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ABSTRACT

Research shows that while judging accumulations of quantities over time (e.g., money in a bank account or CO2 in Earth’s atmosphere), peo-
ple assume that the shape of the accumulation is similar to the shape of the inflow (i.e., people rely on a correlation heuristic). Relying on the
correlation heuristic is particularly worrisome for Earth’s climate, as judging the CO2 accumulation according to its emissions (inflow) would
underestimate the actual (nonlinear) increase. This misperception undermines the seriousness of climate problem and results in wait-and-see
behavior. We report two experiments where the effectiveness of a physical representation is compared with graphical and text representations
in reducing people’s underestimation of nonlinear accumulation in different contexts and problems. A physical representation presents an
accumulation using a picture that works as a metaphor. In the first experiment, participants drew the shape of an accumulation over time
relying on physical or graphical representations in one of two contexts: carbon dioxide and marbles. Although the participants underestimated
the accumulation in both contexts, underestimations were reduced in the physical representation compared with the graphical representation.
In the second experiment, we extended the evaluation of physical representations against both text and graphical representations in two
different climate problems (with linearly increasing or decreasing inflow). Again, underestimations of the accumulation were reduced in the
physical representation compared with the other two representations, regardless of the nature of the problem. We discuss implications of using
the physical representation for improving people’s estimates of nonlinear CO2 accumulation. Copyright © 2011 John Wiley & Sons, Ltd.
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Consider the story of an ancient king and the inventor of
chess. When the inventor presented the chess game to the
king, the king was so impressed that he offered him a reward.
The inventor asked for rice grains for each square of the
chess board, such that he would get one grain for the first
square of the board, two for the second, four for the third,
and so on (i.e., 2n� 1, where n is the square number starting
at n = 1). The king thought that the inventor was modest,
but he belatedly realized how difficult it would be to meet
the request halfway into the exercise. Assuming that 60
grains weigh 1 gram, meeting the inventor’s request would
amount to 153 billion tons of rice grains, which would need
31 million cargo ships capable of holding 5000 tons each.
The king failed to perceive the nonlinearity in the request
and underestimated the accumulation of rice.

Examples of accumulation of nonlinear quantities are
pervasive, and the king is not alone regarding the difficulties
of understanding nonlinear accumulation. There is currently
growing evidence that a large majority of adults fail to
perceive the effects of accumulation in nonlinear problems
in different contexts (Cronin & Gonzalez, 2007; Cronin,
Gonzalez & Sterman, 2009; Dörner, 1980; Dörner, Kimber
& Kimber, 1997). Research has shown that people have no
intuitive feeling for processes that develop nonlinearly, re-
gardless of how common these problems are in the real world
(Cronin et al., 2009). For example, when participants were
asked to infer or sketch the shape of a nonlinear accumula-
tion due to changes in the inflow (a rate that increases the

accumulation) and the outflow (a rate that decreases the accu-
mulation), more than half responded as if its shape was linear
(Cronin et al., 2009). According to Cronin et al. (2009), partici-
pants could be classified as relying on an intuitive but erroneous
heuristic, called the “correlation heuristic” (CH), where they in-
correctly assume that a quantity’s accumulation should “look
like” or have the same shape as the inflow. According to Cronin
et al. (2009), if the inflow is linear, then people relying on CH
will infer the accumulation’s shape to be linear as well. More-
over, their reliance cannot be attributed to their inability to inter-
pret graphs, contextual knowledge, motivation, and cognitive
capacity.

Studying our understanding of nonlinear accumulations is
important not only in simple mathematical problems but also
for global problems with serious socio-economic impact
such as those concerning Earth’s climate. For example,
well-educated participants with backgrounds in science and
mathematics rely on correlational reasoning when judging
changes in an accumulation of carbon dioxide (CO2) (Dutt
& Gonzalez, 2010; Sterman, 2008; Sterman & Booth
Sweeney, 2007). In these studies, participants were given
a problem where the CO2 accumulation was shown to
change nonlinearly as a result of both emission (inflow)
and absorption (outflow) over time. They were asked to
sketch the emission and absorption trajectories that would
produce the given CO2 accumulation trajectory. Participants
relying on CH, however, misperceived the dynamics of the
future CO2 accumulation. They assumed that if one is to stabi-
lize the accumulation at a level greater than status quo, then
emissions should rapidly increase and stabilize at a higher
level as well (Dutt & Gonzalez, 2010; Sterman, 2008; Sterman
& Booth Sweeney, 2007). Thus, participants based their
inferences solely on the shape of emission trends and did not
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consider the shape of both emission and absorption trends
together with the accumulation’s initial value.

Moreover, as a consequence of relying on CH when emis-
sions increase linearly over time, participants’ correlational
(linear) reasoning would grossly underestimate the actual
nonlinear increase in the accumulation. Underestimation is
a serious problem that undermines the urgency of the climate
change problem and likely encourages “wait-and-see” be-
havior (Dutt & Gonzalez, in press, 2010; Sterman, 2008).
Wait-and-see behavior becomes particularly worrisome for
Earth’s climate because of the inherent long delays between
mitigation actions and corresponding changes in atmospheric
CO2 (Intergovernmental Panel on Climate Change [IPCC],
2007; Sterman, 2008; Sterman & Booth Sweeney, 2007).
Given such delays, atmospheric CO2 accumulation would
continue to rise until emission equals the absorption rate.
Average atmospheric temperature would then peak, and
rising sea level from ice melt and thermal expansion would
continue (Meehl et al., 2005; Wigley, 2005). Therefore,
current wait-and-see policies are likely to cause abrupt,
persistent, and costly regime changes on Earth in the future
(Alley et al., 2003; Scheffer, Carpenter, Foley, Folkes &
Walker, 2001).

In this paper, we hypothesize that people’s reliance on CH
and their consequent underestimation of nonlinear accumula-
tion is influenced by the format in which information is
communicated. Research indicates that when accumulation
problems are presented using text or function graphs,
responses often rely on CH (Cronin & Gonzalez, 2007;
Cronin et al., 2009). This evidence extends to CO2 accumu-
lations in climate problems (Sterman & Booth Sweeney,
2002, 2007). However, research is critically needed on what
presentation formats could reduce reliance on CH (Cronin
et al., 2009). Here, we motivate and investigate the use of a
physical representation, which presents a problem using a
picture as a metaphor.

Experiment 1 evaluates a physical representation against a
conventionally used graphical representation in nonlinear
problems in two different contexts: a generic non-climate
context (i.e., accumulation of marbles in a container) and a
specialized climate context (i.e., accumulation of CO2 in
Earth’s atmosphere). Experiment 2 builds upon the results
of Experiment 1 and investigates the effectiveness of the
physical representation against both a text and a graphic
representation in two nonlinear problems that differ in their
dynamics: an increasing function where the inflow increases
linearly while the outflow is constant and a decreasing func-
tion where the inflow decreases linearly while the outflow is
constant. We believe that the use of physical representation
will improve people’s understanding of nonlinear CO2 accu-
mulation in the atmosphere and nonlinear accumulations in
other problems and contexts.

EXPERIMENT 1: PHYSICAL AND GRAPHICAL
REPRESENTATIONS IN DIFFERENT CONTEXTS

Research shows that reliance on CH in nonlinear problems
represented with graphs is robust and increases as the

problem’s complexity increases (Cronin & Gonzalez, 2007;
Cronin et al., 2009; Dörner, 1980; Dörner et al., 1997). Be-
cause climate is a complex system and makes extensive use
of graphical representations for communicating climate
change, it is likely that people would also rely on CH. For
example, the IPCC (2001a) report has a number of graphical
figures that illustrate CO2 emission scenarios and their
corresponding CO2 accumulation in the atmosphere projected
over time. Figure 1 shows an example from the IPCC (2001a)
Synthesis Report’s Summary for Policymakers. The figure
shows different hypothesized CO2 emission trajectories over
a 300-year period. Each of these CO2 emission trajectories
leads to a nonlinear projection for CO2 accumulation over
time (please refer to IPCC, 2001a report for other examples).

Similarly, the United States’ Environment Protection
Agency (EPA) explains historic climate change using
mathematical graphs detailing nonlinear increases in CO2

accumulation over time (EPA, 2010), and graphical repre-
sentations that communicate climate change have also
been common in news reports (Schiermeier, 2010).

Prior research has evaluated people’s reliance on CH for
climate problems that are presented graphically (Sterman,
2008; Sterman & Booth Sweeney, 2007). Participants are
asked to sketch the CO2 emission and absorption that would
stabilize the CO2 concentration to an attainable goal by the
year 2100. Sterman and Booth Sweeney (2007) report that
about 70% of participants (about 60% of whom had back-
grounds in science, technology, engineering, and manage-
ment [STEM] and a majority of the rest in economics)
sketched emission trajectories that were positively correlated
with the concentration trajectories. Therefore, these partici-
pants robustly relied on CH.

We believe that using physical representations to depict
CO2 accumulation, CO2 emission, absorption, or average
atmospheric temperature over time is likely to improve
people’s understanding of climate change. A physical repre-
sentation would present a problem using a series of pictures
that work as a “metaphor” to explain changes in the quantity
of interest. For example, consider a problem where the length

Figure 1. A figure taken from the IPCC Synthesis Report’s Summary
for Policymakers document. Different emission trajectories (A2,
A1B, B1, etc.) are sketched (in gigatons of carbon on the y-axis) with
respect to time (in years on the x-axis). Source: IPCC (2001b; Figure

SPM 6a, p. 20)
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(L) of a square’s side is doubled, and one needs to calculate
the new area. A physical representation will be one where a
single square tile of side L is replaced by four square tiles,
each of side L (i.e., to form a square of side 2L). There is
abundant literature in mathematical education that depicts
how and why drawings, pictures, and diagrams facilitate
people’s ability to solve mathematical problems (e.g., Aprea
& Ebner, 1999; De Corte, Greer & Verschaffel, 1996; Hall,
Bailey & Tillman, 1997; Larkin & Simon, 1987; Schoenfeld,
1992), and we expect that pictorial metaphors are likely to
reduce underestimation and reliance on the CH in nonlinear
problems. For example, pictorial representations using an ar-
ray of icons as a metaphor to represent fractions have been
effective in reducing people’s tendency to neglect the de-
nominator of a fraction while evaluating a probability or a
risk (Garcia-Retamero et al., 2010) and aids people with low
numeracy skills in forming better judgments about risks in
general (Galesic et al., 2009). and aids people with low nu-
meracy skills in forming better judgments about risks in gen-
eral (Galesic et al., 2009). Also, research has revealed that a
picture of a nonlinear problem drawn by students themselves
helps them to construct a proper mental representation of
the essential elements and relations involved (Pólya, 1945;
Schoenfeld, 1992). Making a drawing or diagram, however,
does not guarantee that one will find the solution if the
representation is incorrect (Van Essen & Hamaker, 1990).
According to De Bock, Van Dooren, Janssens, and
Verschaffel (2007), an effective method provides students
with a “correct ready-made drawing” or a physical represen-
tation of a nonlinear problem as a metaphor that communi-
cates its dynamics. Using this idea, Van Dooren, De Bock,
Janssens, and Verschaffel (2007) have shown that among
school children, the ability to solve nonlinear area problems
improves with a physical representation compared with a
graphical representation. The performance of the group
given a physically represented word problem was superior
to the group given a graphical problem. Thus, we expect that

H1 : Estimations of accumulation will be more accurate in
a physical representation compared with a graphical
representation.

If the physical representation can effectively communi-
cate a problem’s dynamics and help participants to answer
correctly, then the dependence of this effect on a problem’s
context or cover story is important to determine. That is
because prior research has shown that the general public
lacks training in climatology and has little understanding
of climate processes (Bostrom, Morgan, Fischhoff &
Read, 1994; Kasemir et al., 2000; Kempton, 1997; Morgan,
Fischhoff, Bostrom & Atman, 2002; Palmgren, Morgan,
de Bruin & Keith, 2004; Read, Bostrom, Morgan, Fischhoff
& Smuts, 1994). Consequently, the climate context is ex-
pected to be unfamiliar compared with other contexts en-
countered in day-to-day judgments: accumulation of water
in a bathtub with a tap adding water and a drain removing
water from the tub, of money in a bank account with income
and expenditure, or of marbles in a container with marbles
being put in and removed.

Current research is not conclusive regarding the effect
of context on problem solving. On the one hand, research
has shown that people’s judgments are often influenced by
their familiarity with the context of the problem (Brunstein,
Gonzalez, & Kanter, 2010; Gigerenzer & Hug, 1992). For
example, Brunstein, Gonzalez, and Kanter (2010) put non-
linear accumulation problems into the medical context and
found that context familiarity actually hurts participants’
performance. Medical students did worse in the medical
context than in a generic context. Other research, however,
reveals no influence of context (e.g., Almor & Sloman, 2000;
Cronin et al., 2009). For example, Cronin et al. (2009) found
no effect of familiarity with the context on participants’
reliance on CH. In their design, however, the three contexts
used were represented using only graphical representations.

We extend this analysis to a physical representation and
its comparison with the graphical representation in both a
climate and non-climate context. Given the expected effec-
tiveness of the physical representation and the lack of
consensus regarding the effect of context, we expect that

H2 : Estimations of accumulation will be more accurate
in a physical representation compared with a graphical
representation, regardless of the context used.

Participants
One hundred and thirty-two adults from Pittsburgh, PA were
recruited through a website advertisement and participated in
this experiment. Forty-four percent were graduate students
enrolled in an MS or PhD program or had completed one
of these degrees in the past. The rest were undergraduates
either enrolled in an undergraduate program or had com-
pleted a bachelor’s degree. Forty-four participants were
women. Ages ranged from 18 to 62 years (M = 23 years, SD =
6 years). Sixty-two percent of participants self-reported
having degrees in STEM, and the rest have non-STEM back-
grounds. All participants received a flat $3 compensation for
answering an accumulation problem.

Experimental design
On the basis of the two representations and the two contexts
within each, participants were randomly assigned to one of
four between-subjects treatments: climate context and physi-
cal representation (climate–physical, N= 25), climate context
and graphical representation (climate–graphical, N= 25),
marble context and physical representation (marble–physical,
N= 39), and marble context and graphical representation
(marble–graphical, N = 42). In each treatment, participants
were provided with one accumulation problem that differed
in the context and the representation. All four problems were
mathematically identical.

Figure 2 shows an example of the graphical representation
of the inflow and outflow provided to participants in the
climate context. The graphs provided in the marble context
were identical. In the climate context, the CO2 emission
and absorption were the inflow and the outflow. In the
marble context, the marbles inserted in and removed out of
the container were the inflow and the outflow. In both
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contexts, the inflow increased linearly over time, whereas the
outflow remained constant over all five periods. Participants
were first asked to sketch the inflow and the outflow in a
blank graph provided. Asking participants to sketch the
given inflow and outflow was done to test their understand-
ing of these flows in the problem. Then, they sketched the
accumulation in another blank graph provided. As shown
in Figure 2, participants were given an initial accumulation
value (at time = 0), which was depicted as a black dot on
the graph. The linearly increasing inflow and the constant
outflow result in a nonlinearly (parabolic) increasing accu-
mulation. This problem was also used by Cronin et al.
(2009) to demonstrate participants’ reliance on CH in the
graphical representation.

In the physical representation, participants were shown
“opaque” containers (representing Earth’s atmosphere) in three
states for each period: initial state, inflow, and outflow. The
units of inflow and outflow are shown as small circles and with
numbers, and the direction of the flow is indicated by arrows
(see Figure 3 for the corresponding physical representation of
the graphical form for the climate context of Figure 2). Like
in the graphical representation, participants sketched the
accumulation. Again, the same linearly increasing inflow and
constant outflow as in the graphical representation were used.
Participants were asked to read the instructions and to sketch
the inflow, the outflow, and the accumulation over time.

These problems depicted the changes in the inflow and the
outflow over five periods (or years) and asked participants to
sketch the curve of the inflow, the outflow, and the resulting
accumulation over that time.

Evaluating participants’ responses
The correct accumulation values were the same in all treatments
and could be derived by repeatedly using the following
equation:

ST ¼ ST�1 þ IT � OT (1)

That is, the accumulation at time T (ST) is the sum of the
accumulation at time T� 1 (ST� 1) and the net inflow (=inflow
(IT)� outflow (OT), at time T). For example, given an initial
accumulation of 10 units and an inflow and outflow of two
units each in the first period, the accumulation at the end of
Period 1 will remain at 10 units (=10+2� 2). Similarly, the
accumulation in the second period (with four units inflow and
two units outflow) will become 12 units. Calculated in the same
way, the accumulation in the Periods 3, 4, and 5 will be 16,
22, and 30 units, respectively. Given that the accumulation
increases nonlinearly over time, the effect proposed in H1
would become more prominent in the later periods than in
the first few periods. In the first few periods, participants
should appear to be more accurate than in later periods.

The sketched accumulation values averaged over all partici-
pants in each of the five periods were used as the main
source of analyses. Each average accumulation value was
compared with the correct corresponding values. Participants
underestimated the correct accumulation if their sketched
accumulation values were less than the correct values. This
comparison of values in each period allows us to test
participants’ reliance on CH using one-sample t-tests.

Figure 2. The task presented to participants in the graphical representation for the climate context in Experiments 1 and 2. Participants were
provided with graphs showing changes to the inflow and outflow over time and were asked to sketch the accumulation value over the five

periods because of the changes in the inflow and the outflow

Journal of Behavioral Decision Making

Copyright © 2011 John Wiley & Sons, Ltd. J. Behav. Dec. Making (2011)

DOI: 10.1002/bdm



Correlation coefficients were calculated between partici-
pants’ sketched inflow and outflow values in each of the five
periods and the correct corresponding values given to them.

If any of these two correlation coefficients were different
from 1.00 between the sketched and correct inflow and out-
flow, then the sketches were marked as incorrect. Moreover,

Figure 3. The task presented to the participants in the physical representation for the climate context in Experiments 1 and 2. Participants were
provided a set of opaque containers that depicted the changed in the inflow and the outflow over time. Participants were asked to sketch the

accumulation value over the five periods because of the changes in the inflow and the outflow
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to classify participants as relying on CH, we correlated their
sketched accumulation in each period to the correct inflow
values. If this score was 1.00, then the sketched accumulation
was classified as relying on CH. The coefficient value of 1.00
is a conservative grading scheme because CO2 emissions are
linearly increasing, and any nonlinear increasing sketch of
CO2 accumulation would result in a high positive correlation
coefficient. The conservative grading scheme ensures that the
relationship between the CO2 emissions and concentration is
none other than perfectly linear and one that follows CH.
According to CH reliance, the difference between the correct
accumulation values and corresponding human responses
would increase over the time because of the increase in the
nonlinearity of the accumulation.

Results
The percent of correct inflow and outflow responses in differ-
ent treatments was more than 93%. Therefore, the partici-
pants’ understanding of the inflows and the outflows was
similar and highly accurate across different treatments.

To test H1, we compared the participants’ average
sketched accumulation value in each of the five periods
with the correct corresponding values in the physical and
graphical representations (Table 1). As expected, there was
no difference between the correct and the corresponding
average accumulation in the graphical and physical represen-
tation in the first three periods. For the last two periods, the
average accumulation in the physical representation was
closer to the correct value, compared with in the graphical
representation. This result is illustrated in Table 1 by the
weaker p values and smaller standard deviations and effect
sizes in the physical representation compared with that in
the graphical representation for the last two periods. Accu-
mulation estimates in the physical representation were more
accurate than those in the graphical representation (H1).
The graphical representation showed more linear responses
than the physical representation, as demonstrated by signifi-
cantly larger underestimations in the last periods.

Table 2 presents the correct accumulation in different
periods and the corresponding accumulation in the four
treatments to test the effects of context: climate or marble.

Table 1. The correct accumulation in different periods and their corresponding average accumulation in the graphical and physical
representations in Experiment 1

Representation Time 1 Time 2 Time 3 Time 4 Time 5

Correct 10.0 (0.0)a 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0)

Graphical (G) 10.4 (2.2) 12.6 (3.4) 15.7 (4.3) 19.6 (5.6) 24.7 (7.7)
Statistics (compared
with correct)

t(66) = 1.5,
ns, r = 0.18b

t(66) = 1.5,
ns, r= 0.18

t(66) =�0.5,
ns, r= 0.06

t(66) =�3.4,
p< .001, r = 0.39c

t(66) =�5.7,
p< .001, r= 0.57

Physical (P) 10.0 (1.1) 11.9 (1.2) 15.8 (1.5) 21.4 (2.4) 28.8 (4.0)
Statistics (compared
with correct)

t(63) =�0.3,
ns, r= 0.04

t(63) =�0.5,
ns, r = 0.06

t(63) =�0.4,
ns, r= 0.05

t(63) =�2.1,
p< .05, r= 0.26

t(63) =�2.4,
p< .05, r = 0.29

aNote:The values in bracket represent the standard deviation about the mean.
bThe value indicates the effect size.
cNumbers in boldface indicate results that are significant at p less than or equal to .05.

Table 2. The correct accumulation in different periods and their corresponding average accumulation in the four treatments in Experiment 1

Treatment Time 1 Time 2 Time 3 Time 4 Time 5

Correct 10.0 (0.0)a 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0)

Climate–physical 10.2 (0.8) 12.1 (1.1) 15.9 (1.2) 21.2 (2.3) 28.4 (4.0)
Statistics (compared
with correct)

t(24) = 1.0,
ns, r= 0.20

t(24) = 0.6,
ns, r = 0.12

t(24) =�0.5,
ns, r= 0.10

t(24) =�1.7,
ns, r = 0.33

t(24) =�2.0,
ns, r = 0.38

Marble–physical 09.8 (1.3) 11.8 (1.3) 15.7 (1.7) 21.4 (2.6) 29.1 (4.0)
Statistics (compared
with correct)

t(38) =�0.9,
ns, r= 0.14

t(38) =�1.0,
ns, r = 0.16

t(38) =�0.4,
ns, r= 0.03

t(38) =�1.4,
ns, r = 0.22

t(38) =�1.4,
ns, r = 0.22

Climate–graphical 10.3 (2.4) 12.3 (2.6) 15.0 (3.1) 18.4 (4.2) 22.6 (6.5)
Statistics (compared
with correct)

t(24) = 0.6,
ns, r= 0.12b

t(24) = 0.6,
ns, r = 0.12

t(24) =�1.5,
ns, r= 0.29

t(24) =�4.3,
p< .001, r = 0.66c

t(24) =�5.7,
p< .001, r= 0.76

Marble–graphical 10.5 (2.0) 12.8 (3.8) 16.1 (4.9) 20.4 (6.2) 25.9 (8.1)
Statistics (compared
with correct)

t(41) = 1.6,
ns, r= 0.24

t(41) = 1.4,
ns, r = 0.21

t(41) = 0.2,
ns, r= 0.03

t(41) =�1.7,
ns, r = 0.26

t(41) =�3.3,
p< .01, r= 0.46

aNote:The values in bracket represent the standard deviation about the mean.
bThe value indicates the effect size.
cNumbers in boldface indicate results that are significant at p less than or equal to .05.
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There was no effect of context in the physical representa-
tion. The accumulation values of the physical representations
were no different than the correct accumulation values for all
periods in both contexts. In contrast, there was an effect of
context for the graphical representation, where people were
more accurate in Period 4 in the marble context than in the
climate context. But participants were similarly inaccurate
in Period 5. In any case, regardless of the context, graphical
representations led to underestimating the accumulation,
whereas physical representations did not, supporting H2.

We analyzed the proportion of responses that relied on
CH in the graphical compared with physical representations.
Figure 4 shows a typical participant’s response in the mar-
ble–graphical treatment that was classified as relying on
CH (based upon a 1.0 correlation coefficient between the av-
erage accumulation and the inflow given in the treatment).
The participant’s accumulation in the fifth period (=18 mar-
bles) underestimated the correct accumulation (=32 marbles)
as a result of his relying on CH.

Table 3 shows that the proportion of responses that were
classified as relying on CH was significantly greater in the
graphical representation, regardless of context (climate or
marble). That is because of the weaker p value and the effect

size in the physical representation compared with the graph-
ical representation while comparing with a correct response.

Finally, Table A1 in the Appendix presents the results
regarding the non-STEM and STEM backgrounds. In the
graphical representation, participants’ average accumulation
underestimated the correct accumulation in the last period
for non-STEM background and in the last two periods for
STEM background. In the physical representation, there
was no difference between the average and the correct
accumulation, regardless of the background. A similar pat-
tern was found for undergraduates, who underestimated the
correct accumulation in the last period and for graduates,
who underestimated in last three periods (see Table A2 in
Appendix). For both backgrounds and levels of education,
a smaller proportion of responses were classified as relying
on CH in the physical representation than in the graphical
representation (for detailed statistics, see Table A3 in the
Appendix).

Discussion
In agreement with previous literature in mathematical educa-
tion (Evangelidou et al., 2004; Leinhardt, Zaslavsky & Stein,
1990; Van Deyck, 2001) and on accumulation problems
(Cronin et al., 2009), results show that people underestimate
nonlinear accumulations and rely on the CH in graphical
representations. There seems to be an effect of context pres-
ent in the graphical representation: A familiar marble context
produces better response compared with a less familiar
climate context. This result, therefore, is in agreement
with prior research that has reported on the effects of
contexts (Gigerenzer & Hug, 1992; Brunstein, Gonzalez
& Kanter, 2010).

In contrast, a physical representation reduces participants’
underestimations as well as their reliance on the CH, regard-
less of the context, education background, and levels of
education. Although we can only speculate, it is likely that
the physical representation helps people to understand the
accumulation’s basic dynamics: Accumulation rises when
the inflow is greater than the outflow, falls when the inflow
is less than the outflow, and stabilizes when the inflow equals
the outflow. Because of metaphor use in the physical repre-
sentation, participants might better visualize the processes
that govern the changes in accumulation, a visualization that
is not possible in the graphical representation. Clearly, the
physical representation helped people understand the nonlin-
ear growth: As the accumulation increases nonlinearly, per-
formance in the physical representation is better than that in
the graphical representation.

Furthermore, we found that accumulation estimations
were more accurate in the physical representation compared
with the graphical representation as the number of periods
increased from one to five. As people rely on CH, the
difference between the correct accumulation values and
the corresponding human responses would increase over
time because of the increase in the nonlinearity of the
accumulation. In the next section, we report an experiment
extending analysis of the physical representation to text and
graphical representations in two different climate problems.

Figure 4. A typical participant’s response in the marble–graphical
treatment that shows the participant’s sketched accumulation that
was classified as relying on correlation heuristic. The marbles in
the bag (i.e., accumulation) follows a linear trend over periods (with
a constant slope of two marbles per period). The correlation coeffi-
cient of the marble accumulation with the inflow (i.e., marbles put)
is 1.0. Also, the accumulation in the fifth period (=18 marbles)
underestimates its correct value (=30 marbles)

Table 3. Proportion of responses classified as relying on the
correlation heuristic (CH) in different treatments in Experiment 1.
Comparison statistics with the correct accumulation’s CH value
(=0%) are also shown

Treatment CH (%) Statistics (compared with correct)

Correct 00 —
Graphical (G) 52 t(66) = 8.5, p< .001, r = 0.72a

Climate–graphical 72 t(24) = 7.9, p< .001, r = 0.85
Marble–graphical 40 t(41) = 5.3, p< .001, r = 0.64
Physical (P) 09 t(63) = 2.6, p< .05, r= 0.31
Climate–physical 16 t(24) = 2.1, p< .05, r= 0.39
Marble–physical 05 t(38) = 1.4, ns, r = 0.22

aNote:Numbers in boldface indicate results that are significant at p less than
or equal to .05.
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EXPERIMENT 2: PHYSICAL, GRAPHICAL, AND TEXT
REPRESENTATIONS IN INCREASING AND

DECREASING PROBLEMS

In addition to the graphical representation, prior research
has also used text representations to investigate people’s
reliance on CH in CO2 accumulation problems (Sterman,
2008; Sterman & Booth Sweeney, 2007). Reliance on CH
has been found to be equally strong in the text representation
(Cronin et al., 2009). Also, research has reported the physical
representation to be effective against text descriptions in
assessments of risk (Garcia-Retamero & Dhami, 2011). These
authors examined to what extent Polish immigrants to
the UK had difficulties in understanding treatment risk
reductions expressed as text ratios (in native or non-native
languages) and further whether this population could be
aided by a physical representation using visual displays to
enhance comprehension. When assessing treatment risk
reduction, participants often paid too much attention to the
number of treated and non-treated patients who died (i.e.,
numerators) and paid insufficient attention to the overall
number of patients (i.e., denominators) - known as “denom-
inator neglect”. However, providing visual aids (physical
representation) in addition to the textual numerical informa-
tion proved to be an effective method for eliminating denom-
inator neglect. According to Garcia-Retamero and Dhami
(2011), the visual aids drew participants’ attention to the
overall number of treated and non-treated patients and helped
them make more accurate risk estimates.

Furthermore, we used an increasing accumulation prob-
lem in Experiment 1, where the inflow increased linearly
and the outflow was constant. This inflow–outflow behavior
caused the accumulation to increase nonlinearly over time.
However, if one considers a decreasing problem where the
trend of the inflow decreases over time and is greater than
a constant outflow, then the accumulation will still increase
nonlinearly over time. This increase, however, will be in
direct opposition to the linearly decreasing inflow, allowing
us to test people’s reliance on CH more convincingly. If
participants rely on CH in this decreasing problem, they
would also sketch a linearly decreasing accumulation over
time, and their sketch will greatly underestimate the actual
nonlinearly increasing accumulation. Previous research has
shown that a decreasing inflow that results in an increasing
accumulation is more challenging than an increasing prob-
lem (Dutt, 2011; Dutt & Gonzalez, 2007; Gonzalez & Dutt,
2007, 2011; Lebiere, Gonzalez & Warwick, 2009). Finally,
the decreasing problem also seems to be a realistic case for
Earth’s climate because policymakers could potentially
decide upon interventions that decrease CO2 emissions in
the near future, rather than leave them unregulated and
increasing over time.

According to these facts and our results of Experiment 1, we
expect that

H3 : Estimations of accumulation will be more accurate
in a physical representation compared with either graph-
ical or text representation, regardless of whether the
inflow linearly increases or decreases over time.

To test H3, we take two nonlinear problems in the climate
context, increasing and decreasing inflow, in three different
representations: text (i.e., using a written description),
graphical (i.e., using mathematical graphs), and physical
(i.e., using pictures).

Participants
One hundred and thirty-two adults from Pittsburgh, PA were
recruited through a website advertisement and participated in
the experiment. Forty-eight percent were graduate students
enrolled in a MS or PhD program or had previously com-
pleted one of these degrees. The rest were either enrolled in
an undergraduate program or had previously completed a
bachelor’s degree. Forty-seven participants were women. Ages
ranged from 18 to 70 years (M=27years, SD=10years).
Sixty-nine percent of the participants self-reported having
degrees in STEM, and the rest had a non-STEM background.
All participants received a flat $3 compensation for the study.

Experimental design
Participants were randomly assigned to one of six be-
tween-subjects treatments: 3 (text, graphical, and physical
representations)� 2 (increasing and decreasing) problems.
In each treatment, participants attempted a nonlinear accu-
mulation problem concerning a CO2 accumulation in the
atmosphere with different representations and increasing
or decreasing inflows (where inflows were greater than a
constant outflow): text increasing (N = 26), text decreasing
(N = 18), graphical increasing (N = 26), graphical decreas-
ing (N = 18), physical increasing (N = 26), and physical
decreasing (N = 18). Like in Experiment 1, all six problems
depicted the changes in the inflow and the outflow over five
periods (or years) and asked participants to sketch the curve
of the inflow, the outflow, and the resulting accumulation
over those five periods. The dependent variables used were
identical to those used in Experiment 1.

Figure 5 shows the decreasing problem presented to partic-
ipants in the text representation. The tabulated inflow (CO2

emissions) decreased linearly over time from 10 giga or 109

tons of carbon (GtC) per year to 2 GtC per year, whereas
the outflow remained constant (=2 GtC per year). The
increasing problem in the text representation was like the
decreasing problem, but now, the inflow increased linearly
over time from 2 GtC per year to 10 GtC per year (outflow
was constant at 2 GtC per year). The increasing problem in
the graphical and physical representations was identical to
that used for the climate context in Experiment 1 (except that
the initial accumulation was set at 20 GtC instead of 10 GtC
so as to keep the initial accumulation equidistant from the
two endpoints of the y-axis).1 The decreasing problem in the

1In Experiment 1, we placed the starting accumulation (t = 0) below the
mid-point of the y-axis. This non-equidistant placement of initial accu-
mulation along with the climate context (where real-world CO2 accu-
mulations are increasing) could have hinted to participants that the
accumulation was going to increase over the next five periods. Further-
more, this could have been a possible reason for their relying on CH in
different treatments in this experiment. Therefore, in Experiment 2, we
correct this methodological issue in our design.
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graphical and physical representations followed the same
structure as the increasing problem; however, the inflow
decreased linearly in the problem from 10 GtC per year to 2
GtC per year. As in Experiment 1, the correct accumulation
in the increasing and decreasing problems could be derived
by repeatedly using Equation 1.

Results
In both the increasing and decreasing problems for different
representations, more than 96% of participants correctly
sketched the inflow and outflow shapes over time. Thus,
most participants understood the inflow and outflow well
and similarly across conditions.

To test H3, we compared participants’ responses in the
text, graphical, and physical representations against the
correct responses in both the increasing and decreasing pro-
blems. Table 4 presents the correct accumulation in different
periods and the corresponding average accumulation partici-
pants gave in the graphical, text, and physical representations
for each problem. In the increasing problem, the average
accumulation in the physical representation was much closer
to the correct accumulation in all periods compared with that
in the graphical or text representations. Upon comparing the
results for graphical and physical representations, we find
that these results are in the same direction as reported in
Experiment 1.2

In the decreasing problem, the accumulation in the physi-
cal representation was again closer to the correct accumula-
tion than in the graphical or text representations, as it is
observed by the weaker p values and effect sizes of the treat-
ments involving the physical representation. The decreasing
problem, however, was clearly more challenging for partici-
pants (Dutt, 2011; Gonzalez & Dutt, 2011; Lebiere et al.,
2009). Participants relying on CH think that the CO2 accu-
mulation decreases linearly over the five periods, whereas
doing the same in the increasing problem has the accumula-
tion increasing linearly over time. Therefore, it is likely to
become counterintuitive for participants in the decreasing
problem to sketch accumulations that increase over the five
periods. More underestimation of the correct CO2 accumula-
tion is found in the decreasing problem, regardless of the rep-
resentation, but the accumulation reported in the graphical
and text representations underestimated the correct accumu-
lation more than in the physical representation. Taken to-
gether, these confirm our expectation in H3: the estimation
of the accumulation is more accurate in the physical repre-
sentation compared with in the graphical and text representa-
tions for both increasing and decreasing problems.

As illustrated in Table 5, greater underestimation in text
and graphical representations compared with the physical
representation is likely due to reliance on CH. In both increas-
ing and decreasing problems, the proportion of responses
classified as relying on CH was lower for the physical repre-
sentation than for graphical and text representations.

We also tested the effectiveness of the physical represen-
tation compared with the graphical and text representations
for each problem among different educational backgrounds
and levels. For STEM and non-STEM backgrounds in both
problems, estimates of the accumulation were much closer
to the correct in the physical representation compared with

2This observation is after the fact that Experiments 1 and 2 were run at dif-
ferent times and contained different number of participants in the graphical
representation (N= 67 in Experiment 1 and N= 25 in Experiment 2). Given
these differences, even if we make a close comparison between the two
experiments, we find that participants underestimated the accumulation in
Periods 1–5 in Experiment 2 and in Periods 4–5 in Experiment 1. This dif-
ference between the two experiments is likely due to the fact that in Exper-
iment 2, four out of 25 participants drew the accumulation shape exactly like
the shape of inflow, whereas only one out of 67 participants showed this be-
havior in Experiment 1. As the values of inflow are much smaller than those
of accumulation, copying the inflow as the accumulation by more partici-
pants causes underestimation over all five periods, 1–5, in Experiment 2.

Figure 5. The decreasing problem presented to participants in the
text representation in Experiment 2
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the graphical and text representations (see Table A4 in the
Appendix). Again, in both problems, both the undergraduates’
and graduates’ accumulation were generally more accurate in
the physical representation (see Table A5 in the Appendix).

Similarly, the proportion of responses relying on CH among
STEM and non-STEM backgrounds in the physical representa-
tion was lower (see Table A6 in the Appendix). There appears
to be a similar relationship of differences among graduate
and undergraduate levels of education (see Table A6 in
the Appendix).

Discussion
Our results indicate that the physical representation is more
effective compared with both text and graphical representa-
tions across different problem types and is effective in reduc-
ing participants’ reliance on CH. The decrease in CH reliance
in the physical representation was despite the fact that the
relationship between the accumulation and the inflow is
counterintuitive in the decreasing problem: Emissions de-
crease linearly, although the actual CO2 accumulation
continues to increase nonlinearly over time. This is observed
in both the graphical and text representations; the average
sketched accumulation over the five periods had a negative
slope. In the physical representation, however, the slope of
the average sketched accumulation over the five periods
was positive. Taken together, these findings reinforce the
effectiveness of the physical representation in different
problems. Its effectiveness makes it suitable for use in different
kinds of dynamic problems, where the resulting shape of the
inflow might be different over time.

Table 5. Proportion of responses classified as relying on the
correlation heuristic (CH) in different representations and
problems in Experiment 2. Comparison statistics with the correct
accumulation’s CH value (=0%) are also shown

Increasing problem

Representation
and education

CH (%) Statistics (compared with correct)

Correct 00 —
Graphical (G) 73 t(25) = 8.2, p< .001, r = 0.85a

Text (T) 69 t(25) = 7.5, p< .001, r = 0.83b

Physical (P) 12 t(25) = 1.8, ns, r = 0.34
Decreasing problem

Treatment CH (%) Statistics (compared with correct)

Correct 00 —
Graphical (G) 61 t(17) = 5.2, p< .001, r= 0.78
Text (T) 56 t(17) = 4.6, p< .001, r= 0.74
Physical (P) 33 t(17) = 2.9, p< .01, r = 0.58

aNote:The value indicates the effect size.
bNumbers in boldface indicate results that are significant at p less than or
equal to .05.

Table 4. The correct accumulation in different periods and their corresponding average accumulation in the graphical, text, and physical
representations for the increasing and decreasing problems in Experiment 2

Representation Time 1 Time 2 Time 3 Time 4 Time 5

Increasing problem
Correct 20.0 (0.0)a 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0)

Graphical (G) 18.5 (5.4) 19.9 (5.3) 21.9 (5.6) 24.5 (6.7) 27.6 (9.0)
Statistics (compared
with correct)

t(25) =�1.4,
ns, r = 0.27b

t(25) =�2.0,
p< .05, r = 0.37c

t(25) =�3.7,
p< .001, r = 0.59

t(25) =�5.7,
p< .001, r= 0.75

t(25) =�7.0,
p< .001, r= 0.81

Text (T) 18.5 (5.4) 20.0 (5.3) 22.1 (5.6) 24.7 (6.7) 27.9 (9.0)
Statistics (compared
with correct)

t(25) =�1.4,
ns, r = 0.27

t(25) =�1.9,
ns, r= 0.36

t(25) =�3.6,
p< .01, r= 0.58

t(25) =�5.5,
p< .001, r= 0.74

t(25) =�6.9,
p< .001, r= 0.81

Physical (P) 20.0 (0.0) 22.0 (0.0) 25.8 (0.7) 31.3 (2.0) 38.6 (3.9)
Statistics (compared
with correct)

t(25) = 0.0,
ns, r = 0.00

t(25) = 0.0,
ns, r= 0.00

t(25) =�1.8,
ns, r= 0.34

t(25) =�1.8,
ns, r = 0.34

t(25) =�1.8,
ns, r = 0.34

Decreasing problem
Correct 28.0 (0.0) 34.0 (0.0) 38.0 (0.0) 40.0 (0.0) 40.0 (0.0)

Graphical (G) 19.0 (8.9) 20.1 (12.4) 20.4 (15.2) 20.0 (17.1) 18.8 (18.1)
Statistics (compared
with correct)

t(17) =�4.3,
p< .001, r= 0.72

t(17) =�4.7,
p< .001, r = 0.75

t(17) =�4.9,
p< .001, r = 0.77

t(17) =�5.0,
p< .001, r= 0.77

t(17) =�5.0,
p< .001, r= 0.77

Text (T) 18.0 (9.2) 19.4 (13.2) 19.9 (16.0) 19.3 (17.8) 17.8 (18.7)
Statistics (compared
with correct)

t(17) =�4.6,
p< .001, r= 0.74

t(17) =�4.7,
p< .001, r = 0.75

t(17) =�4.8,
p< .001, r = 0.76

t(17) =�4.9,
p< .001, r= 0.77

t(17) =�5.0,
p< .001, r= 0.77

Physical (P) 22.0 (8.2) 25.1 (11.9) 27.0 (14.8) 27.7 (16.7) 27.1 (17.6)
Statistics (compared
with correct)

t(17) =�3.1,
p< .01, r = 0.60

t(17) =�3.2,
p< .01, r = 0.61

t(17) =�3.2,
p< .01, r= 0.61

t(17) =�3.1,
p< .01, r= 0.60

t(17) =�3.1,
p< .01, r = 0.60

aNote:The values in bracket represent the standard deviation about the mean.
bThe value indicates the effect size.
cNumbers in boldface indicate results that are significant at p less than or equal to .05.
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GENERAL DISCUSSION

People underestimate the correct value of nonlinear accumu-
lation given their reliance on the CH for different contexts
and problems. The use of a physical representation, however,
can help reduce their underestimation and reliance on the
CH in nonlinear accumulation problems, regardless of the
problem’s dynamics or context and participants’ educational
backgrounds and levels.

A physical representation may motivate participants to be
involved in the problem they are solving and may help them
construct a correct representation of the problem. Research
that has investigated physical representation in the past
also has similar conclusions about the representation’s effec-
tiveness (Cooper & Harries, 2002, 2003; De Lange, 1987;
Freudenthal, 1983; Palm, 2002). Given its effectiveness
here and the documented benefits in mathematical education
and judgment and decision-making literature (Aprea &
Ebner, 1999; De Corte et al., 1996; Galesic et al., 2009;
Garcia-Retamero & Dhami, 2011; Garcia-Retamero & Galesic,
2010; Garcia-Retamero et al., 2010), physical representations
will also be effective in reducing CH reliance in a wider range
of nonlinear problems and contexts.

Generally, one could imagine many different physical repre-
sentations in nonlinear problems that depend upon what needs
to be communicated to a decision maker. For example, an icon
array has been used to effectively communicate fractions, prob-
ability, or risk (Galesic et al., 2009; Garcia-Retamero &Dhami,
2011; Garcia-Retamero & Galesic, 2010; Garcia-Retamero
et al., 2010). The physical representation used here provided a
picture snapshot of the inflows and the outflows at any instance
of time. A possible limitation of our representation is that it can
be impractical for problems with a larger time scale. One could
depict the changes in flows only for the first few and last few
periods in problems with larger time scales but may still reap
the benefits of using a physical representation. By doing so,
one is more likely to be able to communicate a correct under-
standing of accumulation in a problem.

In this paper, the physical representation is shown to be
effective in both climate and non-climate contexts. There-
fore, its use has an immense potential to improving public
understanding in these contexts. Because the current wait-

and-see policies are likely to cause catastrophic changes in
the near future (Alley et al., 2003; Scheffer et al., 2001),
however, our findings are particularly relevant to research
on wait-and-see behavior for climate change. With wait-
and-see behavior, people prefer to delay policy actions that
mitigate climate change to a future time. Changes in the
atmospheric CO2 accumulation (which is one of the main
contributors for climate change) have been increasing
nonlinearly for many years since the Industrial Revolution
(IPCC, 2007). Furthermore, the accumulation’s nonlinear
increase is predicted to intensify over the next 50–60 years
(IPCC, 2007), with adverse consequences such as temper-
ature change, melting of polar ice caps, and rising sea
levels (Alley et al., 2003; Scheffer et al., 2001). As seen
in our findings, people tend to underestimate nonlinear
changes in the CO2 accumulation when inferring from text
and graphical representations. Because text and graphical
representations are commonly used (IPCC, 2001a; EPA,
2010; Schiermeier, 2010), people are likely to underestimate
the CO2 accumulation’s nonlinear change and inaccurately
infer much less CO2 in the atmosphere than predicted by
climate scientists. Underestimating the accumulation is likely
to undermine the importance of the climate problem and could
result in people’s wait-and-see behavior. A physical represen-
tation could be used to represent the CO2 accumulation infor-
mation and communicate the dynamics of Earth’s climate.
Using the physical representation over other forms such as text
or graphs could improve our estimation on atmospheric CO2

and its associated climate change, ultimately reducing people’s
wait-and-see behavior.

Let us return to the fable about the inventor of chess and the
king. By now, it becomes easy to explain why the king thought
that the inventor’s request was modest: He was unable to
foresee how the accumulation of rice was nonlinear. He under-
estimated the rice accumulation, much like our participants did
on nonlinear accumulation problems. But the king recognized
the cleverness of the inventor’s request halfway through
fulfilling it. The actual “physical exercise” of putting the rice
grains on the chess board’s squares was an example of a
physical representation. As shown by the current research,
the use of physical representation enables people to overcome
underestimation of accumulation in nonlinear problems.

APPENDICES

APPENDIX A1: THE CORRECT ACCUMULATION IN DIFFERENT PERIODS AND THE CORRESPONDING AVERAGE
ACCUMULATION IN THE TWO REPRESENTATIONS SPLIT BY STEM AND NON-STEM BACKGROUNDS IN

EXPERIMENT 1

Representation and backgrounds Time 1 Time 2 Time 3 Time 4 Time 5

Correct 10.0 (0.0) 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0)

Graphical–non-STEM1 11.3 (2.3)2 13.7 (4.7) 16.7 (6.2) 20.0 (7.6) 24.3 (9.0)
Statistics (compared
with correct)

t(22) = 2.3,
p< .05, r = 0.443, 4

t(22) = 1.7,
ns, r = 0.34

t(22) = 0.5,
ns, r= 0.11

t(22) =�1.3,
ns, r = 0.27

t(22) =�3.0,
p< .01, r= 0.54

(Continues)
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Representation and backgrounds Time 1 Time 2 Time 3 Time 4 Time 5

Graphical–STEM 10.0 (2.0) 12.1 (2.3) 15.2 (2.9) 19.5 (5.6) 24.9 (7.7)
Statistics (compared
with correct)

t(43) = 0.1,
ns, r = 0.02

t(43) = 0.2,
ns, r = 0.03

t(43) =�1.8,
ns, r = 0.26

t(43) =�3.9,
p< .001, r= 0.51

t(43) =�4.9,
p< .001, r= 0.60

Physical–non-STEM 09.7 (1.6) 11.7 (1.6) 15.5 (2.1) 21.1 (3.2) 28.6 (4.9)
Statistics (compared
with correct)

t(24) =�0.9,
ns, r = 0.18

t(24) =�1.0,
ns, r = 0.20

t(24) =�1.3,
ns, r = 0.26

t(24) =�1.4,
ns, r= 0.27

t(24) =�1.4,
ns, r= 0.27

Physical–STEM 10.1 (0.7) 12.1 (0.8) 16.0 (0.8) 21.7 (1.4) 29.3 (2.6)
Statistics (compared
with correct)

t(36) = 1.0,
ns, r = 0.16

t(36) = 0.8,
ns, r = 0.13

t(36) = 0.0,
ns, r = 0.00

t(36) =�1.3,
ns, r= 0.21

t(36) =�1.7,
ns, r= 0.57

Note: 1STEM-science, technology, engineering, and management.
2The values in bracket represent the standard deviation about the mean.
3The value indicates the effect size.
4Numbers in boldface indicate results that are significant at p less than or equal to .05.

APPENDIX A2: THE CORRECT ACCUMULATION IN DIFFERENT PERIODS AND THE CORRESPONDING AVERAGE
ACCUMULATION IN THE TWO REPRESENTATIONS SPLIT BY GRADUATE AND UNDERGRADUATE LEVELS OF

EDUCATION IN EXPERIMENT 1

Representation and level of education Time 1 Time 2 Time 3 Time 4 Time 5

Correct 10.0 (0.0) 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0)

Graphical–undergraduate 10.7 (2.8)1 13.3 (4.2) 16.7 (5.1) 20.8 (5.8) 26.0 (7.2)

Statistics (compared
with correct)

t(36) = 1.6,
ns, r = 0.042

t(36) = 1.8,
ns, r = 0.05

t(36) = 0.8,
ns, r = 0.02

t(36) =�1.2,
ns, r= 0.03

t(36) =�3.4,
p< .001, r= 0.093

Graphical–graduate 10.0 (0.8) 11.8 (1.6) 14.6 (2.8) 18.2 (5.1) 23.1 (8.0)

Statistics (compared
with correct)

t(29) = 0.0,
ns, r = 0.00

t(29) =�0.6,
ns, r = 0.02

t(29) =�2.8,
p< .01, r = 0.10

t(29) =�4.1,
p< .001, r = 0.14

t(29) =�4.7,
p< .001, r= 0.16

Physical–undergraduate 09.8 (1.4) 11.7 (1.4) 15.6 (5.1) 21.2 (2.8) 28.7 (4.4)

Statistics (compared
with correct)

t(34) =�0.9,
ns, r = 0.03

t(34) =�1.1,
ns, r = 0.03

t(34) =�1.4,
ns, r = 0.04

t(34) =�1.7,
ns, r= 0.05

t(34) =�1.7,
ns, r = 0.05

Physical–graduate 10.1 (0.7) 12.1 (1.0) 16.0 (1.0) 21.6 (1.8) 29.0 (3.4)

Statistics (compared
with correct)

t(28) = 1.0,
ns, r = 0.04

t(28) = 0.8,
ns, r = 0.03

t(28) =�0.2,
ns, r = 0.01

t(28) =�1.3,
ns, r= 0.05

t(28) =�1.6,
ns, r = 0.06

Note:1The values in bracket represent the standard deviation about the mean.
2The value indicates the effect size.
3Numbers in boldface indicate results that are significant at p less than or equal to .05.

APPENDIX A3: PROPORTION OF RESPONSES CLASSIFIED AS RELYING ON THE CORRELATION HEURISTIC (CH)
IN DIFFERENT TREATMENTS FOR DIFFERENT EDUCATIONAL BACKGROUNDS AND LEVELS OF EDUCATION IN
EXPERIMENT 1. COMPARISON STATISTICS WITH THE CORRECT ACCUMULATION’S CH VALUE (=0%) ARE

ALSO SHOWN

Treatment CH (%) Statistics (compared with correct)

Correct 00 —

Graphical–non-STEM1 65 t(22) = 6.4, p< .001, r= 0.812,3

Graphical–STEM 45 t(43) = 6.0, p< .001, r= 0.68

Physical–non-STEM 08 t(24) = 1.4, ns, r = 0.27

(Continues)
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Treatment CH (%) Statistics (compared with correct)

Physical–STEM 08 t(36) = 1.8, ns, r = 0.29

Graphical–undergraduate 54 t(36) = 6.5, p< .001, r= 0.18

Graphical–graduate 50 t(29) = 5.4, p< .001, r= 0.18

Physical–undergraduate 08 t(34) = 1.8, ns, r = 0.05

Physical–graduate 10 t(28) = 1.4, ns, r = 0.05

Note: 1STEM-science, technology, engineering, and management.
2The value indicates the effect size.
3Numbers in boldface indicate results that are significant at p less than or equal to .05.

APPENDIX A4: THE CORRECT ACCUMULATION IN DIFFERENT PERIODS AND THE CORRESPONDING AVERAGE
ACCUMULATION IN DIFFERENT REPRESENTATIONS AND PROBLEMS SPLIT BY EDUCATION BACKGROUND IN

EXPERIMENT 2

Representation and backgrounds Time 1 Time 2 Time 3 Time 4 Time 5

Increasing problem

Correct 20.0 (0.0) 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0)

Graphical–non-STEM 20.0 (0.0) 21.4 (0.5) 23.1 (1.6) 25.1 (3.3) 27.4 (5.9)

Statistics (compared
with correct)

t(06) = 0.0,
ns, r = 0.00

t(06) =�2.8,
p< .05, r = 0.75

t(06) =�4.8,
p< .01, r= 0.89

t(06) =�5.4,
p< .01, r = 0.91

t(06) =�5.7,
p< .001, r = 0.92

Graphical–STEM1 17.9 (6.3)2 19.3 (6.1) 21.5 (6.4) 24.3 (7.6) 27.7 (10.0)

Statistics (compared
with correct)

t(18) =�1.5,
ns, r = 0.333

t(18) =�1.9,
ns, r = 0.41

t(18) =�3.1,
p< .01, r= 0.594

t(18) =�4.4,
p< .001, r= 0.72

t(18) =�5.4,
p< .001, r = 0.79

Text–non-STEM 20.0 (0.0) 21.0 (0.7) 22.2 (1.4) 23.0 (2.1) 24.0 (2.8)

Statistics (compared
with correct)

t(04) = 0.0,
ns, r = 0.00

t(04) =�3.2,
p< .05, r = 0.85

t(04) =�6.3,
p< .01, r= 0.95

t(04) =�9.5,
p< .001, r= 0.98

t(04) =�12.6,
p< .001, r = 0.99

Text–STEM 18.1 (6.0) 19.8 (5.9) 22.1 (6.2) 25.1 (7.4) 28.8 (9.8)

Statistics (compared
with correct)

t(20) =�1.5,
ns, r = 0.32

t(20) =�1.7,
ns, r = 0.36

t(20) =�2.9,
p< .01, r= 0.54

t(20) =�4.3,
p< .001, r= 0.69

t(20) =�5.3,
p< .001, r = 0.76

Physical–non-STEM 20.0 (0.0) 22.0 (0.0) 25.9 (0.6) 31.5 (1.7) 39.1 (3.3)

Statistics (compared
with correct)

t(12) = 0.0,
ns, r = 0.00

t(12) = 0.0,
ns, r = 0.00

t(12) =�1.0,
ns, r = 0.28

t(12) =�1.0,
ns, r = 0.28

t(12) =�1.0,
ns, r= 0.28

Physical–STEM 20.0 (0.0) 22.0 (0.0) 25.7 (0.8) 31.1 (2.3) 38.2 (4.5)

Statistics (compared
with correct)

t(12) = 0.0,
ns, r = 0.00

t(12) = 0.0,
ns, r = 0.00

t(12) =�1.5,
ns, r = 0.40

t(12) =�1.5,
ns, r = 0.40

t(12) =�1.5,
ns, r= 0.40

Decreasing problem

Correct 28.0 (0.0) 34.0 (0.0) 38.0 (0.0) 40.0 (0.0) 40.0 (0.0)

Graphical–non-STEM 15.7 (7.2) 15.0 (10.1) 14.0 (12.3) 12.7 (14.0) 11.0 (14.7)

Statistics (compared
with correct)

t(05) =�4.2,
p< .01, r = 0.88

t(05) =�4.6,
p< .01, r = 0.90

t(05) =�4.7,
p< .01, r= 0.90

t(05) =�4.8,
p< .01, r = 0.91

t(05) =�4.8,
p< .01, r= 0.91

Graphical–STEM 20.7 (9.4) 22.7 (13.1) 23.7 (16.0) 23.7 (17.9) 22.7 (18.9)

Statistics (compared
with correct)

t(11) =�2.7,
p< .05, r = 0.63

t(11) =�3.0,
p< .05, r = 0.67

t(11) =�3.1,
p< .05, r= 0.68

t(11) =�3.2,
p< .01, r = 0.69

t(11) =�3.2,
p< .01, r= 0.69
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Representation and backgrounds Time 1 Time 2 Time 3 Time 4 Time 5

Text–non-STEM 13.0 (7.3) 12.3 (10.6) 11.3 (13.1) 10.0 (14.7) 8.3 (15.5)

Statistics (compared
with correct)

t(05) =�5.0,
p< .01, r= 0.91

t(05) =�5.0,
p< .01, r= 0.91

t(05) =�5.0,
p< .01, r = 0.91

t(05) =�5.0,
p< .01, r= 0.91

t(05) =�5.0,
p< .01, r = 0.91

Text–STEM 20.5 (9.3) 23.0 (13.3) 24.2 (16.1) 24.0 (18.0) 22.5 (18.9)

Statistics (compared
with correct)

t(11) =�2.8,
p< .05, r= 0.65

t(11) =�2.9,
p< .05, r= 0.66

t(11) =�3.0,
p< .05, r = 0.67

t(11) =�3.1,
p< .01, r= 0.68

t(11) =�3.2,
p< .01, r = 0.69

Physical–non-STEM 19.0 (7.3) 20.0 (11.0) 20.5 (13.8) 20.5 (15.9) 20.0 (17.2)

Statistics (compared
with correct)

t(03) =�2.4,
ns, r = 0.81

t(03) =�2.5,
ns, r= 0.82

t(03) =�2.5,
ns, r= 0.82

t(03) =�2.5,
ns, r= 0.82

t(03) =�2.3,
ns, r = 0.80

Physical–STEM 22.9 (8.4) 26.6 (12.2) 28.9 (15.0) 29.7 (16.9) 29.1 (18.9)

Statistics (compared
with correct)

t(13) =�2.3,
p< .05, r= 0.54

t(13) =�2.3,
p< .05, r= 0.54

t(13) =�2.3,
p< .05, r = 0.54

t(13) =�2.3,
p< .05, r= 0.54

t(13) =�2.3,
p< .05, r = 0.54

Note: 1STEM-science, technology, engineering, and management.
2The values in bracket represent the standard deviation about the mean.
3The value indicates the effect size.
4Numbers in boldface indicate results that are significant at p less than or equal to .05.

APPENDIX A5: THE CORRECT ACCUMULATION IN DIFFERENT PERIODS AND THE CORRESPONDING AVERAGE
ACCUMULATION IN DIFFERENT REPRESENTATIONS AND PROBLEMS SPLIT BY LEVELS OF EDUCATION IN

EXPERIMENT 2

Representation and level of education Time 1 Time 2 Time 3 Time 4 Time 5

Increasing problem

Correct 20.0 (0.0) 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0)

Graphical–undergraduate 20.0 (0.0)1 21.3 (0.6) 23.1 (1.7) 25.4 (3.7) 28.1 (6.6)

Statistics (compared
with correct)

t(13) = 0.0,
ns, r= 0.00

t(13) =�4.4,
p< .001, r= 0.772,3

t(13) =�6.3,
p< .001, r= 0.87

t(13) =�6.6,
p< .001, r= 0.88

t(13) =�6.7,
p< .001, r= 0.88

Graphical–graduate 16.7 (7.8) 18.3 (7.6) 20.5 (7.9) 23.4 (9.1) 27.0 (11.5)

Statistics (compared
with correct)

t(11) =�1.5,
ns, r= 0.41

t(11) =�1.7,
ns, r = 0.46

t(11) =�2.4,
p< .05, r = 0.59

t(11) =�3.3,
p< .01, r = 0.71

t(11) =�3.9,
p< .01, r = 0.76

Text–undergraduate 20.0 (0.0) 21.5 (0.5) 23.5 (1.8) 26.2 (4.0) 29.4 (7.2)

Statistics (compared
with correct)

t(16) = 0.0,
ns, r= 0.00

t(16) =�4.2,
p< .001, r= 0.72

t(16) =�5.6,
p< .001, r= 0.81

t(16) =�6.0,
p< .001, r= 0.83

t(16) =�6.1,
p< .001, r= 0.84

Text–graduate 15.6 (8.8) 17.2 (8.7) 19.3 (8.9) 21.9 (9.8) 24.9 (11.6)

Statistics (compared
with correct)

t(08) =�1.5,
ns, r= 0.47

t(08) =�1.7,
ns, r = 0.52

t(08) =�2.3,
p< .05, r = 0.63

t(08) =�3.1,
p< .05, r = 0.74

t(08) =�3.9,
p< .01, r = 0.81

Physical–undergraduate 20.0 (0.0) 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0)

Statistics (compared
with correct)

t(13) = 0.0,
ns, r= 0.00

t(13) = 0.0,
ns, r = 0.00

t(13) = 0.0,
ns, r = 0.00

t(13) = 0.0,
ns, r = 0.00

t(13) = 0.0,
ns, r = 0.00

Physical–graduate 20.0 (0.0) 22.0 (0.0) 25.5 (0.9) 30.5 (2.7) 37.0 (5.4)

Statistics (compared
with correct)

t(11) = 0.0,
ns, r= 0.00

t(11) = 0.0,
ns, r = 0.00

t(11) =�1.9,
ns, r = 0.50

t(11) =�1.9,
ns, r = 0.50

t(11) =�1.9,
ns, r = 0.50

(Continues)

APPENDIX A4: (Continued)

Journal of Behavioral Decision Making

Copyright © 2011 John Wiley & Sons, Ltd. J. Behav. Dec. Making (2011)

DOI: 10.1002/bdm



Representation and level of education Time 1 Time 2 Time 3 Time 4 Time 5

Decreasing problem

Correct 28.0 (0.0) 34.0 (0.0) 38.0 (0.0) 40.0 (0.0) 40.0 (0.0)

Graphical–undergraduate 16.5 (7.9) 16.5 (11.4) 16.0 (14.0) 15.0 (15.8) 13.5 (16.7)

Statistics (compared
with correct)

t(07) =�4.1,
p< .01, r = 0.51

t(07) =�4.4,
p< .01, r = 0.53

t(07) =�4.4,
p< .01, r = 0.53

t(07) =�4.5,
p< .01, r = 0.54

t(07) =�4.5,
p< .01, r= 0.54

Graphical–graduate 21.0 (9.5) 23.0 (13.0) 24.0 (15.9) 24.0 (17.9) 23.0 (18.9)

Statistics (compared
with correct)

t(09) =�2.5,
p< .05, r = 0.27

t(09) =�2.7,
p< .05, r = 0.29

t(09) =�2.8,
p< .05, r = 0.30

t(09) =�2.8,
p< .05, r = 0.30

t(09) =�2.8,
p< .05, r= 0.30

Text–undergraduate 14.5 (8.3) 14.5 (12.0) 14.0 (14.8) 13.0 (16.7) 11.5 (17.6)

Statistics (compared
with correct)

t(07) =�4.6,
p< .01, r = 0.55

t(07) =�4.6,
p< .01, r = 0.55

t(07) =�4.6,
p< .01, r = 0.55

t(07) =�4.6,
p< .01, r = 0.55

t(07) =�4.6,
p< .01, r= 0.55

Text–graduate 20.8 (9.3) 23.4 (13.3) 24.6 (16.1) 24.4 (17.9) 22.8 (18.9)

Statistics (compared
with correct)

t(09) =�2.4,
p< .05, r = 0.26

t(09) =�2.4,
p< .05, r = 0.26

t(09) =�2.6,
p< .05, r = 0.28

t(09) =�2.8,
p< .05, r = 0.30

t(09) =�2.9,
p< .05, r= 0.31

Physical–undergraduate 25.4 (4.4) 29.7 (7.5) 32.6 (9.7) 34.0 (11.0) 34.0 (11.5)

Statistics (compared
with correct)

t(06) =�1.5,
ns, r = 0.24

t(06) =�1.5,
ns, r= 0.24

t(06) =�1.5,
ns, r= 0.24

t(06) =�1.4,
ns, r= 0.23

t(06) =�1.4,
ns, r= 0.23

Physical–graduate 19.8 (9.4) 22.2 (13.6) 23.5 (16.7) 23.6 (18.8) 22.7 (19.8)

Statistics (compared
with correct)

t(10) =�2.9,
p< .05, r = 0.28

t(10) =�2.9,
p< .05, r = 0.28

t(10) =�2.9,
p< .05, r = 0.28

t(10) =�2.9,
p< .05, r = 0.28

t(10) =�2.9,
p< .05, r= 0.28

Note:
1The values in bracket represent the standard deviation about the mean.
2The value indicates the effect size.
3Numbers in boldface indicate results that are significant at p less than or equal to .05.

APPENDIX A6: PROPORTION OF RESPONSES CLASSIFIED AS RELYING ON CORRELATION HEURISTIC (CH) IN
DIFFERENT REPRESENTATIONS AND PROBLEMS SPLIT BY EDUCATION BACKGROUND AND LEVELS OF ED-
UCATION IN EXPERIMENT 2. COMPARISON STATISTICS WITH THE CORRECT ACCUMULATION’S CH VALUE

(=0%) ARE ALSO SHOWN

Increasing problem

Representation and education CH (%) Statistics (compared with correct)

Correct 00 —

Graphical–non-STEM1 86 t(06) = 6.0, p< .001, r= 0.932,3

Graphical–STEM 68 t(18) = 6.2, p< .001, r= 0.83

Text–non-STEM 80 t(04) = 4.0, p< .05, r = 0.89

Text–STEM 67 t(20) = 6.3, p< .001, r= 0.82

Physical–non-STEM 08 t(12) = 1.0, ns, r = 0.28

Physical–STEM 15 t(12) = 1.5, ns, r = 0.40

Graphical–undergraduate 79 t(13) = 6.9, p< .001, r= 0.89

Graphical–graduate 67 t(11) = 4.7, p< .001, r= 0.82

Text–undergraduate 71 t(16) = 6.2, p< .001, r= 0.84

Text–graduate 67 t(08) = 4.0, p< .01, r = 0.82

Physical–undergraduate 00 t(13) = 0.0, ns, r = 0.00

Physical–graduate 25 t(11) = 1.9, ns, r = 0.50
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