,2005a). of the similarity of past decisions on future 
time pressure, limited resources, incomplete 
knowledge about the situation, unexpected 

Fifty-one students were recruited and 
assigned to conditions that differed in the 

decisions. In this study, decisions became 
increasingly similar with task practice, but Feedforward Helps Adaptation 

: 

events, and the need to coordinate efforts to 
meet the demands. Participants did the task 
over three consecutive days. Under the fast 
condition, each simulation trial lasted eight 
minutes. Participants under this condition 
completed eighteen trials over the three­
day period (six trials/day). Under the slow 
condition, each simulation trial on the first 
two days lasted twenty-four minutes (two 
trials/day), whereas each trial on the last 
day lasted eight minutes (six trials). For all 
participants, the first two days were training 
days and the last day was the test day. The 
results show that slow training led to better 
performance than fast training on day three 
with fast performance for both groups. 

IELT explains this finding in several ways. 
First, learning at a slower pace results in more 
alternatives being considered within each 
recognition-choice cycle. More instances are 
considered and stored in memory during 
each evaluation of possible courses of action, 
given more time within each cycle. Further, 
a greater chance of finding an optimal action 
exist, given that more alternatives are being 

amount of workload (number of simulta­
neous tasks performed at the same time) 
during training. In the high-workload condi­
tion, participants had to complete the same 
Water Purification Plant simulation'I'M as in 
Gonzalez (2004), but also had to simulta­
neously perform two additional, indepen­
dent tasks. This group was contrasted to a 
low-workload condition in which partici­
pants performed the task at the same pace 
but with no additional independent tasks. 
Participants ran the OMGame on three 
consecutive days. The first two days were 
the training days, during which participants 
worked under one of the workload condi­
tions, and a third day, during which all par­
ticipants performed the same DMGame 
under workload. 

Similar to the results in Gonzalez (2004), 
the findings indicate that high task workload 
during training hindered performance and 
transfer compared to low-workload train­
ing. Thus, these two studies demonstrated 
that it is not a good idea to train individuals 
in conditions "close to the real conditions" 

the similarity depended on the interaction 
of many task features rather than by any sin­
gle task features. This study demonstrated 
the relevance of similarity of situations in 
the IELT process. 

In another study, Madhavan and Gonzalez 
(2010) used a luggage-screening task to 
investigate the effects of similarity of expe­
riences during the learning process. In such 
a task, each piece of luggage could have dis­
tractors and targets. Targets could be one of 
several types: knives, guns, glass objects, liq­
uids, and so on. This task resembles disaster 
and emergency situations in its key features. 
For example, disaster responders have to 
discriminate between patients who would 
profit most from treatment based on their 
symptoms and available resources (targets) 
and patients who would not (distrac­
tors). As a dynamic decision-making task, 
the condition of a patient might change 
over time, resulting in a different category 
membership. My work with Brunstein and 
Madhavan has demonstrated that diverse 
and heterogeneous conditions of training 

I have found that knowledge of results is 
not enough for improving learning and 
adaptation (Gonzalez, 2005b). The pro­
vision of outcome feedback was an infe­
rior way of trying to aid learning and 
performance compared to the vieWing of a 
highly skilled decision maker (e.g., a form 
of feedf()rward). Participants were trained 
in one of four groups during the first day 
and transfer to the same DDM conditions 
in the second day. During training, partici­
pants were assigned to one of the follow­
ing four conditions. Control participants 
only received feedback about the outcome 
in the task. Process feedback participants 
received outcome feedback broken down in 
multiple steps and pieces. Participants in the 
self-exemplar group ran one trial under the 
control condition and then viewed a replay 
of their own performance. Finally, partici­
pants in the expert-exemplar condition ran 
one trial under the control condition and 
then replayed the trial of a highly skilled 
participant. On the second day, all partici­
pants were asked to perform the DDM task 
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without any feedback (the detailed feed­
back, self-exemplar, and expert-exemplar 
aids were removed). 

Results showed that the performance of 
all groups improved across trials. However, 
in the early stages of learning, people with 
the detailed-outcome feedback condition 
actually showed poorer learning than the 
control participants. The self-exemplar and 
the expert-exemplar conditions showed 
superior performance compared to the 
detailed-outcome feedback condition; 
however, when the aid was removed in 
the testing period, the only treatment that 
outperformed the control condition was 
the expert-exemplar group. The expert­
exemplar group began to outperform the 
other groups midway through the training 
trials, and this superior performance con­
tinued throughout the testing period, even 
after the intervention of seeing the expert 
performance had been removed. 

The results of the detailed feedback are 
similar to those found in Gonzalez (2005b). 
Additional detailed feedback increased the 
workload during training. Because this task 
was a real-time task, the time left to eval­
uate more alternatives was used instead 
in evaluating the detailed feedback. Thus, 
although presumably the utility of the 
instances would increase, the number of 
instances decreased compared to a condi­
tion with no detailed feedback. This is clear 
in the first sessions of the task, in which per­
formance decreased for the self-exemplar 
group. The effects of self-exemplar and 
expert-exemplar are also clear from IBLT. 
In both conditions, people are acquiring 
more instances without the need of execut­
ing the task. The self-exemplar instances, 
however, are less effective than the expert­
exemplar instances. Reflecting on one's own 
performance only reinforces poor instances, 
whereas reflecting on expert's performance 
reinforces instances with higher utility. 

Summary and Conclusions 

Behavioral scientists, particularly those with 
interest in human decision making, should 

pay more attention to the process and skills 
needed to make decisions in dynamic situ­
ations. The majority of research in deci­
sion sciences has focused on one-shot 
(open-loop) decisions that present people 
with description of hypothetical problems 
of choice. Very little has been done in the 
decision sciences to understand the forma­
tion of alternatives in the first place and the 
effects of "closing the loop"; that is, making 
decisions from experience by reusing past 
decisions and outcomes. 

My research has focused on the study of 
decisions from experience in dynamic situ­
ations. My belief is that experience is the 
most likely method by which people make 
decisions in dynamic conditions. I see deci­
sion making in dynamic tasks as a learning 
loop, where decisions are made from expe­
rience and are feedback-dependent. In this 
chapter, I explained current research of 
learning theories that are directly relevant 
to DDM. I concentrated particularly on the 
explanation of IBLT, a theory that has been 
implemented computationally and from 
which several training guidelines have been 
derived. I have illustrated how research on 
DDM using DMGames and the IBLT can 
be used to generate practical and concrete 
training principles. The factors ofDDM that 
are of special relevance for emergency train­
ing are time constraints, workload, similar­
ity or diversity of experiences, and types of 
feedback. For these factors, we found what 
best prepares people for uncertain and novel 
situations is to train under conditions that 
foster skill acquisition and a deeper under­
standing of the situations confronted. 

Some examples of the principles for 
emergency training derived from DDM 
research are the diversity of practice and 
the slow is fast principles. Greater diversity 
of instances during training helped individu­
als detect unknown and novel targets more 
accurately at transfer than those trained 
with a consistent set of targets. In addi­
tion, slower training led to better perfor­
mance than fast training. Thus, training for 
high-time-pressure tasks is more effective if 
performed in a slower path before releasing 
learners to realistic conditions. In laboratory 

TRAINING DECISIONS FROM EXPERIENCE 

studies, we have demonstrated how these 
guidelines of training result in better perfor­
mance and adaptation to unexpected and 
uncertain conditions. Thus, I suggest that 
these guidelines could be used to design 
training protocols for decision makers that 
have to be prepared to deal with unex­
pected conditions and possible emergencies 
in their daily activities. 
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Adaptive Tutoring Technologies 
and Ill-Defined Domains 

"Collin Lynch, Kevin D. Ashley, Niels Pinkwart,	 '!l: 

and Vincent Aleven
 

Introduction 

Consider the following problems: 

Pw: Given a fleet of trucks F = (fl, f2, 
... , fn] and a shipment of supplies S 
packed in N crates each weighing .,;T 
tons, how long would it take to ship 
the boxes from Bagram AFB to a for­
ward operating base using one of N 
predefined routes? 

Pi: Arrange a logistical distribution sys­
tem that will provide a sufficient sup­
ply of medical and military stores for 
firebases and patrol units in Helmand 
province. 

Both are standard logistical problems that 
any hapless staff officer might face on a 
given day. The former, however, is quite 
well-defined in that the problem is fairly 
constrained, the relevant knOWledge is clear 
and available to the solver, and the answer is 
unambiguous. It could easily be approached 
using standard production rules as employed 
in GPS (Newell & Simon, 1995) or with 

a pattern-matching or schema-driven 
IIapproach (Greeno, 1976). 

The latter problem, by contrast, is 
I
 

I
 
I 

ill-defined. Much of the necessary informa­	 III,I,I 
tion is unavailable or underspecified: What !1 

supplies are required? How often must they 
be replenished? Who is available to make the 
shipments? And so on. To solve the problem, 
our hapless staffer will be forced to articu­

jill 

late, and answer, a number of related ques­ I 

I'
 
tions, frame and define missing criteria (e.g., ;i,::
 

what is "sufficient"), and be ready to defend II
 
I,i
their decisions after the fact. In short, he or ,,,
 

she must recharacterize the problem to solve I'I·
 

it, and that process will define the solution.
 
In doing so, our officer will need to draw
 
on a wide range of information, from the
 
shelf-life of medical supplies, to the status )
 
of roads in Helmand, to the local governor's I
 
taste in cigars. I,
 

Our focus in this chapter is on ill­
defined problems and domains. What does Il ,I:
it mean for a problem or domain to be ill­ II' 
defined and what are the implications for , 

II
adaptive training technologies? We begin	 'I' 

i.:III. 

by clarifying what we mean by "problem,"	 'I 
'I 
III 
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