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This chapter reviews computational representations of human 
behavior involving three training principles discussed in pre-
ceding chapters (especially chapters 2, 3, and 5): Speed–accu-
racy trade-off attributable to fatigue, training diffi culty, and 
stimulus-response compatibility. Effects of these three training 
principles were modeled using the ACT-R cognitive architec-
ture (Anderson & Lebiere, 1998) and the instance-based learn-
ing (IBL) theory (Gonzalez, Lerch, & Lebiere, 2003). The use of 
similar memory principles in all three projects resulted in the 
implementation of an IBL tool (Dutt & Gonzalez, 2011), which 
provides a computational framework that facilities building com-
putational models using ACT-R and IBL theory. The last section 
of this chapter summarizes the IBL tool and concludes with the 
benefi ts of using computational representations of learning and 
training principles: to develop an understanding of the learn-
ing process in a variety of tasks; to predict learning effects from 
training principles; and most importantly, to demonstrate the 
generality of computational principles and representations from 
the ACT-R architecture and IBL theory.

Cognitive Architectures: ACT-R
In Unifi ed Theories of Cognition, Allen Newell calls for “unifi ca-
tion” as an aim of science: “positing a single system of mech-
anisms—a cognitive architecture—that operate together to 
produce the full range of human cognition” (Newell, 1990, p. 1). 
His approach to unifi cation involved a single piece of software 
representing a theory about the nature of the human mind. 
ACT-R (Anderson & Lebiere, 1998) is an example of a theory that 
consists of multiple modules, but that evolved as an integrated 
cognitive architecture (Anderson et al., 2004). Corresponding 
to human abilities like perceptual-motor, declarative memory, 
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and the goal, the modules may help make particular predictions 
about human behavior (Anderson et al., 2004).

ACT-R can be conceptualized as a toolbox of cognitive pro-
cesses, and a cognitive model is a particular computational 
representation of the processes involved in executing a concrete 
task. When a task is to be performed, different cognitive pro-
cesses may be required in different sequences, along with dif-
ferent intensities and durations to accomplish a task. Thus, a 
cognitive modeler makes the diffi cult decisions of which particu-
lar sequences are needed. Up to this point, there has been little 
theory to guide the modeler. In reference to models of human 
learning that are directly relevant to training principles, how-
ever, there have been at least two approaches: (a) learning by 
means of rules (procedural knowledge, strategies) and (b) learn-
ing from particular domain-related events (declarative knowl-
edge, instances; Anderson & Lebiere, 2003). These approaches 
may use ACT-R’s symbolic and subsymbolic knowledge repre-
sentations in different ways (Anderson & Lebiere, 1998, 2003). 
The symbolic aspects can be declarative, procedural, or both. 
Declarative knowledge is represented in chunks, and proce-
dural knowledge is represented in productions (if–then rules). 
Subsymbolic elements are the neural-like mathematical mecha-
nisms that manipulate the symbolic representations.

ACT-R affords the modeler considerable freedom in which 
approaches to take when developing an accurate representation 
of the learning processes involved in a task’s execution. Modelers 
can choose to “think of” or discover the strategies that human 
beings use in a task, which can be represented in production 
rules (strategy-based learning or SBL). These production rules 
“compete” according to the values that are provided through a 
process of reinforcement learning. In contrast, modelers can also 
choose to represent knowledge in instances (i.e., task cues are 
represented as slots of chunks), following IBL theory. Thus, IBL 
represents the learning process in a generic set of productions 
and uses mostly declarative knowledge as the basis for learning. 
In IBL, instances are accumulated and retrieved according to a 
memory mechanism called activation, which is a function of the 
recency, frequency of the use of instances, and their similarity 
to the task’s cues. ACT-R models often use a combination of the 
SBL and IBL approaches. Furthermore, there are also consider-
able degrees of freedom to decide what parameters and subsym-
bolic mechanisms are used to “fi t” a model to human data.

The IBL theory attempts to provide a framework of the cogni-
tive processes involved in making decisions from experience in 
dynamic tasks (Gonzalez et al., 2003). As will become clear in 
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the rest of the chapter, this framework helps reduce the degrees 
of freedom involved in modeling by adopting one particular per-
spective of learning from experience and exploration, which can 
be applied to a broad range of dynamic and repeated choice 
tasks. In modeling, the training effects illustrated in the chapter 
utilized IBL theory and other proposed ACT-R learning mecha-
nisms. IBL theory will be introduced next, then computational 
models of three training principles will be summarized: speed–
accuracy trade-off, training diffi culty, and stimulus-response 
compatibility. Examples of modeling these three training princi-
ples will highlight the common and robust mechanisms of expe-
riential learning used in IBL theory. The chapter will conclude 
with the presentation of the IBL tool, an easy-to-use compu-
tational approach that facilitates and frames the choices that 
modelers can take with IBL theory.

Instance-Based Learning Theory
IBL theory (Gonzalez et al., 2003; Gonzalez & Dutt, 2011) pro-
poses a particular learning process free of fabricated and spe-
cifi c strategies, as well as concrete guidelines for the symbolic 
representation of information. The theory also uses a subset of 
subsymbolic learning mechanisms developed in and adapted 
from ACT-R. Thus, developing models that follow IBL theory 
reduces the number of decisions a modeler must make. 

IBL theory was initially proposed to demonstrate how learn-
ing occurs in dynamic decision-making tasks (Gonzalez et al., 
2003). An IBL model was implemented within the ACT-R archi-
tecture, and it was demonstrated how IBL theory and ACT-R 
parameters and processes were needed to account for human 
decision making in a complex task. IBL theory has more recently 
been used in other type of tasks, including simple binary choice 
tasks (Lebiere, Gonzalez, & Martin, 2007; Lejarraga, Dutt, & 
Gonzalez, in press), two-person game theory tasks (Gonzalez & 
Lebiere, 2005), and other dynamic control tasks (Martin, Gon-
zalez, & Lebiere, 2004).

An instance in IBL theory is a triplet containing the cues that 
defi ne a situation, the actions that defi ne a decision, and the 
expected or experienced value from an action in such a situa-
tion. Simply put, an instance is a concrete representation of the 
experience that a human acquires in terms of the task situation 
encountered, the decision made, and the outcome (feedback) 
obtained in the task. A modeler following the IBL theory must 
defi ne the structure of a situation-decision-value instance. IBL’s 
generic decision making process involves the following steps: 
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Recognition (comparison of cues from the task to cues from 
memory); Judgment (the calculation of a decision’s possible util-
ity in a situation, either from past memory or from heuristics); 
Choice (the selection of the instance containing the highest util-
ity); Execution (the act of making a decision based upon the cho-
sen instance); and Feedback (the modifi cation of the expected 
utility defi ned in the judgment process with the experienced 
utility after receiving the outcome from a decision made).

In making a choice, the IBL theory selects the alternative 
with the highest blended value, V (Gonzalez & Dutt, 2011; Lejar-
raga et al., in press) resulting from all instances belonging to an 
alternative. The blended value of alternative j is defi ned as

  (1)

where xi is the value of the observed outcome in the outcome slot 
of an instance i corresponding to the alternative j, and pi  is the 
probability of that instance’s retrieval from memory. The blended 
value of an alternative (its utility) is the sum of all observed 
outcomes xi of corresponding instances in memory, weighted by 
their probability of retrieval. In any trial t, the probability of 
retrieving instance i from memory is a function of its activation 
relative to the activation of all other instances corresponding to 
that alternative, given by

 
   
 (2)

where  is random noise defi ned as = σ × √2̄ and  is a free noise 
parameter. Noise in Equation 2 captures the imprecision of 
recalling instances from memory. 

The activation of each instance in memory depends upon the 
Activation mechanism originally proposed in the ACT-R archi-
tecture (Anderson & Lebiere, 1998). For each trial t, the Activa-
tion Ai,t of instance i is:

 
ε+−+= ∑ i

j
jijii DSWBA     (3)

The activation Ai of an instance i refl ects how likely the instance 
would match a task cue at the current point of time, and the 
probability and speed of retrieval of that instance (Anderson & 
Lebiere, 1998). The activation is determined by the base-level 
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activation Bi, the associative activation Si, the mismatch penalty 
value Di, and noise. The base-level activation Bi of the instance 
i refl ects the recency and frequency of that instance’s use. Si 
refl ects the impact of contextual values on the instance’s acti-
vation, and Di is the degree to which the instance matches a 
context (i.e., the extent to which a given instance is similar to 
previously presented instances in each S slot). The noise param-
eter  is a variable value associated with an instance.  See detail 
information regarding each of the terms of the activation equa-
tion in Anderson and Lebiere (1998) and in Gonzalez, Best, 
Healy, Kole, and Bourne (2011).

Si is defi ned by the sum of the source activation that an 
instance receives from the elements currently in attention (i.e., 
the task cues). Wj represents the attentional weighting of each 
element’s j cues that are part of the current goal instance, and 
the Sji component represents the strengths of association that 
measures how often the instance i is needed when cue j is an 
element of the goal. ACT-R assumes that there is a limited total 
amount of attention (W, the sum of all Wj) that one can be dis-
tributed over source objects. W is an ACT-R parameter that 
refl ects the salience or attention given to an instance’s cues. 
This salience helps create a contrast between relevant and irrel-
evant cues for the current goal that will help in maintaining 
information necessary for task performance. Thus, W infl uences 
the maintenance and prioritization of goals, attention to rele-
vant and irrelevant information, and the amount of concurrent 
processing (Lovett, Reder, & Lebiere, 1999). Higher values of W 
facilitate the retrieval process by increasing spreading activa-
tion, whereas lower values reduce activation and increase the 
likelihood of retrieving incorrect items.  

Computational Models of Three Training 
Principles
This section describes three examples of cognitive models devel-
oped to demonstrate the learning processes involved in three 
training principles (see chapters 2, 3, and 5): speed–accuracy 
trade-off attributable to fatigue, training diffi culty, and stimu-
lus-response compatibility. In each project, behavioral results 
are used from human experiments and human performance is 
compared to the results produced by the computational mod-
els in the same tasks. Furthermore, all three projects involve 
fi tting human data and predictions on new, unknown condi-
tions, which demonstrate one of the most important benefi ts of 
cognitive modeling. Note that a parallel modeling effort using 
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IMPRINT, rather than ACT-R, is reported in chapter 10 for the 
fi rst two training principles, and the two sets of models are eval-
uated and compared in chapter 11.

Models of Speed-Accuracy Trade-Off 
in a Data Entry Task
Fatigue often results from prolonged work that is manifested as 
deterioration in performance along with skill acquisition (see 
chapter 2). On one hand, fatigue effects might be attributed to 
limitations of cognitive processes such as attention. For exam-
ple, some models assert that cognitive resources are needed 
during task performance and that there is a limited amount to 
expend in the task (Wickens, 1984; see also chapter 4). Thus, 
monotonous and prolonged perceptual processing depletes this 
pool of resources, making it harder to maintain attention (Para-
suraman, 1986) and often resulting in habituation (Mackworth, 
1969). On the other hand, fatigue effects might be explained 
with arousal theories, which argue that performance decre-
ments are due to the lack of stimulation needed to maintain 
alertness (Ballard, 1996). Often, sustained repetitive tasks are 
boring (Hoffman, Sherrick, & Warm, 1998), which produces 
decreases in arousal (Mackworth, 1969).

Gonzalez et al. (2011) presented a cognitive model represent-
ing the cognitive aspects of fatigue (e.g., attention) and fatigue 
itself as an arousal process. This was a model that followed 
initial work on fatigue modeling (Fu, Gonzalez, Healy, Kole, 
& Bourne, 2006; Gonzalez, Fu, Healy, Kole, & Bourne, 2006).  
The cognitive model was developed in the ACT-R architecture 
to represent the behavioral pattern observed in a number of 
experiments incorporating extended task performance, which 
resulted in both benefi cial and deleterious performance effects 
(Healy, Kole, Buck-Gengler, & Bourne, 2004; Kole, Healy, & 
Bourne, 2008). Benefi cial effects, demonstrated as a decrease in 
response latency over time, resulted from general skill acquisi-
tion and from specifi c learning or repetition priming attributable 
to the repeated occurrence of stimuli and responses. Deleterious 
effects, demonstrated as an increase in errors over time, have 
causes that are less clear, but might be attributed to fatigue or 
fatiguelike processes such as boredom, task disengagement, or 
loss of attention that builds across trials.

Following previous work (Jongman, 1998), Gonzalez et 
al. (2011) developed an ACT-R model of mental fatigue where 
both arousal and cognitive factors infl uence performance. The 
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task was data entry, which required subjects to read a four-
digit number and then type it on the computer. Two laboratory 
experiments were examined using the data entry task reported 
in Healy et al. (2004). Some of the results from this effort that 
involved comparisons of model predictions to human behavior for 
average response time and the proportion of correct responses 
are summarized. Figure 9.1 shows that the ACT-R model was 
able to capture the primary observation by Healy et al. (2004): 
that prolonged work resulted in both learning and fatigue 
effects, with learning effects dominating the speed measure and 
fatigue effects dominating the accuracy measure. Gonzalez et 
al. (2011) showed that prolonged work effects are captured by 
the combination of arousal and cognitive factors corresponding 
to two ACT-R sub-symbolic parameters in combination with the 
production compilation mechanism.
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Models of Training Diffi culty Principle
in the RADAR Task
The training diffi culty principle (see chapters 2 and 3) predicts 
that conditions that cause diffi culty during learning would facil-
itate later retention and transfer. This principle was tested in a 
RADAR target detection and decision-making task (Gonzalez & 
Thomas, 2008), using laboratory experiments where, in some 
cases, the potential targets were nine military vehicles (e.g., 
submarine, helicopter, and jeep) (Young, Healy, Gonzalez, Dutt, 
& Bourne, 2011).

The goal in RADAR is to detect and eliminate hostile enemy 
targets by visually discriminating moving targets among mov-
ing distractors. RADAR is similar to military target visual detec-
tion devices, in which a moving target needs to be identifi ed as 
a potential threat or not and a decision is made on how to best 
destroy that target. The task requires the participant to make 
both visual and memory searches. The participant must memo-
rize a set of targets and then seek out one or more targets on 
a radar grid. A target threat may or may not be present among 
a set of moving blips. The blips—in the form of potential tar-
gets or blank masks—begin at the four corners of the grid and 
approach the center at a uniform rate. Detection of an enemy 
target must occur before the blips collapse in the center. 

Models of the training diffi culty principle in the RADAR 
task were developed under two perspectives, the IBL and SBL 
approaches, and compared (Gonzalez, Dutt, Healy, Young, & 
Bourne, 2009). The goal of the model comparison effort was to 
understand the processes by which behavior is represented, the 
constraints that the different approaches impose upon the task 
models, and the comparison of the two approaches’ theoretical 
assumptions (Lebiere, Gonzalez, & Warwick, 2009).

The IBL model was based upon the IBL theory as presented 
above. The SBL model used four concrete strategies that varied 
in their effectiveness at performing the target detection task. 
One strategy was an optimal strategy, and three strategies were 
suboptimal. These strategies represented practically feasible 
ways to go about the task. The utility learning mechanism in 
ACT-R (Anderson et al., 2004) was used, by which the different 
strategies compete using a reinforcement learning algorithm. 
This algorithm produces a gradual transition from the subop-
timal to the optimal strategies. When the model executes, there 
is a competition set up between the three suboptimal strategies 
and the optimal one. Although the suboptimal strategies are 
executed more often initially, the optimal strategy later picks up 
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in usage because of its increased utility through repeated posi-
tive rewards. 

The SBL and IBL models were compared along two different 
dimensions: (a) fi t: how well each model fi ts human learning 
data in the task; and (b) adaptability: how well each model that 
has been  able to reproduce the way human beings learned in 
one task scenario behaves in new scenarios that are similar to 
or different from the training condition. The fi t criterion is com-
mon in model comparisons, whereas the adaptability criterion 
is relatively new (Gluck, Bello, & Busemeyer, 2008). The adapt-
ability criterion used here is similar to the generalization crite-
rion method (Busemeyer & Wang, 2000), which divides observed 
data into two sets: a calibration or training set to estimate model 
parameters, and a validation or test set to determine predic-
tive performance. However, the models’ adaptability was further 
tested by examining their ability to adapt to new test condi-
tions that are either similar to or different from the training 
conditions.

Figure 9.2 presents the average times for correct responses 
during the training phase, in four conditions that varied in the 
diffi culty of target detection (Young et al., 2011). The 1+1 condi-
tion indicated the need to memorize one target and the presence 
of only one item on the RADAR screen. Thus, this was the easi-
est condition. The 4+4 condition indicated the need to memo-
rize four targets and the presence of four items on the RADAR 
screen, making it the most diffi cult condition. The mappings of 
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the targets were either consistent (the target was always a target 
within a block of trials) or varied (the target was sometimes used 
as a distractor on a different trial within the same block). 

As shown in Figure 9.2, both the IBL and SBL models fi t the 
human data quite well, RMSD = 69 ms for IBL and RMSD = 163 
ms for SBL. However, the SBL model seems to generate generally 
higher time values compared to human data, and it has a higher 
RMSD. This difference may be because the four strategies in 
the SBL model execute productions in a fi xed time (50 ms per 
production). There is also no speedup in the correct response 
times due to this fi xed strategy execution time, whereas the IBL 
model speeds up on account of activation-retrieval time accel-
eration. The retrieval time decreases if the instances’ activation 
increases over blocks (Anderson & Lebiere, 1998). It is also clear 
from Figure 9.2 that both models take more time in the more 
diffi cult (4+4) blocks than in the easier blocks (1+1) for both con-
sistent and varied target mappings. This fi nding demonstrates 
the effects of workload well known from behavioral studies of 
automaticity (Gonzalez & Thomas, 2008), which result from the 
extra time taken to process additional items.

Figure 9.3 demonstrates the effects of added diffi culty in the 
task (Young et al., 2011). In the “Tone” condition, participants 
were required to count deviant tones (low and high frequency) 
among standard tones (medium frequency) playing in the back-
ground during the target detection task. As shown by both mod-
els, the tone condition takes slightly more time to process than 
silent trials because of an extra auditory production in both 
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models that processes the tones. Again, the difference between 
the time in the SBL model and human data is greater than the 
difference between the time in the IBL model and human data. 
The SBL model has no activation-retrieval speedup to compen-
sate for time spent in tone counting, whereas there is such a 
speedup in the IBL model that reduces the overall time.

To test the adaptability of both models, transfer was com-
pared from diffi cult to easier conditions (tone-to-silent) and easy 
to more diffi cult conditions (silent-to-tone). Figure 9.4 shows 
these results. The SBL model has an RMSD = 160 ms when 
it is trained in tone and transferred to silent, whereas the IBL 
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model’s RMSD = 50 ms. The SBL model’s RMSD when trained in 
silent and transferred to tone is 248 ms, whereas the RMSD for 
the IBL model is 62 ms. Thus, one can conclude that both mod-
els are quite good according to the adaptability criterion, but 
the IBL model produces values closer to the human data than 
the SBL model. Although the numerical values are important, 
the IBL model has other advantages over the SBL model not 
shown in measurements: the changes in environmental condi-
tions are captured in the instances stored and retrieved from 
memory, whereas the SBL approach is blind to those changes. 
The SBL model continues applying the same strategies at test, 
which might not be as effective as they were during training 
once the task conditions change. Also, the strategies in dynamic 
situations are often unknown a priori or diffi cult to defi ne at all. 
Human beings are often unable to explain any rules or strate-
gies used to solve a dynamic problem. Thus, the IBL approach is 
more appropriate for modeling dynamic decision making (Gon-
zalez et al., 2003) than the SBL approach. 

Models of Stimulus-Response Compatibility
The stimulus-response compatibility (SRC) training principle 
and the Simon effect, as discussed in both chapters 2 and 5, 
can be modeled using IBL theory (Dutt, Yamaguchi, Gonzalez, 
& Proctor, 2011; Yamaguchi, Dutt, Gonzalez, & Proctor, 2011). 
The SRC effect is characterized by faster responses when the 
stimulus and response locations correspond than when they do 
not. The effect is so robust that it is found even when stimu-
lus location is irrelevant to the task, a variation known as the 
Simon Effect (Simon, 1990). Both SRC and Simon effects occur 
for visual and tactile stimuli, verbal and nonverbal symbols that 
convey location information (e.g., location words; Proctor, Yama-
guchi, Zhang, & Vu, 2009), a variety of response modes (e.g., a 
steering wheel), and in more complex tasks such as fl ight opera-
tions (Yamaguchi & Proctor, 2006). 

A dominant cognitive explanation of the faster RT with com-
patible stimuli and responses is the dual-route account (Proc-
tor & Vu, 2006), which assumes two distinct response-selection 
processes characterized as direct and indirect routes. The indi-
rect route is presumed to activate a response based on the inten-
tions created through the instructed stimulus-response (S-R) 
mappings. In contrast, the direct route is presumed to activate 
automatically a response corresponding to the stimulus loca-
tion, which facilitates response when it is correct but interferes 
when it is incorrect. Recent fi ndings that the RT speedup can 
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be attenuated or even reversed in mixed-task conditions sug-
gests that the response-selection process that gives rise to these 
effects is not as purely automatic (e.g., unconditional and inde-
pendent of task goals) as it is often described in the literature. 
What is missing in the current literature is an account of the 
learning mechanism(s) that produce(s) the observed phenomena.  

Dutt et al. (2011) provide an explanation of the observed 
learning effects using a computational model based on IBL the-
ory. The IBL theory has both the direct (automatic) and the indi-
rect (controlled) routes to model human performance in tasks 
where there is a slow transition from the indirect to the direct 
route over time. The presence of both routes enables IBL theory 
to explain how the cognitive processes are used, how SRC and 
Simon tasks become automatic, and how the performance can 
be captured when SRC and Simon tasks are intermixed, and to 
predict the behavior in novel task-mixing conditions. Further-
more, the results of the IBL model were compared to the human 
data in sequential trials for mixed Simon and SRC tasks, when 
the compatible (corresponding) or incompatible (noncorrespond-
ing) mapping repeats or switches in a SRC (Simon) task and 
when the Simon or SRC task repeats or switches. 

In IBL theory, learning occurs through a progressive accu-
mulation of decision instances in memory and by gradually 
moving from an exploration phase, where more explicit rules 
of action are used (the indirect route) to an exploitation phase, 
where instances retrieved from memory are used. This latter 
phase involves implicit recognition of familiar patterns and spe-
cifi c retrievals from memory, similar to the gradual process pro-
posed in Logan’s (1988) instance theory of automaticity. Thus, 
an IBL model starts within the indirect route, predicting the 
application of an action rule. The process then moves to the 
direct route, such that an instance is retrieved from memory to 
make a response. Under the direct route, if the task is SRC and 
the mapping is compatible, an instance closest in similarity to 
the task and mapping is retrieved from the memory. Because 
IBL theory works by retrieval of past experiences in the form of 
instances, a decrease in RT is expected when task and mapping 
repeat, compared to when either task, mapping, or both switch 
in mixed SRC and Simon tasks. This result occurs because the 
retrieval of a past instance is faster when it has been performed 
recently (recency effect) and/or frequently (frequency effect) 
under the direct route. 

The discussion in Dutt et al. (2010) shows that the calibrated 
model is able to explain the RT observed in a human experi-
ment. Furthermore, the same model without modifi cation is 
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used to generate predictions in novel mixed task conditions. The 
model prediction’s fi t to human data reveals the role of recency 
and frequency in the mixed-task paradigm. Figure 9.5 shows 
that the IBL model results are very close to those of human par-
ticipants. These fi ts capture the RTs in four different task trials, 
and the sequential task and mapping trials. The model fi ts were 
generally good with respect to practice and sequential effects in 
two experiments, suggesting that it provides a good account of 
the performance in mixed SRC/Simon tasks.

Making Computational Modeling Easy: IBL Tool
Although “unifi cation” as a scientifi c goal for the cognitive sci-
ences is commendable (Newell, 1990), the representation of a 
full range of human behavior has proven to be a very complex 
challenge. Current cognitive architectures that embrace this 
unifi cation goal are rare (but ACT-R is an exception). The unifi -
cation goal has turned architectures into very complex systems 
that are often incomplete and diffi cult to use.

IBL is not the basis of a unifi ed theory of human behavior. It 
is only a theory of dynamic decision making. Yet, it has shown 
robustness across a wide diversity of tasks that vary in their 
dynamic demands (see Gonzalez & Dutt, 2011; Lejarraga et al., 
in press) for concrete discussions and demonstrations, and the 
examples shown in this chapter add to these demonstrations.

This section presents a way in which cognitive modeling and 
the reuse of IBL theory as a whole can be facilitated: the cre-
ation of a simple-to-use tool that represents the unifi cation and 
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Figure 9.5 The IBL model’s fi ts to human data in different mappings 
of the SRC and Simon tasks. The error bars show 95% 
confi dence intervals around the point estimate.
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constraints of IBL theory. The tool is built upon the ACT-R’s sub-
symbolic mechanisms needed for IBL theory. The construction of 
a modeling tool will help demonstrate that IBL theory can make 
general predictions across many diverse tasks; rather than cre-
ating multiple, task-dependent models. It will also make the the-
ory more accessible to the community of cognitive modelers and 
psychologists (a free copy of the tool is available at http://www.
cmu.edu/ddmlab/). The tool is motivated and explained further 
in Dutt and Gonzalez (2011).

Figure 9.6 shows the architecture of the IBL tool, the step-
by-step processes from the theory and the interaction with an 
“Environment,” a task for which a model is developed. The IBL 
tool is an easy-to-use graphical user interface that uses a com-
mon mechanism of network communication between two com-
puter applications (i.e., socket communication) to communicate 
remotely with the task. The tool allows the situation (S) and 
feedback (U) cues to be retrieved from the task environment, 
and the processed decisions (D) to be sent from the model to 
the task. Thus, the task may be developed in any programming 
language. Using socket interfaces for task communication is the 
only technical requirement to using the tool.

Figure 9.6 The IBL tool with fi ve distinct IBL theory phases (Right) 
and the task Environment (Left).
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The IBL tool takes a modeler step-by-step through the dis-
tinct process of IBL theory, making it easy to understand and 
intuitive for new modelers. Most importantly, these steps are a 
generic decision-making process that does not depend on the 
modeler’s creativity to defi ne (often complicated) decision-mak-
ing strategies. Research has demonstrated that this process is 
generic enough to model most forms of decisions from experi-
ence (Gonzalez & Lebiere, 2005; Gonzalez et al., 2003; Lejar-
raga et al., in press). But the most relevant contribution of the 
IBL tool is to make the theory more accessible. The IBL tool 
makes it shareable, by bringing the theory closer to the end 
users; generalizable, by making it possible to use in different 
and diverse tasks; understandable, by making it easy to use 
in cognitive models; robust, by abstracting the specifi cs of its 
implementation independent of any specifi c programming lan-
guage; communicable, by making the tool interact more easily 
and in a more standard way with tasks; and usable, by making 
the theory more transparent. 

A step-by-step demonstration of building a cognitive model 
in the IBL tool for a particular task (the Iowa Gambling Task) 
is explained in Dutt and Gonzalez (2011). Once a modeler has 
defi ned the model’s parameters and instance structure, the tool 
can simulate a number of model participants by connecting it to 
the task using well-known computer communication standards.  
These simulations provide the model’s predictions regarding 
human behavior and performance in the task of interest.

Figure 9.7 The fi t of the IBL model developed in the IBL tool to human 
data for controls in the Iowa Gambling Task. See Dutt and 
Gonzalez (2011).
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Figure 9.7 shows the results obtained from running the IBL 
model of the Iowa Gambling Task in the IBL tool compared to 
that of a group of healthy human (control) participants run 
in the same task, as reported by Bishara et al. (2009). These 
results were obtained using the default values of the parameters 
in the tool. Thus, the intention was not to calibrate the model 
parameters to produce the best predictions for human data, but 
rather to use the Iowa Gambling Task as an example to explain 
the IBL tool. Figure 9.7 shows the proportion of choices for the 
two advantageous alternatives (out of a total of four options in 
the Iowa Gambling Task) over six blocks of 20 trials each. The 
proportion of choices has been averaged across all 32 human 
and model participants. Although the exact level of the values 
are discrepant, the model in the IBL tool set at default param-
eter values provides a reasonable prediction of the trend in the 
observed human behavior over the six blocks of the experiment 
(MSD = 0.010; r = 0.86). In addition to the performance data, 
running a model in the IBL tool produces data on the values and 
dynamics of its mechanisms (e.g., activation, base-level learn-
ing, noise, and the values of the instance’s situation-decision-
value slots).

Conclusion
Three projects involving computational representations of 
human behavior for three training principles are summarized: 
speed–accuracy trade-off attributable to fatigue, training dif-
fi culty, and stimulus-response compatibility. Taken together, 
these studies show that the ACT-R architecture and IBL theory 
presents an accurate and robust representation of the learn-
ing process in several training paradigms. Because IBL theory 
has also demonstrated accurate representations in many other 
tasks (see Gonzalez & Dutt, 2011, for a discussion), the theory 
is more general than it was initially conceived to be: IBL theory 
accounts for decisions from experience at many different levels. 
This ability is illustrated by the precision of the models’ predic-
tions in the projects described here. Moreover, the creation of 
an explicit computer tool that represents the theory can also 
give rise to interesting demonstrations and new questions and 
answers. The theory was embodied in the IBL tool, which is 
available for research purposes. This tool should allow for more 
widespread from the authors use of IBL theory as it helps facili-
tate a cognitive modeler’s work.
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