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Abstract

Recent research in cybersecurity has begun to develop active defense strategies using game-the-

oretic optimization of the allocation of limited defenses combined with deceptive signaling. These

algorithms assume rational human behavior. However, human behavior in an online game

designed to simulate an insider attack scenario shows that humans, playing the role of attackers,

attack far more often than predicted under perfect rationality. We describe an instance-based

learning cognitive model, built in ACT-R, that accurately predicts human performance and biases

in the game. To improve defenses, we propose an adaptive method of signaling that uses the cog-

nitive model to trace an individual’s experience in real time. We discuss the results and implica-

tions of this adaptive signaling method for personalized defense.
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1. Introduction

Cybersecurity often involves passive defense strategies which fail to discover a threat

before major damage is done to a network. However, recent work within the domain of

cybersecurity has focused on developing active defense strategies based on cognitive prin-

ciples of deception (Cooney et al., 2019; Cranford et al., 2018; Huang & Zhu, 2019).

Deception is a form of persuasion where one intentionally misleads an agent into a false

belief, to gain an advantage over the agent and achieve one’s goals (Rowe & Rushi,

2016). In this line of research, the goal for security is to assist human administrators to

defend networks from cyber-attacks (Gonzalez, Ben-Asher, Oltramari, & Lebiere, 2014).

Limited defense resources cannot simultaneously protect all targets. Therefore, in the

event of an attack, truthful signals that divulge the protection status of a target can deter

some attacks on protected targets. However, defenders can use a combination of truthful

and deceptive signals to improve protection of the unprotected resources.

Game-theoretic principles have been employed to optimize the allocation of limited

defense resources and determine how often to send a deceptive signal before it loses its

effectiveness (Xu, Rabinovich, Dughmi, & Tambe, 2015). While deception may reduce

attacks on uncovered targets compared to no deception, the algorithms are static and tai-

lored to an entire population. They fail to take into account the individual and their par-

ticular set of knowledge, experiences, and biases. Such algorithms are easily learned and

exploited by attackers. The goal of this paper is to develop a personalized signaling strat-

egy that can outperform traditional static methods.

Cranford et al. (2018) developed an instance-based learning (IBL) cognitive model

(Gonzalez, Lerch, & Lebiere, 2003) of attackers in a cybersecurity signaling game. This

model accurately predicts human decision-making from experience. We propose that such

a model can be used to trace an individual’s knowledge and experiences, and exploit their

biases, to determine on-the-fly the best signal given the situation, to further reduce attacks.

The following section presents a line of research on game-theoretic models that prove

to optimize deceptive signaling for perfectly rational adversaries, and more recent efforts

toward optimizing for boundedly rational adversaries. We then describe an online game

developed to investigate attacker behavior against deceptive signaling algorithms and a

cognitive model that accurately predicts attacker’s behavior. Next, we describe a method

for deceptive signaling that uses the cognitive model to drive adaptive signaling, person-

alized to the individual attacker. We highlight its applicability for optimizing defense by

tracking human knowledge, experience, and biases. Finally, we discuss the implications

of this line of research and avenues for future research.

2. Deceptive signaling for cybersecurity

Research on Stackelberg Security Games (SSGs) led to the development of algorithms

that have greatly improved physical security systems (e.g., protecting ports, scheduling
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air marshals, and mitigating poachers) through the optimal allocation of limited defense

resources (Pita et al., 2008; Shieh et al., 2012; Sinha, Fang, An, Kiekintveld, & Tambe,

2018; Tambe, 2011). Xu et al. (2015) extended these models by incorporating elements

of signaling, in which a defender (sender) strategically reveals information about their

strategy to the attacker (receiver) to influence the attacker’s decision-making (Battigalli,

2006; Cho & Kreps, 1987). Their solution, the Strong Stackelberg Equilibrium with Per-

suasion (peSSE), improves defender utility against a perfectly rational attacker compared

to strategies that do not use signaling. For a given target, the peSSE finds the optimal

combination of bluffing (sending a deceptive message that the target is covered when it is

not) and truth-telling (sending a truthful message that the target is covered) so the

attacker continues to believe the bluff.

The goal of the peSSE is to reduce attacks on uncovered targets. Attackers earn a

reward for successful attacks, suffer a loss for failed attacks, and earn zero for withdraw-

ing. When a target is covered, the peSSE will always send a truthful signal. When uncov-

ered, the peSSE will send a deceptive signal with a probability that brings the attacker’s

expected value of attacking, given a signal, to zero. This makes it equal to the utility of

withdrawing the attack and, based on standard game-theoretic assumptions of perfect

rationality, the attacker will break ties in favor of the defender and withdraw.

The peSSE is suitable for cyber defense where optimizing the probability of sending a

deceptive signal can mitigate attacks on uncovered targets with little overhead. However,

it is based on the assumption of perfect rationality while humans exhibit, at best, bounded

rationality (Simon, 1956). To address this weakness of the peSSE, researchers have begun

to develop signaling algorithms for security against boundedly rational attackers (Cooney

et al., 2019). However, these algorithms do not offer substantial improvement over the

peSSE in terms of reducing attacks and minimizing defender loss. The main reason is that

those algorithms assume rational behavior as specified by game theory optima such as

Nash equilibria. However, human behavior systematically deviates from those theoretical

descriptions. Human subjects exhibit learning curves—they do not generally compute the

equilibria based on perfect knowledge of the interaction but rather they have to painstak-

ingly accumulate the information through experience, then make satisficing decisions by

limited cognitive means (e.g., Juvina, Saleem, Martin, Gonzalez, & Lebiere, 2013). Those

deviations typically manifest themselves through systematic cognitive biases reflecting

the interaction between limited cognitive mechanisms and the statistics of the task (e.g.,

Lebiere et al., 2013). Additionally, human behavior is dominated by individual differ-

ences in knowledge and capacity that manifest themselves into substantial variations in

behavior (Lovett, Reder, & Lebiere, 1999).

To further address the weakness of peSSE, Gonzalez, Aggarwal, Cranford, and Lebiere

(2020) proposed a research framework for dynamic, adaptive, and personalized deception

for cyber defense. This framework implements SSG algorithms for distribution of limited

defense resources with signaling theory (e.g., peSSE) to gain insights about human behav-

ior from human-in-the-loop experiments, and cognitive modeling using instance-based

learning theory (IBLT) to create personalized defense algorithms.
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In what follows, we describe an IBL cognitive model that accurately predicts human

attacker behavior playing against the peSSE in a laboratory experiment. We propose that

a personalized deceptive signaling scheme based on insights from the IBL model, in com-

bination with model-tracing mechanisms that record human actions and infer their knowl-

edge (e.g., as used in cognitive tutors; Anderson, Corbett, Koedinger, & Pelletier, 1995),

can be used to adapt defense signaling to the individual experiences of attackers at each

point in time.

3. Cognitive models of human attackers playing against deceptive signaling
algorithms

The insider attack game (IAG) was designed to investigate the interaction between a

human attacker and defense algorithm in a cybersecurity scenario (Cranford et al., 2018).

As shown in Fig. 1, players take the role of the attacker (a company employee) and their

goal is to score points by “hacking” computers to steal proprietary data. There are six

potential computers to attack, but only two security analysts (defenders controlled by a

computer algorithm) that can monitor one computer each. If the player attacks a computer

that is monitored, they lose points, but if the computer is not monitored, then they win

points. Each computer shows its reward for winning, penalty for losing, and the probabil-

ity that the computer is being monitored (reflecting the SSE for the game). On each turn,

the player must select a computer to attack; after which, the signaling algorithm determi-

nes whether to send a truthful signal or a deceptive signal (with the signal, the player is

presented the probability that the given signal is deceptive). The player must decide

whether to continue their attack or withdraw and earn zero points. Players play four

rounds of 25 trials each (after an initial five trials of practice). The payoff structures and

monitoring probabilities of the targets are different in each round. Coverage and signaling

of targets were precomputed for each trial. Therefore, each individual player experiences

the same coverage and signaling schedule.

3.1. Attacker cognitive model

Cranford et al. (2018) developed an IBL cognitive model of the attacker using the

ACT-R cognitive architecture (Anderson et al., 2004; Anderson & Lebiere, 1998). Fol-

lowing collection of human attack behavior against the peSSE defense algorithm, we

modified the IBL model to more accurately represent human behavior playing the IAG.

In accordance with IBLT, the model makes decisions by generalizing across past experi-

ences, or instances, that are similar to the present situation. For the IAG, instances are

represented by the contextual features of the selected target, the decision, and the out-

come. The context includes the monitoring probability [0.0, 1.0], reward [1, 10], penalty

values [−1, −10], and warning signal [present, absent]. The possible decisions are attack

or withdraw, and the outcome is the reward or penalty based on the decision. In a given

situation, for each possible decision, an associated utility (i.e., expected outcome) is
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computed through blending: an average across past outcomes weighted the probability of

memory retrieval, which depends on contextual similarity to past instances. The decision

with the highest expected outcome is executed. In the present game, there are two deci-

sions: attack or withdraw. However, withdrawing always results in zero points. Therefore,

the model only needs to determine the expected outcome of attacking to make a choice.

According to ACT-R’s blending mechanism, the retrieval of past instances is based on

the activation strength of the relevant instance in memory and its similarity to the current

context. The activation Ai of an instance i is determined by the following equation:

Ai ¼ ln ∑
n

j¼1

t�d
j þMP �∑

k

Sim vk, ckð Þ þ ɛi : (1)

The first term reflects the power law of practice and forgetting, where tj is the time

since the jth occurrence of instance i and d is the decay rate of each occurrence which is

set to the default ACT-R value of 0.5. The second term is a partial matching process

reflecting the similarity between the current context elements (Ck) and the corresponding

context elements for the instance in memory (Vk), scaled by a mismatch penalty (MP; but
which was set to the ACT-R default of 1.0). A variance parameter ϵi introduces stochas-

ticity in retrieval and is a random value from a logistic distribution with a mean of zero

Fig. 1. (A) Screenshot of the insider attack game (IAG). The attacker is in the center surrounded by six tar-

gets. The zoomed inset shows that each target displays the monitoring probability (as a percentage in text

and represented visually by red bars), the potential reward (represented by the yellow stars), and the potential

penalty (represented by the red stars). (B) An example signal message that claims the computer is being mon-

itored (if no signal is presented, the first line of the message is omitted).
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and variance parameter s of 0.25 (ACT-R default). Similarities between numeric slot val-

ues are computed on a linear scale from 0.0, an exact match, to −1.0. Symbolic values

are either an exact match or maximally different, −2.5, a relatively large value which

minimizes similarities between different actions and signal types.

A Boltzmann softmax equation determines the probability of retrieving an instance Pi

based on its activation strength:

Pi ¼ eAi=t

∑ je
Aj=t

: (2)

A temperature parameter t can be used to scale probabilities according to the activation

such that low temperatures result in greater proportion assigned to the highest activated

instances and high temperatures result in proportions being more randomly distributed

regardless of activation strength. The current model set temperature to 1.0, which results

in retrieval probabilities reflecting the original probability distribution, unbiased toward or

against the most active instances.

The IBL model uses ACT-R’s blending mechanism (Gonzalez et al., 2003; Lebiere,

1999) to generate an expected outcome of attacking a target based on similarity to past

instances. The expected outcome is the value V that best satisfies the constraints of all

matching instances i weighted by their probability of retrieval, where satisficing is defined

as minimizing the dissimilarity between the consensus value V and the actual answer Vi

contained in instance i:

argmin
V

∑
i

Pi � 1 � Sim V , Við Þð Þ2: (3)

When the values are numerical and the similarity function is linear, the process simpli-

fies to a weighted average by the probability of retrieval Vt ¼ ∑n
i¼1Pi � Vit. Therefore, in

summary, the outcomes of past instances are weighted by their recency, frequency, and

similarity to the current instance (i.e., probability of memory retrieval) to produce an

expected outcome via blending. After that expected outcome is generated, a straightfor-

ward decision rule is applied: If the value is greater than zero, then the model attacks;

otherwise it withdraws.

3.2. IBL model procedure

To begin the IAG, the model is initialized with seven instances: Five represent a simu-

lated practice round, and two represent knowledge gained from instructions (one instance

had a signal value of absent and an outcome of 10, representing that attacking when a

signal is absent will result in a reward; another instance had signal value of present and
an outcome of 5, representing that attacking when a signal is present could result in either

a penalty or a reward). To make a decision through blending on the first trial, rather than
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making a random decision, the model requires an initial set of instances that bound the

decision space and/or reflect the payoff expectations that human participants likely have

knowledge of following practice (Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez,

2012); otherwise it would fail to retrieve anything. The current method provides the

advantage of allowing each model run to begin with a unique set of experiences, much

like the human participants, because the initial instances were randomly sampled from a

uniform distribution of possible experiences during the practice round.

On each trial, the model first selects a target to attack as depicted in the left side of

Fig. 2. The model cycles through each target and, for each, generates an expected out-

come of attacking via blending. The model then selects the target with the highest

expected outcome. Although humans tend to remember not only the actual experience but

also their expectations prior to the experience (Gonzalez et al., 2003), we did not save

the six instances generated during the target selection process. First, it is doubtful that

players devote that much attention to the selection phase, and second we did not expect

these instances to greatly affect future target selection decisions and the focus of the

model is on the attack decision (i.e., understanding the effects of the signal on attack

behavior).

As depicted in the right side of Fig. 2, after selecting a target, the context is aug-

mented with the value of the signal (i.e., present or absent) and the model decides

whether to attack or withdraw by generating a new expected outcome via blended retrie-

val. An early version of the model included both the signal and the target features in this

decision, but it produced lower probabilities of attack on high monitored targets and high

probabilities of attack on low monitored targets, whereas humans produced a more evenly

Fig. 2. Instance-based learning cognitive model procedure.
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distributed probability of attack across targets. Additionally, because the signal message

in the experimental interface occludes the targets on the screen, we inferred that humans

base their decisions only on the value of the signal and ignore, forget, or otherwise do

not use the occluded target information. Therefore, the similarities to past instances are

based solely on the value of the signal (i.e., monitoring probability, reward, and penalty

values are ignored) which produces a more evenly distributed probability of attack across

targets.

After generating an expected outcome, a decision is made to either continue the attack

or withdraw. According to IBLT’s feedback process, the action and outcome slots of the

current instance are updated to reflect the action taken by the model and the observed

outcome (i.e., feedback is immediate). Although we did not save the instances of the tar-

get selection evaluations, during the attack decision we saved one instance that represents

the model’s expectation given the signal and another instance that represents the ground

truth outcome. These two instances independently influence future decisions. The model

continues for four rounds of 25 trials each and its behavior reflects its experiences. If an

action results in a positive/negative outcome, then its future expectations will be

increased/decreased, and the model will be more/less likely to select and attack that target

in the future. Also, the impact of a particular past experience on future decisions strength-

ens with frequency and weakens with time. The stored expectations serve as a source of

confirmation bias, in which one’s preconception of winning/losing can increase the likeli-

hood of attacking/withdrawing on future trials (i.e., generating positive/negative expected

outcomes). In fact, a version of the model that did not store the expectations resulted in a

mean attack rate of about 49%, which is far less than humans and the current model

(~79% as shown below). For example, as depicted in left side of Fig. 3, when the expec-

tations are not stored, a negative experience following a positive experience would likely

lead to a subsequent withdraw action (the example just shows the raw average, but the

point remains). However, when the expectations are stored, as depicted in the right side

of Fig. 3, the model is more likely to persist in attacking, a pattern of behavior observed

in this task as well as in previous paradigms of decision-making under risk and uncer-

tainty (Erev et al., 2010).

3.3. IBL model evaluation against human players

The attacker IBL model was compared to human behavior in the IAG. In a laboratory

experiment, human participants (i.e., “attackers”) played against the peSSE signaling

scheme. Participants were recruited via Amazon Mechanical Turk. All participants

resided in the United States. For completing the experiment and submitting a completion

code, participants were paid $1 plus $0.02 per point earned in the game, up to a maxi-

mum of $5.50. Four participants were removed from analysis because they had incom-

plete data (e.g., data recording errors) or restarted the experiment after gaining

experience, resulting in a final sample size of 100.

The data were analyzed for the probability of attack and the number of points earned

by attackers across rounds. The probability of attack was calculated as the mean
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proportion of attacks that were continued (as opposed to withdrawn) and was examined

within players and across trials between players. Points were also separated into mean

losses and gains per round. Losses/gains were calculated as the total number of points

lost/gained per round by attacking targets that were/were not monitored.

The stochasticity of retrieval mechanisms in ACT-R led to differences in the expected

outcomes generated for each run. After any given number of trials, each model run has

accumulated a different set of experiences, notwithstanding the initial instances which are

randomized between model runs. Therefore, the model played the IAG 1,000 times to

generate stable predictions of the probability of attack and total number of points

obtained per round. At the end of each run, the model was reset to its initial state and its

memory cleared. Like humans, the model displays a range of behaviors which are based

on the influence of unique individual experiences over time, and can therefore represent a

diverse population of human attackers without the need to parameterize for individual dif-

ferences.

Fig. 4, top left side, shows the mean probability of attack across trials and rounds for

humans, black, compared to the model, gray. The dashed, gray line, horizontal at 0.33 on

the y-axis, represents the predicted mean probability of attack according to the peSSE,

under assumptions of perfect rationality. As indicated, both humans and the model attack

far more often than predicted for a perfectly rational attacker. Furthermore, the model is

an excellent predictor of human performance. RMSE and correlations, comparing the

model to human data, are included at the bottom of the graph. The model is sensitive to

the schedule of coverage, just as humans are, which produces the spiking pattern across

trials (i.e., if a more popular target is signaled on a particular trial, then the mean proba-

bility of attack goes down, but if it is not signaled then the probability of attack goes up).

The model not only matches well the mean probability of attack but also the full distribu-

tion of human behavior, as indicated by the histogram in the bottom left side of Fig. 4.

Fig. 4, right side, shows the mean points per round on the top and the average gains/
losses on the bottom, for the humans compared to the model. Humans attack at a high

Fig. 3. Example blending calculation across a series of decisions for (A) a model that does not store expecta-

tions versus (B) a model that does store expectations.

1000 E. A. Cranford et al. / Topics in Cognitive Science 12 (2020)



rate, earning many points from attacks on uncovered targets (i.e., gains), while incurring

fewer losses from attacks on covered targets (i.e., losses), resulting in an overall gain

each round. Moreover, the model accurately predicts this behavior. The peSSE suffers

because human biases (e.g., recency, frequency, and confirmation) lead them to attack at

a higher rate, resulting in more experiences of wins than losses and thus a propensity to

continue attacking. The IBL model captures these biases and, therefore, can feasibly be

used as a predictive tool for personalizing deceptive signals for an individual attacker.

4. Toward personalized deception

To personalize deception, we can run the IBL model alongside the human to predict

an individual’s behavior and adjust the rate of deceptive signals to maximize belief in the

signal and minimize the probability of attack. However, due to the stochastic nature of

the cognitive model, its behavior would likely deviate further from the human’s over time

because the probability of randomly sampling the model run from the distribution in

Fig. 4 that best matches the human is extremely low. Therefore, the predictive accuracy

would likely be low, and thus the personalized signaling scheme would likely be ineffec-

tive. To make accurate predictions of an individual, two methods have proven useful to

align the model behavior with the human’s decisions: model-tracing and knowledge-trac-

ing (Anderson, Boyle, & Yost, 1986; Anderson et al., 1995). Model-tracing aligns the

Fig. 4. Probability of attack across trials and rounds (left side, top) and distribution of mean total probability

of attack for participants (left side, bottom), and mean points per round (right side, top) and gains/losses per

round (right side, bottom) for the humans compared to the IBL model. For probability of attack, RMSE and

correlations (r) between human and model data are displayed under each round, and the aggregate values

across the entire game are on the right under the legend. For mean gains/losses, gains refer to points earned

from attacking uncovered targets and losses refer to points lost from attacking covered targets.
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model’s actual actions and outcomes to match those of the human, which can be overtly

observed from the actions made and points earned. Knowledge-tracing, on the other hand,

aligns the expected outcomes to match those of the human, but these values must be in-
ferred because, based on the available data, we only know if the human’s expectations

were positive or negative prior to making a decision.

4.1. Model-tracing

Model-tracing is a method used to align a model’s behavior with that of the human

and is commonly used to adjust feedback provided to the student in intelligent tutoring

systems (see Anderson et al., 1995). The alignment helps in a way that future model pre-

dictions are adapted and optimized to the interaction with the human. For example, geom-

etry tutors use model-tracing to keep track of where errors are made so that the learning

experience can be tailored to the individual (Anderson et al., 1986).

We use model-tracing to synchronize the IBL model with the human’s observed
actions and experience in the IAG task. After each trial, the instance saved in memory

that represents the model’s decision and outcome is changed to reflect the human’s action

and outcome (i.e., the action and outcome slots are changed to match the human’s).

Therefore, on the next trial, the model makes predictions based on the exact experience

of the human and not on what it would have done based on its own past instances. With

more trials, the model is expected to make more accurate predictions of a particular

human’s actions, as the model’s memory aligns better with that of the human. Model-

tracing changes the instances representing the observed ground truth decision and out-

come. However, in order to generate accurate predictions, we must also align the model’s

expectations to those of the human.

4.2. Knowledge-tracing

While model-tracing relies on observed data, such as the actions humans take (attack

or withdraw) and the outcomes obtained, some of the human’s knowledge/experience can-

not be observed and we must then infer what knowledge is likely stored in memory. The

model produces instances that represent the expected outcome of attacking, which con-

tributes to confirmation bias, and these must also be changed. Knowledge-tracing can be

used to infer the expectations humans had prior to making a decision that would con-

tribute to confirmation bias. For example, if the model and human both decided to attack

(or both withdraw), then nothing need change and the expected outcome generated by the

model can be used to infer the human’s expectation. However, if the model expects a

positive outcome for attacking, but the human withdrew the attack, then we can infer that
the human expected to lose (or vice versa). For these instances, the expected outcome slot

is modified to match the expectations of the player. This value cannot be inferred pre-

cisely, so as an estimate of the expected outcome we used either the reward or the pen-

alty of the selected target, depending on whether the human expected to win or lose,

respectively.

1002 E. A. Cranford et al. / Topics in Cognitive Science 12 (2020)



4.3. Model predictions with model- and knowledge-tracing

To test the effectiveness of model- and knowledge-tracing for predicting human deci-

sion-making, the model was run alongside human data in the peSSE condition. On each

trial, the model simply makes a prediction, which is recorded and compared to the human’s

decision to generate a probability of agreement between the model and human. The model

is then updated via model-tracing and knowledge-tracing, based on the human decision, to

align the model’s memory with that of the human for the next trial. The probability that

the model attacks should therefore align with the humans, rather than deviate, and should

do so consistently across attackers while producing highly accurate predictions for a partic-

ular individual. Fig. 5 shows the cumulative probability of agreement across trials between

each human and the model (see the thin lines for a sense of the variance in individual

agreement; darker lines indicate lower mean agreement). The mean cumulative probability

of agreement, shown as the red line, for rounds 1–4 is 86.4% (SD = 12.3%), 90.8% (SD =
11.4%), 89.6% (SD = 12.4 %), and 86.8% (SD = 15.5%), respectively.

While predictive accuracy is more variable in the earlier trials when the model has

few experiences on which to base its predictions, the overall trial-to-trial agreement is

highly accurate. In fact, even at the first trial the model shows a mean agreement of

83.3%. Moreover, the model adapts well to the individual’s probability of attack, becom-

ing more accurate and stable as more data are gathered on the individual’s decision-mak-

ing. However, due to human stochasticity, there are some individuals that the model

predicts less accurately, although the overall agreement is still higher than 60% as the

model continues to adapt through round 4. Fig. 6 shows the overall probability of attack

of individual model runs compared to the human it traced. The model is exceptionally

accurate in adapting to the human, r2 = .95. Using techniques of model-tracing and

Fig. 5. Individual cumulative probability of agreement between the model and human across trials; darker lines indi-

cate lower mean agreement. The red line shows the mean cumulative probability agreement across participants.

E. A. Cranford et al. / Topics in Cognitive Science 12 (2020) 1003



knowledge-tracing, the model makes very accurate predictions of the expected probability

of attacking and could feasibly be used in designing a personalized signaling scheme.

5. A personalized deceptive signaling scheme

While the goal is to minimize the probability of attack, the peSSE signaling scheme

uses deceptive signals on uncovered targets but not on covered targets. These schemes

invite attacks with impunity when no signal is given. Therefore, a broader and more sym-

metrical approach may be warranted, as has been explored in recent game-theoretic

research (Cooney et al., 2019). Using deception by not signaling when a target is covered

reduces the overall frequency of signals, which is hypothesized to lead to fewer attacks

when a signal is presented. Meanwhile, the possibility of losing when attacking given no

signal should instill uncertainty and lead to fewer attacks. The following signaling

scheme also uses deception when a target is covered.

Formally, one can write the goal of minimizing the probability of attack P(A) given

the presence of a warning signal (S) or its absence (�S) as:

min
W

P Að Þ ¼ P Sð Þ � P AjSð Þ þ P �Sð Þ � P Aj�Sð Þ

¼P Aj�Sð Þ þ P Sð Þ � P AjSð Þ � P Aj�Sð Þ½ �:
(4)

Fig. 6. Overall mean probability of attack comparing individual humans to the model run that traced them,

in the peSSE condition using personalized signaling.
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One can then consider minimizing the probability of attack as a function of the proba-

bility of the warning signal, which yields the following equilibrium equation:

∂P Að Þ
∂P Wð Þ ¼ 0 ) P AjSð Þ � P Aj�Sð Þ ¼ 0

)P AjSð Þ ¼ P Aj�Sð Þ:
(5)

Thus, if the goal is to minimize the probability of attack as a function of the probabil-

ity of the warning signal, then we must reach an equilibrium where the probability of

attack given a signal is equal to the probability of attack given no signal. A signal must

therefore be generated at a rate that preserves this equality. We can examine the impact

of the presence or absence of a signal in various situations (see Table 1). Specifically,

since no significant change occurs in the absence of an attack due to the lack of new

information, Table 1 focuses on the change in future probability of attack resulting from

the various circumstances of an attack.

For example, given an attack, if a target is covered, the attacker will lose, and their

future probability of attack will be lower. If a target is uncovered, the attacker will win,

and their future probability of attack will be higher. Each outcome thus increases or

decreases one of the attack probabilities. In particular, the change in attack probability

(decrease or increase) is determined by whether the selected target is covered or not,

respectively, while the probability impacted (signal or no signal) is determined by the

presence or absence of a signal, respectively. This results in the following algorithm for

determining whether the signal S should be present or absent, depending if the selected

target T is covered or not covered:

S ¼

present; if T ¼ covered and PðAjSÞ>P Aj�Sð Þ
absent; if T ¼ covered and PðAjSÞ≤ P Aj�Sð Þ
absent; if T ¼ not � covered and PðAjSÞ>P Aj�Sð Þ
present; if T ¼ not � covered and PðAjSÞ≤ P Aj�Sð Þ

8>>><
>>>:

(6)

The role of the cognitive model in this algorithm is to determine the components of

the hypotheses of the conditional statements (i.e., the probability of attack given a signal

is present or absent). We know the model generates expected outcomes of attacking E

Table 1

Expected impact of the presence or absence of a signal when a target is covered or not

Target Coverage

Covered Not Covered

Signal Present P AjSð Þ & P AjSð Þ %
Absent P Aj�Sð Þ & P Aj�Sð Þ %
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and decides to attack if the value is greater than zero. Therefore, the following equiva-

lency holds:

P AjSð Þ>P Aj�Sð Þ , E AjSð Þ>E Aj�Sð Þ: (7)

Thus, we can simply generate the expected outcome of attacking given the presence or

absence of a signal and compare them to compute the conditions used in the algorithm

above. An essential point is that those expected values are not the true expected values,

but the model’s subjective expected value given its limited experience and its reflection

of human cognitive biases.

Intuitively, if the selected target is covered, then we decide on whether to generate a

signal or not depending on which condition is most likely to lead to an attack. This corre-

sponds to trying to catch the attacker when the target is covered, lowering the future

probability of attack. Conversely, if the selected target is not covered, select the condition

(signal or not) least likely to lead to an attack. Again, the accuracy of the cognitive

model is essential in this approach to capture the subject’s intention to attack or not. We

can use the current model to track an individual’s decisions and generate predictions of

their probability of attack given the situation.

5.1. Effectiveness of personalized signaling scheme

To generate predictions of the effectiveness of this personalized signaling scheme, we

ran the IBL model through the IAG while using the personalized signaling scheme

described above to make predictions about the expected outcome of attacking, given a

signal and given no signal. Based on those predictions and the underlying coverage of

the selected target, the scheme determined whether to give a signal on each trial.

Fig. 7 shows the proportion of signals presented to participants as a frequency distribu-

tion. As can be seen, the personalized signaling scheme presents fewer signals on average

than the peSSE scheme when a target is covered, while still presenting nearly the same

proportion of signals when a target is uncovered. Overall, the personalized signaling

scheme presents fewer signals while maintaining the rate of deception on uncovered tar-

gets. Interestingly, for some model runs, the personalized signaling scheme presented a

large proportion of deceptive signals (75% or even higher).

Fig. 8 shows the frequency distribution of the probability of attack when a signal is

presented or not when the target is covered or uncovered. As can be seen, when a signal

is presented, compared to the peSSE the personalized signaling scheme is expected to

maintain the probability of attack when a target is uncovered, and even slightly increase

the probability of attack when a target is covered (a desired behavior if a goal is to catch

an attacker). Likewise, when a signal is not presented, the personalized scheme is

expected to reduce the probability of attack on uncovered targets.

Fig. 9, top left, shows the probability of attack across trials for the humans in the

peSSE compared to the model predictions against the personalized signaling scheme.

Compared to the human performance in peSSE, the personalized signaling method is
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expected to reduce the probability of attack by an average of 2.7% (RMSE = 6.6%). The

relatively flat line for the personalized signaling scheme emerges because the signaling

schedule is not static across participants, which controls for the variance seen in the

peSSE. Although the expected reduction in probability of attack is modest, the expected

gains in defender utility are valuable, as can be seen in the top right of Fig. 9. Defender

utility is calculated as −1 × the number of attacks on uncovered targets. The improve-

ment in defender utility is expected because, as the bottom right of Fig. 9 shows, the per-

sonalized signaling will result in fewer gains from attacks on uncovered targets and more

losses from attacks on covered targets. While the effects look small, even modest gains

Fig. 7. Frequency distribution of the proportion of signals presented to humans against the peSSE compared

to that of the model against the personalized signaling scheme.

Fig. 8. Frequency distribution of the probability of attack for humans against the peSSE compared to that of

the model against the personalized signaling scheme.
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in defender utility and reduced attacks on uncovered targets are beneficial for improving

defenses. Looking further into the data, the bottom left of Fig. 9 plots the probability of

attack across the various targets, based on their monitoring probability. Compared to

human performance, the personalized signaling method seems to shift the distribution of

attacking toward targets with a higher monitoring probability, and this is why the IBL

model incurs more penalties from attacks on covered targets while the overall probability

of attack is only somewhat reduced.

6. Conclusions

The present research shows that we can leverage the predictive power of a generaliz-

able IBL model to infer an individual’s knowledge, trace their experience, and exploit

their biases to design an adaptive signaling scheme that is personalized for an individual.

Techniques of model-tracing and knowledge-tracing proved valuable to align the cogni-

tive model with individual human decisions and improve the accuracy of model predic-

tions of human behavior. As the results showed, the model predictions improve with time

as more instances of human decisions are added to the cognitive model’s declarative

memory.

In agreement with IBLT (Gonzalez et al., 2003), human decisions are influenced by

their prior expectations and their actual past experiences. The recency, frequency, and

similarity of such instances contribute to the emergence of cognitive biases such as con-

firmation bias. As prior research showed, human decision-making in the IAG can be

Fig. 9. Behavioral results for the humans against the peSSE compared to model predictions against the per-

sonalized signaling scheme. The top left shows the mean probability of attack across trials, the top right

shows the mean expected defender utility across rounds, the bottom right shows the mean gains/losses across
rounds, and the bottom left shows the mean probability of attack across targets, by their monitoring

probability.
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explained through IBLT. The cognitive model indicates that the availability of positive

experiences leads to a confirmation bias in which humans persist in attacking even after

experiencing a loss. The personalized deceptive signaling scheme was designed to track

the emergence of these biases and, therefore, exploit them in benefit of the defender.

The current method is an initial attempt toward developing a personalized deceptive

signaling scheme for cyber defense. Although the simulations showed that the current

scheme is not predicted to greatly reduce the probability of attack compared to the

peSSE, it predicts a shift in attack behavior toward the targets that are highly monitored,

resulting in more attacks on covered targets and fewer attacks on uncovered targets. Thus,

overall defender utility showed an improvement compared to the peSSE. These effects

were obtained even while reducing the total number of signals presented. Thus, we pro-

vide proof of concept of the model- and knowledge-tracing techniques that will be essen-

tial to generate personalized and adaptive signaling schemes.

Overall, the personalized signaling scheme we propose is predicted to improve

defenses compared to static schemes such as the peSSE. The adaptive and personalized

nature of the scheme allows for more accurate predictions of human behavior, allowing

for greater optimization of deceptive signaling against an individual attacker. Of course,

any personalized signaling scheme is limited by the ability to track human behavior; a

particular problem in the cyber domain where it is difficult to identify an individual

and attribute attacks to any one person. Future research will investigate the applicability

of personalized signaling in more realistic situations. However, if an individual’s behav-

ior cannot be tracked, one can personalize the signaling scheme to a group of attackers

or over a time period of attacks. Even such a scheme should show improvement in

defenses compared to static schemes. Additionally, we also plan to adapt the coverage

of targets according to attacker’s behavior to further improve defenses (Cranford et al.,

2020).

Most importantly, future research will test the personalized signaling scheme against

human attackers. Insight gained from human experiments will provide information about

how to modify the signaling logic to create a more effective scheme. Compared to other

static signaling schemes that use deception by not providing signals sometimes when a

target is covered, the current signaling scheme does not offer a substantial improvement

in terms of reducing the probability of attack and increasing defender utility. However,

we can expect that a combination of improved signaling logic and model- and knowl-

edge-tracing techniques can further improve defenses. After all, if we can accurately pre-

dict human behavior, then an adaptive, tailored signaling scheme should prove better than

a static scheme that makes idealistic assumptions about human behavior.
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