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INTRODUCTION

With the prevalence of WikiLeaks hacks and other 
threats to corporate and national cybersecurity, 
guarding against cyber-attacks today is becoming 
a significant part of IT governance, especially 

because most government agencies have moved 
to online systems (Sideman, 2011). In order to 
protect national cybersecurity, leaders from the 
Defense Department, NATO, and the European 
Union assembled in Brussels recently to discuss 
a plan to prevent, detect, defend, and recover 
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Cyber Situation Awareness 
through Instance-
Based Learning:

Modeling the Security Analyst 
in a Cyber-Attack Scenario

ABSTRACT

In a corporate network, the situation awareness (SA) of a security analyst is of particular interest. The 
current work describes a cognitive Instance-Based Learning (IBL) model of an analyst’s recognition 
and comprehension processes in a cyber-attack scenario. The IBL model first recognizes network events 
based upon events’ situation attributes and their similarity to past experiences (instances) stored in the 
model’s memory. Then, the model comprehends a sequence of observed events as being a cyber-attack 
or not, based upon instances retrieved from its memory, similarity mechanism used, and the model’s 
risk-tolerance. The execution of the model generates predictions about the recognition and comprehen-
sion processes of an analyst in a cyber-attack. A security analyst’s decisions in the model are evaluated 
based upon two cyber-SA metrics of accuracy and timeliness. The chapter highlights the potential of 
this research for design of training and decision support tools for security analysts.
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from cyber-attacks (Sideman, 2011). The leaders 
there agreed that existing cybersecurity measures 
were incomplete and decided to fast-track a new 
plan for cyber-incident response. Similarly, the 
Department of Homeland Security (DHS) has 
recently launched a national campaign called, 
“Stop|Think|Connect,” aiming to cultivate a col-
lective sense of cyber–civic duty among personnel 
in organizations and enterprises that help preserve 
cybersecurity (Lute & McConnell, 2011). The 
DHS’ message begins with the following wisdom:

Senior management in each and every office, 
company and department, whether private or 
public, must take responsibility for the protection 
of its own systems and information, by fielding 
up-to-date security technology, training employees 
to avoid common vulnerabilities, and reporting 
cybercrime when it occurs. (Lute & McConnell, 
2011, p. 1)

As 80%-90% of what individuals and the gov-
ernment do using the Internet today depend upon 
private corporate networks provided by organiza-
tions and enterprises (Sideman, 2011), according 
to DHS, corporate networks that ensure our cy-
bersecurity have much bigger responsibilities than 
previously thought (Lute & McConnell, 2011). 
Thus, meeting the DHS’ objectives in a corporate 
network requires cyber situation-awareness (SA), 
a three stage process which includes recognition 
(or the awareness of the current situation in the 
network); comprehension (or the awareness of 
malicious behavior in the current situation in the 
network); and projection (assessment of possible 
future courses of action resulting from the current 
situation in the network) (Endsley, 1995; Tadda, 
Salerno, Boulware, Hinman, & Gorton, 2006).

The ability of a corporate network to protect 
itself from a cyber-attack using cyber-tools and 
algorithms without any interventions from human 
decision-makers is still a distant goal (Jajodia, 
Liu, Swarup, & Wang, 2010). Thus, the role of 

human decision-makers in security systems is one 
that is crucial and indispensible (Gardner, 1987; 
Johnson-Laird, 2006).

In the absence of perfect cyber-SA tools to 
recognize, comprehend, and project about cyber-
attacks (PSU, 2011), a key role in the cyberse-
curity process is that of a security analyst. The 
security analyst is a human decision-maker who 
is in charge of protecting the online operations of 
a corporate network (e.g., an online retail com-
pany with an external webserver and an internal 
fileserver) from threats of random or organized 
cyber-attacks. However, very little is currently 
known about the role of the cognitive processes of 
the security analyst (like memory, risk-tolerance, 
similarity etc.) that might influence the cyber-SA 
of the analyst and his ability to detect cyber-attacks 
in corporate networks under different scenarios 
(Jajodia et al., 2010; PSU, 2011). Also, currently 
there seems to be a big gap between how security 
analysts function in the real world according to 
their cognitive processes and how cyber-SA tools 
and algorithms function that intend to replace 
human analysts, sometime in the future (Jajodia 
et al., 2010; PSU, 2011). Due to these reasons, it 
becomes important to investigate the influence 
of cognitive processes of a security analyst on 
his cyber-SA in popular cyber-attack scenarios.

Past literature shows there has only been one 
known cognitive attempt, through an expert sys-
tem called R-CAST, to understand the cognitive 
decision-making aspects about a security analyst’s 
cyber-SA (Fan & Yen, 2007; Jajodia et al., 2010). 
The R-CAST is a team-oriented cognitive-agent 
architecture that is a computational implementa-
tion of Klien’s Recognition-Primed Decision 
(RPD) model (Klien, 1989). R-CAST, being a 
computational implementation of RPD, is a rule-
based system which requires a priori knowledge 
base about cyber-attacks in a scenario in which 
it makes decisions (Fan & Yen, 2007). The a 
priori knowledge base is used during a mental 
simulation in the RPD. In the mental simulation, 
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the R-CAST applies rules that are constrained by 
the cyber-attack scenario in which the R-CAST 
operates to determine the future courses of ac-
tion (Fan & Yen, 2007). The cognitive approach 
taken in this chapter (more details below) does 
not incorporate dependencies about an existing 
knowledge-base and future courses of action as 
assumed in the R-CAST.

The main purpose of this chapter is to describe 
a cognitive model of the recognition and compre-
hension processes in a security analyst’s cyber-SA. 
The model is based on Instance-Based Learning 
Theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003). 
Furthermore, we evaluate the performance of 
the IBL model of the security analyst using two 
cyber-SA measures: accuracy and timeliness 
(Jajodia et al., 2010) on a popular simple cyber-
attack scenario about an island-hopping attack 
(Ou, Boyer, & McQueen, 2006; Xie, Li, Ou, Liu, 
& Levy, 2010). IBLT is well suited to modeling 
the security analyst’s decisions as the theory 
provides a generic decision-making process that 
starts by recognizing and generating experiences 
through interaction with a changing decision en-
vironment, and closes with the reinforcement of 
experiences that led to good decision outcomes 
through feedback from the decision environment. 
Unlike the R-CAST, the IBLT neither assumes a 
rule-based cognitive process nor needs an existing 
knowledge-base to choose future courses of action 
and make decisions; rather, experiences in IBLT 
are generated overtime as a result of interaction 
of an IBL model with its decision environment 
(e.g., a cyber-attack scenario).

In the next section, we describe a popular 
cyber-attack scenario of an island-hopping attack 
in a corporate network. Then, we describe a model 
based upon IBLT that is used to make predictions 
about the cyber-SA of a security analyst in the 
scenario. Finally, we discuss the predictions from 
the IBL model and explain the implication of the 
model’s predictions when designing training and 
decision support tools for security analysts.

A SIMPLE SCENARIO OF 
A CYBER ATTACK

The cyber-infrastructure in a corporate network 
typically consists of a webserver and a fileserver 
(Ou et al., 2006; Xie et al., 2010) that are protected 
by two firewalls in the Demilitarized zone (or 
DMZ) (where the DMZ separates the external 
network (“Internet”) from the company’s internal 
LAN network). The webserver handles customer 
interactions on a company’s webpage. The fi-
leserver is a repository for many workstations 
that are internal to the company and that allow 
company employees to do their daily operations. 
These operations are made possible by enabling 
workstations to mount executable binaries from 
the fileserver. An external firewall (‘firewall 1’ in 
Figure 1) controls the traffic between the Internet 
and the DMZ. The firewall 1’s rules are configured 
to allow a bidirectional flow of the incoming “re-
quest” traffic and the outgoing “response” traffic 
between the Internet and company’s webserver. 
Generally, an attacker is identified as a computer 
on the Internet and thus firewall 1 protects the path 
between the attacker’s computer on the Internet 
and the company’s website hosted by the web-
server. Another firewall (‘firewall 2’ in Figure 1) 
controls the flow of traffic between the webserver 
and the fileserver (i.e., company’s internal LAN 
network). Firewall 2 allows a Network File System 
(NFS) protocol access between the fileserver and 
webserver. For this cyber-infrastructure, most at-
tackers follow a sequence of an “island-hopping” 
attack (Jajodia et al., 2010; pp. 30), where the 
webserver is compromised first, and then the 
webserver is used to originate attacks on the file-
server (through venerability in the NFS protocol) 
and other company workstations (by mounting 
executable binaries from the fileserver).

The security analyst is in charge of overseeing 
the cyber-infrastructure of the company (consist-
ing on the two firewalls, DMZ, webserver, file-
server, and workstations) from cyber-attacks 
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originating from computers on the Internet. Ou 
et al. (2006) and Xie et al. (2010) defined a 
simple scenario of an island-hopping cyber-attack 
within this cyber-infrastructure. In the simple 
scenario, a security analyst is exposed to a se-
quence of 25 network events (consisting of both 
threat and non-threat events), whose nature (threat 
or non-threat) is not precisely known to a secu-
rity analyst. Out of the total of 25 events, there 
are 8 predefined threat events in the sequence that 
are initiated by an attacker. The attacker, through 
some of these 8 events, first compromises the 
webserver by remotely exploiting vulnerability 
on the webserver and getting local access to the 
webserver. If the cyber-attack remains unde-
tected by the 8th event, then the attacker gains full 
access to the webserver. Since typically in a cor-
porate network and in the simple scenario, a 
webserver is allowed to access the fileserver 
through only a NFS event, the attacker then 
modifies data on the fileserver through the vulner-
ability in the NFS event. If the cyber-attack remains 
undetected by the security analyst by the 11th 
event, then the attacker gains full access of the 

fileserver. Once the attacker gets access to 
modify files on the fileserver, he then installs a 
Trojan-horse program (i.e., a malicious code) in 
the executable binaries on fileserver that is then 
downloaded and used by different workstations 
(event 19th out of 25). The attacker can now wait 
for an innocent user on workstation to execute 
the Trojan-horse program and obtain control on 
the machine (event 21st out of 25).

During the course of this simple scenario, a 
security analyst is able to observe all 25 events 
corresponding to file executions and the packets 
of information transmitted on and between the 
webserver, fileserver, and different workstations. 
He is also able to observe alerts that correspond 
to some network events using an intrusion-
detection system (IDS) (Jajodia et al., 2010). The 
IDS raises an alert for suspicious file executions 
or suspicious packet transmission events that is 
generated on the corporate network. Among the 
alerts generated by the IDS here, there is both a 
false-positive and a false-negative alert, and one 
alert that correspond to the 8th event but is received 
by the analyst after the 13th event in the sequence 
(i.e., a time-delayed alert). Most importantly, due 
to the absence of a precise alert corresponding to 
a potential threat event, the analyst does not have 
precise information on whether a network event 
and its corresponding alert (from the IDS) are 
initiated by an attacker or by an innocent company 
employee. Even through the analyst lacks this 
precise information, he needs to decide, as early 
as possible and most accurately, whether the se-
quence of events in the simple scenario constitutes 
a cyber-attack. The earliest possible or proportion 
of timeliness is determined by subtracting the 
percentage of events seen by the analyst before 
he makes a decision to the total number of events 
(25) in the scenario from 100%. The accuracy of 
the analyst is determined by whether the analyst’s 
decision was to ignore the sequence of events, or 
declare a cyber-attack based upon the sequence 
of observed network events.

Figure 1. A simple scenario of a cyber-attack. The 
attacker using a computer on the Internet tries to 
gain access of a company’s fileserver indirectly 
through the company’s webserver. Source: Xie et 
al. (2010).
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BACKGROUND

We believe that a security analyst’s accurate and 
timely classification of a sequence of network 
events as a cyber-attack or not (or analyst’s cyber-
SA) is based upon the following three factors:

1.  The knowledge level of the analyst in terms 
of the mix of threat and non-threat experi-
ences stored in analyst’s memory.

2.  The analyst’s risk-tolerance level, i.e., the 
willingness of an analyst to classify a se-
quence of events as a cyber-attack.

3.  The analyst’s similarity model, i.e., the 
process that the analyst uses to compare 
network events with prior experiences that 
are stored in his memory.

Prior literature has shown that the cyber-SA of 
a security analyst is a function of a priori experi-
ences in an analyst’s memory about a cyber-attack 
scenario (Jajodia et al., 2010) and the analyst’s 
risk-tolerance (McCumber, 2004; Salter, Sayd-
jari, Schneier, & Wallner, 1998). Similarly, Dutt, 
Ahn, & Gonzalez, (2011) and Dutt & Gonzalez, 
(2011) have provided a priori predictions about 
the cyber-SA of a simulated analyst in an IBL 
model and demonstrated that these predictions 
are influenced by the experiences in memory of 
a simulated analyst and the risk-tolerance of the 
simulated analyst.

Recent research in judgment and decision mak-
ing (JDM) has also discussed how our experiences 
of events in the environment shape our decision 
choices (Hertwig, Barron, Weber, & Erev, 2004; 
Lejarraga, Dutt, & Gonzalez, 2011). Typically, 
having a greater number of bad experiences in 
memory about an activity (e.g., a cyber-attack) 
makes a decision-maker (e.g., analyst) avoid the 
activity; whereas, good experiences with an ac-
tivity boost the likelihood a decision-maker will 

underestimate the same activity (Hertwig et al., 
2004; Lejarraga et al., in press).

Similarly, past research has found the role of 
similarity to be critical in problem solving, judg-
ment, decision making, categorization, and cog-
nition (Goldstone, Day, & Son, 2010; Vosniadou 
& Ortony, 1989). Essentially, two potential and 
competing models of human similarity judgments 
have been proposed. These models include the 
geometric model (Shepard, 1962a, 1962b) and 
the feature-based model (Tversky, 1977). In the 
geometric model, similarity between a pair of 
objects (e.g., a situation event in decision environ-
ment and an experience in memory) is taken to 
be inversely related to the distance between two 
objects’ points in the space. The distance could be 
either a linear difference (linear-geometric) or a 
squared difference (squared-geometric) between 
two objects’ points in the space (Shepard, 1962a, 
1962b). In contrast, the feature-based similar-
ity model characterizes similarity in terms of a 
feature-matching process based on weighting 
common and distinctive features between a pair 
of objects (Tversky, 1977).

Although there is literature that discusses the 
role of prior experiences of threats in general 
and the relevance of risk-tolerance in network 
security (Jajodia et al., 2010; McCumber, 2004; 
Salter, et al., 1998), it is difficult to find research 
that empirically investigates the role of both these 
factors together on a security analyst’s cyber-SA. 
Similarly, although there is research that applies 
both models of similarity to human judgments in 
general (Goldstone, Day, & Son, 2010), research 
is needed that evaluates the effects of similarity 
models on the cyber-SA of a security analyst in 
cyber-attack scenarios.

The above three factors, as well as many other 
cognitive factors that may limit on enhance the 
cyber-SA of an analyst, can be studied through 
computational cognitive modeling. In this chapter, 
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we use IBLT to develop a model of the security 
analyst, and we assess the effects of the three 
factors (analyst’s knowledge level, risk-tolerance, 
and similarity model) on the accuracy and timeli-
ness of the analyst to detect a cyber-attack in the 
simple scenario.

INSTANCE-BASED LEARNING 
THEORY AND IBL MODEL OF 
THE SECURITY ANALYST

IBLT is a theory of how people make decisions 
from experience in dynamic environments (Gon-
zalez et al., 2003). In the past, computational 
models based on IBLT have proven to be able to 
generate a priori predictions of human behavior 
in many dynamic decision making situations like 
and including those faced by the security analyst 
(Dutt, Ahn, & Gonzalez, 2011; Dutt, Cassenti, & 
Gonzalez, 2010; Dutt & Gonzalez, 2011; Gonzalez 
& Dutt, 2010).

IBLT proposes that people represent every deci-
sion making situation as instances that are stored 
in memory. For each decision-making situation, 
an instance is retrieved from memory and reused 
depending on the similarity of the current situa-
tion’s attributes to the attributes of instances stored 
in memory. An instance in IBLT is composed of 
three parts: situation (S) (the knowledge of situ-
ation attributes in a situation event), decision (D) 
(the course of action to take for a situation event), 
and utility (U) (i.e., a measure of the goodness of 
a decision made for a situation event).

In the case of the decision situations faced by 
the security analyst, these attributes are those that 
characterize potential threat events in a corporate 
network and that needs to be investigated con-
tinuously by the analyst. The situation attributes 
that characterize potential threat events in the 
simple scenario are the IP address of the location 
(webserver, fileserver, or workstation) where the 
event took place, the directory location in which 
the event took place, whether the IDS raised an 

alert corresponding to the event, and whether the 
operation carried out as part of the event (e.g., a 
file execution) by a user of the network succeeded 
or failed. However, as there are inherent uncertain-
ties present in any scenario, one could think of 
other attributes that might characterize the simple 
scenario. Thus, we admit that the list of these four 
attributes might not be exhaustive and open to 
inclusion of other attributes or a different set of 
attributes. However, for the purpose of analysis 
in this chapter, we assume the above described 
four attributes to characterize the simple scenario.

In the IBL model of the security analyst, an 
instance’s S slots refers to the situation attributes 
defined above; the D slot refers to the decision, i.e., 
whether to classify a sequence of events as consti-
tuting a cyber-attack or not; and, the U slot refers 
to the accuracy of the classification of an situation 
as a threat. IBLT proposes five mental phases in 
a closed-loop decision making process: recogni-
tion, judgment, choice, execution, and feedback 
(Figure 2). The five decision phases represent a 
complete learning cycle where the theory explains 
how knowledge is acquired, reused, and learnt 
by human decision-makers. Because the focus of 
this study is on the recognition and comprehen-
sion process in the SA of a security analyst, we 
will only focus on and discuss the recognition, 
judgment, choice, and execution phases in the 
IBLT (for details on the feedback phase refer to 
Gonzalez and Dutt (2010); and Gonzalez, Lerch, 
and Lebiere (2003)). In addition to the IBLT’s 
decision-making process, IBLT borrowed some 
of the proposed statistical-learning mechanisms 
from a popular cognitive architecture called ACT-
R (Anderson & Lebiere, 1998, 2003). Thus, most 
of the previous cognitive models that have used 
IBLT were developed for the ACT-R architecture.

The IBLT’s process starts in the recognition 
phase in search for alternatives and classifies the 
current situation as typical or atypical. The current 
situation is typical if there are memories of simi-
lar situations (i.e., instances of previous trials that 
are similar enough to the current situation). If the 
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situation is typical, then the most similar instance 
is retrieved from memory in the judgment phase 
and is used to determine the expected utility of 
the situation being evaluated. In the IBL model, 
the decision alternatives refer to whether a se-
quence of events constitutes a cyber-attack or not. 
The actual determination of the utility is based 
upon the value in the utility slot of an instance 
retrieved from memory. The decision to retrieve 
an instance from memory for a situation event is 
based upon a comparison of the instance’s mem-
ory strength, called activation. Thus, an instance 
is retrieved from memory if the instance has the 
highest activation among all instances in memo-
ry.

If the situation event in the network is atypical, 
then a judgment heuristic rule is applied to deter-
mine the utility of a new instance corresponding to 
a decision alternative. In the IBL model, we pre-
populate the memory of a simulated analyst with 
certain instances to start with. These are assumed 
to be pre-stored experiences of past situations in 
the analyst’s memory, and thus all situation events 
are treated by the model as typical.

Next, in the choice phase, a decision alternative 
is selected based upon the utility determined in the 
judgment phase (above). Thus, the choice phase 
in the IBL model consists of whether to classify 
a set of network events seen up to the scenario’s 
current event as constituting a cyber-attack, or 
whether to accumulate more evidence by further 
observing incoming situation events before such a 
classification could be made. According to IBLT, 
this decision is determined in the “necessity level,” 
which represents a satisficing mechanism to stop 
search of the environment and be “satisfied” with 
the current evidence (e.g., the satisficing strategy, 
Simon & March, 1958). We will call this parameter 
in the model, the “risk-tolerance level” (a free 
parameter) to represent the number of events the 
model has to classify as threats before the model 
classifies the scenario as a cyber-attack. For the 
risk-tolerance level, each time the model classifies 
a situation event in the network as a threat (based 
upon retrieval of an instance from memory), a 
counter increments and signifies an accumula-
tion of evidence in favor of a cyber-attack. If the 
value of the accumulated evidence (represented 
by the counter) becomes equal to the analyst’s 
risk-tolerance level, the analyst will classify the 
scenario as a cyber-attack based upon the sequence 
of already observed network events; otherwise, 
the model will decide to continue obtaining more 
information from the environment and observe the 
next situation event in the network. We manipulate 
the risk-tolerance parameter in this study at dif-
ferent number of events: 2, 4, or 6 (more details 
ahead). Regardless, the main outcome of the 
choice phase in the model is whether to classify 
a set of network events as a cyber-attack or not.

The model’s choice phase is also based upon 
a property of the analyst to exhibit “inertia,” i.e., 
simply not to decide to classify a sequence of 
observed network events as a cyber-attack due 
to lack of attention and continue to wait for the 
next situation event. The inertia in the model is 
governed by a free parameter called probability 
of inertia (Pinertia) (Gonzalez & Dutt, 2010; 

Figure 2. The five phases of IBL theory (right) 
and an environment, i.e., a decision task with 
which a model developed according to the IBLT 
interacts (left).
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Gonzalez, Dutt, & Lejarraja, 2011). If the value 
of a random number derived from a uniform dis-
tribution between [0, 1] is less than Pinertia, the 
model will choose to observe another network 
event in the scenario and will not classify the 
sequence of already observed events as a cyber-
attack; otherwise, the model will make a decision 
to classify the observed events based upon the set 
risk-tolerance level. We assumed a default value 
of Pinertia at 0.3 (or 30%).

The choice phase is followed by the execution 
of the best decision alternative. The execution 
phase for the IBL model means either to classify 
a sequence of observed events as a cyber-attack 
and stop online operations in the company, or not 
to classify the sequence of events as a cyber-attack 
and to let the online operations of the company 
continue undisrupted.

In IBLT, the activation of an instance i in 
memory is defined using the ACT-R architecture’s 
activation equation:

A B P M
i i
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l li i
= + × +
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where, i refers to the ith instance that is pre-popu-
lated in memory where i = 1,2, …, Total number of 
pre-populated instances; and, Bi is the base-level 
learning parameter and reflects the recency and 
frequency of the use of the ith instance since the 
time it was created, which is given by:
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The frequency effect is provided by t−1, 
the number of retrievals of the ith instance from 
memory in the past. The recency effect is provided 
by t−ti, the event since the tth past retrieval of the 
ith instance (in Equation 2, t denotes the current 
event number in the scenario). The d is the decay 

parameter and has a default value of 0.5 in the 
ACT-R architecture, and it is the value we assume 
for the IBL model of the security analyst.

The 
l

k

l li
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=
∑ ×
1

 term is the similarity compo-

nent and represents the mismatch between a situ-
ation event’s attributes and the situation (S) slots 
of an instance i in memory. And k is the total 
number of a situation’s attributes that are used to 
retrieve the instance i from memory. In the IBL 
model, the value of k = 4, as in the simple sce-
nario, there are 4 attributes that characterize a 
situation event in the network and that are also 
used to retrieve instances from memory. As men-
tioned above, these attributes are IP, directory, 
alert, and operation in an event. The match scale 
(Pl) reflects the amount of weighting given to the 
similarity between an instance i’s situation slot l 
and the corresponding situation event’s attribute. 
Pl is generally a negative integer with a common 
value of -1.0 for all situation slots k of an instance 
i. The Mli or match similarities represents the 
similarity between the value l of a situation event’s 
attribute that is used to retrieve instances from 
memory and the value in the corresponding situ-
ation slots of an instance i in memory. In this 

chapter, the 
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1

term has been defined by 

using both a squared-geometric similarity model 
and a feature-based similarity model (Shepard, 
1962a, 1962b; Tversky, 1977). In the squared-

geometric model the 
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The similarity of instance i to situation event is 
expressed as a linear combination of the measure 
of the common and distinctive features. The term 
f(i ∩ event) represents the number of features that 
the four slots of instance i and the four attributes 
in a situation event have in common. The term 
f(i−event) represents the features in the instance 
i’s four slots that are missing from the four attri-
butes in the situation event. The term f(event−i) 
represents the features of the four attributes in the 
situation event that are missing from the instance 
i’s four slots. Furthermore, θ, α, and β are weights 
for the common and distinctive components. We 
assumed default values of the weights and thus, 
θ=2, α =1, and β =1. The default value assump-
tion is because it balances out the effects of the 
common features (1st term in Equation 4) and the 
uncommon features (2nd and 3rd terms in Equation 
4). Thus, the default assumption is a safe assump-
tion to make both from literature (Tversky, 1977) 
and because we make predictions about the work-
ing of an analyst where we don’t know about the 
real behavior of an analyst.

In order to find the value of the 
l

k

l li
P M

=
∑ ×
1

term, the situation events’ attributes and the val-
ues in the corresponding slots of instances in 
memory were coded using numeric codes. Table 
1 shows the codes assigned to the SDU slots of 
instances in memory and the situation events’ 
attributes in the simple scenario. The assumption 
of on these codes is made to yield a nontrivial 
contribution of the similarity term in the activation 
equation (Equation 1).

Due to the 
l

k

l li
P M

=
∑ ×
1

 specification, instanc-

es that encode a similar situation to the current 
situation event’s attributes, receive a less negative 

activation (in Equation 1). In contrast, instances 
that encode a dissimilar situation to the current 
situation event’s attributes receive a more negative 
activation.

Furthermore i, is the noise value that is com-
puted and added to an instance i’s activation at 
the time of its retrieval attempt from memory. 
The noise value is characterized by a parameter 
s. The noise is defined as,

i
i

i

s ln= ×
−









1 h
h
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where, ηi is a random draw from a uniform distribu-
tion bounded in [0, 1] for an instance i in memory. 
We set the parameter s in an IBL model to make 
it a part of the activation equation (Equation 1). 
The s parameter has a default value of 0.25 in the 
ACT-R architecture and we assume the default 
value of s in the IBL model of the security analyst.

IMPLEMENTATION AND 
EXECUTION OF THE IBL MODEL

The IBL model of the security analyst was cre-
ated using Matlab software. The IBL model 
goes over a sequence of 25 network events in 
the simple scenario (Figure 1). The memory of a 
simulated analyst in the model was pre-populated 
with instances encoding all possible sequences 
of network events based upon values of events’ 
attributes. Some of these instances contained a 
threat value as the utility and some did not (more 
information below). Unbeknownst to the model 
(but known to the modeler), out of the 25 events 
in the scenario (mentioned above), there are 8 
pre-defined threat events that are executed by an 
attacker outside the company (Ou et al., 2006; 
Xie et al. 2010). For each event in the scenario, 
the IBL model uses Equations 1, 2, {3 or 4}, and 
5 to retrieve an instance that is most similar to 
the encountered event. Based upon the value of 
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the utility slot of a retrieved instance, the situa-
tion event is classified as a threat or not a threat. 
Depending upon the inertia mechanism and the 
risk-tolerance level of a simulated analyst in the 
model, a decision is made to classify a sequence 
of observed events as a cyber-attack and stop 
company’s online operations, or to let the company 
continue its online operations (no cyber-attack).

The IBL model was executed for a set of 500 
simulated analysts on the same simple scenario 
where each simulated analyst encountered 25 or 
less situation events in the network. For each of 
the 500 simulated analysts, we manipulated the 
mix of threat and non-threat instances in memory, 
i.e., experience of the analyst, the risk-tolerance 
level of the analyst, and the similarity model used 
by the analyst.

The mix of threat and non-threat instances in 
the model’s memory could be one of the follow-
ing three kinds: ambivalent analyst (Ambi): 50% 
of threat instances and 50% non-threat instances 
for each situation event in the scenario; an extra-
careful analyst (Extra): 75% of threat instances 
and 25% of non-threat instances for each situation 
event in the scenario; and a less-careful analyst 

(Less): 25% of threat instances and 75% of non-
threat instances for each situation event in the 
scenario. The risk-tolerance level of analyst was 
manipulated on the following three levels: low 
(2 events out of a possible 25 event need to be 
classified as threats before the analyst classifies 
a sequence of observed events as cyber-attack); 
medium (4 events out of a possible 25 event to be 
classified as threats before the analyst classifies 
a sequence of observed events as cyber-attack); 
and high (6 events out of a possible 25 event to be 
classified as threats before the analyst classifies 
a sequence of observed events as cyber-attack). 
Please note that the values of 2, 4, and 6 events 
for the risk-tolerance is a reasonable and balanced 
manipulation given that there are only 8 total 
threat events (whose threat identity is unknown 
to the model) in the scenario. Finally, the simi-
larity model was manipulated at two levels and 
could be either squared-geometric (Equation 3) 
or feature-based (Equation 4).

We wanted to derive predictions of the effect 
of the above manipulations in the model upon the 
cyber-SA of the analyst. The cyber-SA of a simu-
lated analyst was measured using the accuracy and 
timeliness of the analyst. The accuracy was evalu-
ated using two different cyber-SA metrics, recall 
and precision, and the timeliness was evaluated 
in the model using a single timeliness cyber-SA 
metric (Jajodia et al., 2010). Recall is the percent 
of events correctly detected as threats out of the 
total number of known threat events observed 
by the model before the model stopped in the 
scenario (Recall is the same as hit rate in Signal 
Detection Theory; Jajodia et al., 2010). Precision 
is the percentage of events correctly detected as 
threats out of the total number of threat events 
detected by the model before it stopped in the 
scenario. Timeliness is 100% minus percentage 
of events, out of a total 25, after which the model 
stops in the scenario and classifies the scenario to 
be a cyber-attack (the timeliness could be defined 
as the number of events out of 25, but defining it 
as a percentage allows us to compare it to other 

Table 1. The coded values in the slots of an instance 
in memory and attributes of a situation event 

Attributes Values Codes

IP (S) Webserver 1

Fileserver 2

Workstation 3

Directory (S) Missing value -100

File X 1

Alert (S) Present 1

Absent 0

Operation (S) Successful 1

Unsuccessful 0

Decision (D) Cyber-attack 1

No Cyber-attack 0

Threat (U) Yes 1

No 0
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two cyber-SA measures). A point to note is that if 
the model is unable to stop before the 25 events 
elapse in the scenario, then the denominators of 
the above cyber-SA metrics equal 25.

For both similarity models, we expected best 
performance for the IBL model representing an 
extra-careful analyst with a low risk-tolerance, 
and the worst performance for the IBL model 
representing a less-careful analyst with a high 
risk-tolerance. This fact is because an extra-careful 
analyst with a low risk-tolerance will be classify-
ing network events more cautiously compared to 
a less-careful analyst with a high risk-tolerance. 
Also, as both similarity models, squared-geometric 
and feature-based, aim to search for the most simi-
lar instance in memory to a situation event in the 
simple scenario, we expect a similar performance 
in the IBL model for both similarity models.

RESULTS

Figure 3 shows the predictions of the cyber-SA 
measures (recall, precision, and timeliness) of an 
average security analyst from the IBL model due 
to the effects of manipulating the memory, risk-
tolerance, and the similarity model used. First, 
for both similarity models, the effect of memory 
manipulation on cyber-SA measures (panel A and 
D) was stronger compared to the risk-tolerance 
measure (panel B and E). Thus, although there 
was a pronounced change in the three measures, 
recall, precision, and timeliness, as a result of the 
memory manipulation (Less, Ambi, and Extra), 
the change in the three measures was little due to 
the risk-tolerance manipulation (High, Medium, 
and Low). Furthermore, as per our expectation for 
both similarity models, an extra-careful analyst 
with a low risk-tolerance did better on all three 
performance measures compared to a less-careful 
analyst with a high risk-tolerance (panel C and F). 
Also, the precision was higher in the feature-based 
model compared to that in the squared-geometric 
model, but in general, the precision was less than 

the recall and timeliness in different manipula-
tions. This latter observation is due to the fact that 
a model that has a greater recall and timeliness 
need not have a greater precision simultaneously. 
That is because it is not necessary that a model 
that is able to retrieve more threat instances from 
memory and rapidly, is able to retrieve them ac-
curately for each situation event in the scenario 
(thus, there are chances of false-alarms).

Figure 3. The effect of experience (memory) on 
cyber-SA of an analyst in the squared-geometric 
similarity model (A) and in the feature-based 
similarity model (D). The effect of risk-tolerance 
on cyber-SA of an analyst in the squared-geometric 
similarity model (B) and in the feature-based simi-
larity model (E). The interaction effect of memory 
and risk-tolerance on cyber-SA of an analyst in 
the squared-geometric similarity model (C) and in 
the feature-based similarity model (F). A greater 
percentage on all three cyber-SA measures, recall, 
precision, and timeliness is more desirable as it 
makes the simulated analyst more efficient.

DISCUSSION

In this chapter, we have shown that computational 
models based on the IBLT can be used to make 
predictions of a security analyst’s cyber-SA in a 
cyber-attack scenario. Particularly, the model can 
make concrete predictions of the level of recall, 
precision, and timeliness of a security analyst given 
some level of analyst’s experiences about network 
events (in memory), analyst’s risk-tolerance, and 
the model that an analyst uses to compute similarity 
of network events with experiences in his memory.

We created an IBL model of the security analyst 
for a simple scenario of a typical island-hopping 
cyber-attack. The island-hopping attack portrayed 
in the simple scenario is one of the most common 
methods of cyber-attack in the real world (Ou 
et al., 2006; Xie et al., 2010). Then, using the 
simple scenario, we evaluated the performance 
of a simulated analyst on three commonly used 
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measures of cyber-SA. These measures are based 
upon accuracy of analyst (precision and recall) 
and the timeliness of the analyst to react to cyber-
attacks (timeliness). Our results revealed that 
both the risk-tolerance level of an analyst and 
the mix of experiences of threat and non-threat 
instances in analyst’s memory affect the analyst’s 
cyber-SA; with the effect of the analyst’s experi-
ences (in memory) more impacting compared to 
risk-tolerance. One reason for the lesser impact 
of the risk-tolerance manipulation could be due 
to the nature and working of IBL models that are 
strongly dependent upon retrieval of instances 
from memory to make choice decisions. Another 
reason could be the presence of inertia in the model, 
which drives the model to observe more network 
events before the model could make a stop deci-
sion and where the risk-tolerance will only come 
to play a role in the model if the probability of 
inertia (set at 30%) is exceeded.

Also, when the simulated analyst is less careful, 
then for any situation event the model has only 
a 25% chance of retrieving threat instances from 
memory and a 75% chance of it retrieving non-
threat instances from memory. As a consequence, 
the model has a lesser chance to classify actual 
threat events in the simple scenario as threats. 
Furthermore, it takes more time for the model to 
accumulate evidence that equals the risk-tolerance 
level that causes the model to make a decision in 
favor of a cyber-attack and stop work (decreas-
ing the timeliness). However, when the simulated 
analyst is more careful, then for any situation event 
there is a 75% chance of the model retrieving 
threat instances and 25% chance of it retrieving 
non-threat instances. As a consequence, the model 
has a greater chance to classify actual threats in 
the simple scenario as threats and also takes less 
time to accumulate evidence that is equal to the 
risk-tolerance level (increasing the Timeliness).

The most important aspect of the model is 
the fact that although the recall and timeliness 

increase as a direct function of the model’s abil-
ity to retrieve threat instances from the memory 
and its risk-tolerance, there is not a substantial 
increase in its precision when either of the two 
manipulations (memory and risk-tolerance) is 
favorable (Figure 3). The slow increase in preci-
sion is expected because a model that is able to 
retrieve more threat instances from memory and 
is less risk-tolerant might not necessarily be more 
precise in its actions. However, there is still an 
increase in precision with a manipulation of both 
memory and risk-tolerance and this suggests that 
making a security analyst less risk-tolerant as 
well as extra-careful might help increase his job 
efficiency. Because the IBL model is a process 
model that observes events, and makes decisions 
by retrieving experiences from memory, these 
are only some of the many predictions that the 
IBL model can make regarding the cyber-SA of 
human analysts.

Furthermore, although the current model is 
able to make a priori predictions, these need to 
be actually validated with human data. We plan 
to run laboratory studies in the near future to as-
sess human behavior in this simple scenario. An 
experimental approach will allow us to validate 
our model’s predictions and improve the relevance 
of the model and the assumptions made in it on 
its free parameters. In these experimental studies, 
we believe that some of the interesting factors to 
manipulate would include the experiences of the 
human analyst (stored in memory). One method 
we are currently considering is to make partici-
pants read or watch examples of more and less 
threatening scenarios before they participate in 
the act of detecting cyber-attacks in the simple 
scenario (i.e., priming the memory of the model 
with more or less threat instances as we did in 
the IBL model). Also, we plan to record the risk-
seeking and risk-averse behavior of participants 
using popular measures involving gambles to 
control for the risk-tolerance factor (typically a 
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risk-seeking person is more risk-tolerant compared 
to a risk-averse person). Also, once we calibrate 
the current predictions of the model with an em-
pirical study data (that we plan to collect in the 
future), we can evaluate the efficacy of different 
similarity models. Thus, our next goal will be 
to validate the predictions from the IBL model.

IMPLICATIONS FOR TRAINING 
AND DECISION SUPPORT 
OF SECURITY ANALYSTS

If our model is able to represent the cyber-SA of 
human analysts accurately, this model would have 
significant potential to contribute towards the 
design of training and decision support tools for 
security analysts. Based upon our current predic-
tions, it might be better to devise analyst training 
and decision support that primes them to have 
experienced more threat rather than non-threat 
network events. The analyst’s cyber-SA is also im-
pacted by how tolerant he/she is to cyber-attacks. 
Thus, companies recruiting security analysts for 
network monitoring operations could measure 
the risk-seeking/risk-aversion character of a po-
tential analyst (by using different risk-orientation 
measures that use gambles). Doing so would help 
evaluate a humans fit for the security analyst’s 
position. Furthermore, although risk-orientation 
is a characteristic of a person (like his personal-
ity) that comes about as a result of his day-to-day 
experience and education, but there might be 
training interventions that could make analysts 
conscious of their risk-orientation or alter their 
risk-orientation. Based upon our results, making 
analysts less risk-tolerant (or more risk-averse) 
would help in increasing their efficiency in their 
job. Finally, based upon our results, training se-
curity analysts about the similar and dissimilar 
features between threats and non-threats in dif-
ferent cyber-attacks will benefit making analyst 
more precise on their job.

CONCLUSION

Due to the growing threat to our cyber infra-
structure and the heightened need to implement 
cybersecurity, it becomes important to evaluate the 
cyber situation awareness (cyber-SA) of security 
analysts in different cyber-attack scenarios. In this 
chapter, we suggest a memory-based account, 
based upon instance-based learning theory, of 
the decisions of a security analyst who is put in a 
popular cyber-attack scenario of an island-hopping 
attack. Our results indicate that the cyber-SA of 
an analyst is a function of his memory of threat 
and non-threat events, his risk-tolerance, and 
the similarity methods he uses to compare net-
work events to prior experiences of events in his 
memory. Based upon our predictions, it might be 
helpful to devise analyst job training that makes 
analysts cautious about the possibility of cyber 
threats, less risk-tolerant, and that enable them to 
look for features in attributes of network events that 
communicate the indication of potential threats.
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KEY TERMS AND DEFINITIONS

Cyber-Attack: Also known as cyber-warfare 
and is the use of computers and the Internet in 
conducting warfare in cyberspace.

Cyber-Situation Awareness: When a security 
accident occurs, the top three questions security 
administrators would ask are in essence: What 
has happened? Why did it happen? What should 
I do? Answers to these questions form the “core” 
of Cyber Situational Awareness.

Dynamic Decision-Making: The interde-
pendent decision making that takes place in an 
environment that changes over time either due 
to the previous actions of the decision maker, or 
due to events that are outside of the control of the 
decision maker.

Instance-Based Learning Theory: A theory 
of how humans make decisions in dynamic tasks. 
According to the theory, individuals rely on their 
accumulated experience to make decisions by 
retrieving past solutions to similar situations 

stored in memory. Thus, decision accuracy can 
only improve gradually and through interaction 
with similar situations.

Intrusion-Detection System: A device or 
software application that monitors network and/
or system activities for malicious activities or 
policy violations and produces reports to a se-
curity analyst.

Network Events: Events that take place 
over a network like opening of a file by a user 
on a workstation that resides on a remote server. 
These events could be further classified as threats 
(executed by a cyber-attacker) or non-threats (ex-
ecuted by a normal user of the network without 
any malicious intensions).

Security Analyst: A decision-maker who is 
in charge of observing the online operations of 
a corporate network (e.g., an online retail com-
pany with an external webserver and an internal 
fileserver) from threats of random or organized 
cyber-attacks.


