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Many cybersecurity algorithms assume adversaries make perfectly rational decisions. However, human 

decisions are only boundedly rational and, according to Instance-Based Learning Theory, are based on the 

similarity of the present contextual features to past experiences. More must be understood about what 

available features are represented in the decision and how outcomes are evaluated. To these ends, we 

examined human behavior in a cybersecurity game designed to simulate an insider attack scenario. In a 

human-subjects experiment, we manipulated the information made available to participants (concealed or 

revealed decision probabilities) and the framing of the outcome (as losses or not). An endowment was 

given to frame negative outcomes as losses, but these were not framed as losses when no endowment was 

given. The results reveal differences in behavior when some information is concealed, but the framing of 

outcomes only affects behavior when all information is available. A cognitive model was developed to help 

understand the cognitive representation of these features and the implications of the behavioral results. 

 

INTRODUCTION 

In many applications of cybersecurity, the underlying al-

gorithms are often based on game-theoretical formulations that 

assume the adversary makes perfectly rational decisions. 

However, it is well known that humans behave far differently 

than predicted under these assumptions (Tversky & Kahne-

man, 1974). Human cognition operates on imperfect memories 

and is limited in capacity, which can lead to seemingly irra-

tional decisions that are based on prior experiences (Gonzalez, 

Lerch, & Lebiere, 2003; Gonzalez, 2013). Memory retrieval 

processes that operate on these experiences can lead to biases 

which further influence decisions (e.g., Cranford et al., 2019, 

2020; Lebiere et al., 2013). Because experiences are encoded 

along dimensions of the features of the situation, it is im-

portant to understand how humans represent information in 

memory in order to make more accurate predictions of human 

behavior and ultimately inform better defenses for cybersecu-

rity. The present research explores how the representation of 

contextual features and outcomes influence human decisions. 

Humans make decisions based on the information availa-

ble to them and each piece of information has an influence on 

the eventual decision (Lebiere, 1999; Martin, Lebiere, Fields, 

& Lennon, 2018). However, humans also have limitations on 

the amount of information they can process at once and tend to 

rely on heuristics and other processing shortcuts to solve 

problems and make decisions (Tversky & Kahneman, 1974; 

Gigerenzer & Todd, 1999). In fact, one commonly recom-

mended strategy for cyber defense is to overload adversaries 

with information, which can lead to decision errors (Rowe & 

Rushi, 2016). Defenses that assume the adversary makes 

perfectly rational decisions also assume they have access to all 

available information in order to make rational-best decisions. 

However, Cranford et al. (2018) showed that even when given 

all possible information about the decision probabilities, 

humans do not seem to systematically factor such information 

into their decisions. Even for defenses that consider bounded 

rationality, the impact of feature representations is unclear. 

If a defense algorithm or cognitive model assumes some 

information is represented in the decision when it is not, or 

assumes an incorrect representation, then the predictions of 

human behavior may be incorrect and may lead to sub-optimal 

solutions. For example, humans commonly make decision 

errors by failing to represent important information (e.g., 

running a red light) and concealing information can influence 

decisions (e.g. car salesmen and magicians fool the human 

mind by manipulating the saliency of information). Similarly, 

it is well known that humans represent values differently 

depending on whether they are framed as losses or not (i.e., 

framing effect, Tversky & Kahneman, 1981). 

Human decisions from experience take as input the con-

textual features of the situation and generate decisions based 

on expected outcomes (Gonzalez et al., 2003). Therefore, two 

important dimensions to focus on are (1) what features are 

represented in the situation context and (2) how outcomes are 

processed and evaluated. The present research aims to better 

understand how these two factors influence human decision 

making in a cybersecurity game that simulates an insider 

attack scenario, called the Insider Attack Game (IAG). 

Insider Attack Game 

Cranford et al. (2018) designed the IAG to investigate 

how deceptive signals influence attacker decision making in 

an abstracted cybersecurity scenario. A screenshot of the task 

interface is shown in Figure 1A. Humans play the role of the 

attacker, depicted in the center surrounded by 6 targets. The 

attacker must first decide what target to attack. Two analysts 

monitor the six targets, and each target shows the probability 

that a target is being monitored, the points the attacker would 

win if they attack the target and it is not monitored (yellow 

stars), and the points they would lose if they attack the target 

and it is monitored (red stars). After selecting a target, the 

attacker is presented a message and asked if they would like to 

continue the attack or withdraw (Figure 1B). Sometimes the 

message indicates that the target is not being monitored, which 

is always truthful. However, other times the message indicates 

that the target is being monitored, and only sometimes is there 

an analyst actually monitoring the target. If the attack is 

withdrawn the attacker receives 0 points, but if the attack is 



continued the attacker is rewarded or penalized based on the 

underlying coverage of the target. All decisions are self-paced, 

and no domain expertise is required. Attackers try to earn as 

many points as possible across 4 rounds of 25 trials (targets 

change each round), which is translated into a cash payout. 

 
Figure 1. Screenshot of the IAG (A) and an example signal 

message indicating a target is being monitored (B). The first 

line is omitted when indicating a target is not being monitored. 

The goal of adding deceptive messages is to improve de-

fenses by deterring attacks when a target is not monitored and 

extending the perceived coverage of the network. The rate at 

which deceptive messages are sent is optimized through game-

theoretic algorithms such as the Strong Stackelberg Equilibri-

um with Persuasion (peSSE; Xu, Rabinovich, Dughmi, & 

Tambe, 2015). However, the defense is contingent on sustain-

ing belief in the signal while assuming adversaries make 

perfectly rational decisions. For this reason, in human studies, 

participants are provided all information regarding the payoff 

structure. Based on these values, the peSSE sends signals at a 

rate that makes the expected value of attacking given a signal 

equal to the expected value of withdrawing, and therefore a 

perfectly rational adversary will defer to the safe option and 

always withdraw. However, even with all possible information 

to aid decision-making, humans do not make rational-best 

decisions. Cranford et al. (2019) showed that humans attack 

far more often than predicted by the peSSE (~80% overall 

compared to the predicted 33%). This behavior was explained 

under the Instance-Based Learning Theory (IBLT; Gonzalez, 

Lerch, & Lebiere, 2003; Gonzalez, 2013) and an IBL cogni-

tive model was developed that accurately predicts human 

performance in the IAG (with an impressive RMSE = 0.04 and 

r = 0.80; Cranford et al., 2018, 2019). 

IBL Model of Human Behavior in the IAG 

According to IBLT, human decisions from experience are 

based on the similarity of the current situation to past situa-

tions, modulated by the recency and frequency of those past 

experiences in memory (Gonzalez, 2013). An IBL model was 

created in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998; Anderson, Bothell, Byrne, Douglass, & Le-

biere, 2004), which provides a theoretical framework that 

accurately simulates human-like cognition and processes such 

as memory retrieval, pattern matching, and decision making. 

In the IBL model, described in more detail in Cranford et 

al. (2018), experiences (or instances) are represented by the 

contextual features of the decision. For example, in Figure 2, 

the contextual features include the information available in the 

environment, including the reward, penalty, and monitoring 

probabilities, as well as the action taken and the associated 

utility, or outcome of the decision. Each experience is saved in 

memory and when a new decision is to be made, an expected 

outcome is retrieved from memory that represents a weighted 

average across all memories based on similarity of the contex-

tual elements and activation strength of the memory. In ACT-

R the activation strength is determined by the recency of the 

memory and its frequency of occurrence. A Boltzmann soft-

max equation determines the probability of retrieving an 

instance based on its activation strength. The IBL model uses 

ACT-R’s blending mechanism (Gonzalez et al., 2003; Lebiere, 

1999) to retrieve an expected outcome of attacking a target 

based on a consensus of past instances. The expected outcome 

is the value that best satisfies the constraints of all matching 

instances weighted by their probability of retrieval. 

 
Figure 2. Example representation of instances in IBL. 

First, the model selects a target by cycling through each 

of the targets and generating an expected outcome of attacking 

based on the reward, penalty, and monitoring probability 

features. The target with the highest expected outcome is 

selected. The context is then augmented with a feature repre-

senting the signal and the model generates a new expected 

outcome of attacking given the signal, but does not include the 

reward, penalty, and monitoring probability features in this 

decision because they are not present on the screen during this 

stage of the decision process. In fact, representing the target’s 

features in this decision resulted in poorer fit to human data, 

suggesting that, when presented a signal, humans only factor 

the features of the signal and not the target. Finally, a decision 

to attack is made if the expectation is greater than zero, else 

the model withdraws, and ground truth feedback is given. 

The model saves two instances to memory each trial. One 

represents the expectation generated during the decision to 

continue the attack or withdraw (includes the features: signal, 

action, and expected outcome), and the other represents the 

ground truth decision and feedback received (includes all 

features: signal, reward, penalty, monitoring probability, 

ground truth action, and ground truth outcome). While ground 

truth experience alone would predict a lower probability of 

attack, aligning with the statistics of the environment, storing 

the expectations drives a confirmation bias in which the 

availability of additional positive instances in memory perpet-

uates a behavior to attack even after suffering losses. 



In summary, humans do not compute all information and 

make rational-best decisions, but instead make decisions based 

on experiences represented by the important features of the 

situation. The present study manipulations are aimed at better 

understanding how feature representation impacts decisions. 

Experimental Manipulations and Hypotheses 

Two observations were made from the human data report-

ed in Cranford et al. (2019). First is that humans attack at a 

high rate from the very first trial and this pattern perpetuates 

throughout the game. It was hypothesized that, because 

participants’ monetary payouts are not discounted for having 

negative total points, it is possible that early negative out-

comes are not framed as losses. Instead they may be 

represented as higher than face value. According to IBLT, if 

the set of past experiences includes inflated outcomes, the 

generated expected outcome will also be inflated which could 

contribute to the high probability of attack. 

To investigate how the framing of outcomes affect deci-

sions, in the present study, we manipulated the number of 

points participants started with. In one condition, participants 

start with zero points as usual (NoLoss), but in the other 

condition participants begin with an endowment of 100 points 

(Loss). When given an endowment, early losses are predicted 

to be more meaningful and framed as losses (i.e., encoded as 

full penalty), but should not be framed as losses when the 

endowment is withheld (i.e., encoded as less than the full 

penalty). Therefore, according to IBLT, an endowment should 

increase the valuation of negative outcomes, resulting in lower 

expected outcomes, and thereby lowering the probability of 

attack. It is possible the effect will diminish in later rounds as 

participants accumulate points and have something to lose. 

The second observation was that human decisions are not 

made through formal calculation of expected values based on 

the decision probabilities, but instead are based on experience, 

using features as representations of what happened in the past 

in order to generate expectations of the future. Therefore, to 

investigate how context representations affect decisions, we 

manipulated the information made available to participants. In 

one condition participants were provided all possible infor-

mation (Info), but in the other condition the monitoring 

probabilities were withheld (NoInfo). 

According to perfect rationality, providing more infor-

mation is predicted to reduce the probability of attack because 

adversaries should be able to use the decision probabilities to 

calculate expected values and make the rationally-best deci-

sion to withdraw when given a signal. However, according to 

IBLT, concealing features such as the monitoring probability 

will affect how the current situation matches to past experi-

ences, thus affecting what chunks are included in the retrieval 

set, and thus the expected outcomes. Because target features 

are only considered during the selection decision, it is predict-

ed that concealing information will largely affect selection 

behavior and only indirectly influence the probability of attack 

insofar as shifting attacks toward different targets with differ-

ent coverage probabilities will result in different experiences 

(e.g., more experiences of loss would result in lowered ex-

pected outcomes and lowered probabilities of attack). 

IBL Model Modifications & Predictions 

The cognitive model was modified to make predictions 

about how humans would behave in each of the conditions. To 

simulate the effects of not having a 100-point endowment, the 

model was modified so that any negative outcomes were 

changed to be no greater than the number of positive points 

available. To simulate the effects of concealing the monitoring 

probabilities, we simply removed the feature from instances in 

memory and so target selection decisions are based solely on 

the reward and penalty values. Figure 3 shows the model 

predictions of the probability of attack (i.e., the proportion of 

trials in which participants chose to continue the attack instead 

of withdraw). The model predicts a main effect of framing and 

also of information, and a slight reduction in probability of 

attack over time, but no interactions. 

 
Figure 3. Mean probability of attack per round comparing the 

model in the Info-NoLoss, Info-Loss, NoInfo-NoLoss, and 

NoInfo-Loss conditions. 

METHODS 

Design 

The design was a 2 (Framing) X 2 (Information) between 

subject design. For Framing, participants were either endowed 

100 points to start the game (Loss) or given no endowment 

(NoLoss). For Information, participants were either provided 

information regarding the monitoring probabilities (Info) or 

this information was concealed (NoInfo). 

Participants 

100 participants were recruited via Mechanical Turk for 

each of the four conditions. However, some participants were 

removed from analysis due to incomplete data arising from 

technical issues, resulting in final sample sizes of 100, 98, 99, 

and 99 for the NoInfo-Loss, NoInfo-NoLoss, Info-NoLoss, 

and Info-Loss conditions, respectively. In the NoLoss condi-

tions, participants were paid a base payment of $1.00, but in 

the Loss conditions, they were given 100 points to start the 

game. Participants could then earn $0.01 per point earned in 

the game up to a maximum total payment of $5.50. 

Procedure 

After providing informed consent, participants read in-

structions about their payout and the gameplay. In the Info 

condition, participants were informed about the monitoring 



probabilities, but were not in the NoInfo condition. Partici-

pants answered a short quiz about the instructions and played 

5 practice trials before beginning the main experiment. Partic-

ipants continued to play the game for four rounds of 25 trials 

each as described in the Introduction. After completing the 

game, participants were given feedback about their results, 

completed a brief survey, and thanked for their participation. 

Payment was awarded within 24 hours of completion. 

RESULTS & DISCUSSION 

The data was analyzed for the probability of attack, as de-

scribed above with the model predictions, and target selection 

preferences. The selection preferences examined the propor-

tion of trials that participants selected each target. 

The mean probability of attack for each round is shown in 

Figure 4, comparing Info (blue) to NoInfo (red) conditions and 

NoLoss (lighter) to Loss (darker) conditions. A mixed-effects 

ANOVA, with Round included as a within-subjects factor, 

revealed a main effect of Information, F(1,392) = 4.08, p = 

.044, and a main effect of Round F(3,1176) = 15.27, p < .001,  

but not of Framing, p = 0.333, and there were no interactions, 

all p > .175. Replicating prior research, participants attack 

gradually less across rounds. Of importance, and consistent 

with current hypotheses, participants attacked more often 

when information regarding the monitoring probability was 

available than when this information was concealed. However, 

closer inspection reveals that the effect is only present in 

rounds 1-3 in the NoLoss condition, all p < .036, diminishing 

in round 4, p = .086, and is not present in any rounds of the 

Loss condition, all p > .248. 

 
Figure 4. Mean probability of attack per round comparing 

humans across the Info-NoLoss, Info-Loss, NoInfo-NoLoss, 

and NoInfo-Loss conditions. 

Although analysis revealed no main effect of Framing, 

nor a 3-way interaction, further inspection revealed a marginal 

interaction between Framing and Round within the Info 

condition, F(3,588) = 2.31, p = .075. Consistent with hypothe-

ses, there is an early effect of providing an endowment 

whereby participants withdrew more often in Round 1, 

F(1,196) = 6.34, p = .013, and Round 2, F(1,196) = 5.25, p = 

.023, but not in Rounds 3 and 4, both p > .425. In the NoLoss 

condition, early losses do not deter future attacks as much as 

in the Loss condition, likely because they are represented as 

lower than face value (i.e., losses do not impact their monetary 

payout and memories reflect this experience), but this effect 

diminishes across rounds after points have been acquired and 

losses become more meaningful. 

The model predictions match well to human data in the 

Info-NoLoss (RMSE = 0.04, r = 0.73), Info-Loss (RMSE = 

0.05, r = 0.71), and NoInfo-Loss (RMSE = 0.05, r = 0.73) 

conditions, but not as well in the NoInfo-NoLoss (RMSE = 

0.07, r = 0.78) condition in which the model attacks more 

often, predicting an effect of Framing that was not observed in 

the human data. To better understand why this effect of 

Framing was not observed in the NoInfo condition for hu-

mans, but was for the model, we must look further at how the 

concealment of monitoring probabilities influenced the selec-

tion behavior. 

Figure 5 shows the mean probability of selecting each 

target for humans, plotted along the three features: reward, 

penalty, and monitor probability. As can be seen, there is not 

much difference between Framing conditions. However, there 

is a large observable difference between Information condi-

tions. Concealing the monitoring probability shifts selection 

towards targets with higher rewards and lower penalties. 

Unbeknownst to participants in the NoInfo condition, these 

targets are also monitored more often, and therefore signaled 

more often, which explains why these participants attack less 

often than participants who are given the monitoring probabil-

ity. Participants in the Info condition also tend to select targets 

with higher rewards, but also factor monitoring probabilities 

and select targets with the more moderate values. 

 
Figure 5. Mean probability of selecting a target, plotted by the 

reward, penalty, and monitoring probability (M-prob) target 

features, comparing humans across the Info-NoLoss, Info-

Loss, NoInfo-NoLoss, and NoInfo-Loss conditions. 

Meanwhile, the model did not exhibit this same shift in 

selection behavior as humans, but instead was stable across 

conditions and resembled humans in the Info condition (see 

Figure 6). The discrepancies of probability of attack between 

humans and the model can be explained by these differences 

in selection. For humans, attacking highly covered targets in 

the NoInfo condition could have led to the lower probability 

of attack observed when no endowment was given because, as 

participants experience more signals and decide to withdraw, 

they also experience fewer gains, thereby lowering the future 

expected outcomes and thus the overall probability of attack. 



 
Figure 6. Mean probability of selecting a target, plotted by the 

reward, penalty, and monitoring probability (M-prob) target 

features, comparing the model across the Info-NoLoss, Info-

Loss, NoInfo-NoLoss, and NoInfo-Loss conditions. 

In summary, the manipulations had a large effect on target 

selection preferences. Concealing the monitoring probability 

shifted target selection preferences toward targets with higher 

reward/penalty ratios, which influenced the probability of 

attack. The effect of framing was only observed when partici-

pants could rely on monitoring probabilities to select more 

moderately covered targets. When selecting more frequently 

covered targets that are signaled more often in the NoInfo 

conditions, participants withdraw more often, leading to fewer 

experiences of losses for which the endowment has less of an 

impact on expected outcomes. Future research is aimed at 

modifying the model to capture these selection preferences 

observed when the monitoring probabilities are concealed. 

These modifications will help us gain a better understanding 

of how feature representation affects human decision making. 

CONCLUSIONS 

In conclusion, the present research demonstrated the im-

portance of understanding how humans represent and use the 

information available to them in making decisions. Firstly, it is 

important to understand how humans represent outcomes and 

values because, if a model assumes a penalty is greater than 

the human perceives, then it will likely make predictions that 

overestimate the effectiveness of the defense. It is also im-

portant to consider how outcomes are framed because 

manipulating this feature can impact how attackers perceive 

outcomes which can influence their behavior. 

Secondly, model predictions are limited to the extent that 

they can capture the important features of the decision. For 

example, Martin et al. (2018) showed how humans learn to 

use and weight the available features in the environment for 

making classification decisions. The features that are im-

portant for achieving the agent’s goals are those that weigh 

more heavily in the decisions, as was evident in Somers, 

Mitsopoulos, Lebiere, and Thomson’s (2019) research on 

saliency. In their research, decision errors were observed when 

the saliency, or relative importance, of the critical decision 

feature was low. As demonstrated here, it is important to 

understand how humans represent the information available 

and to be mindful of what information is made available. 

While too much information could overload an adversary and 

cause decision errors, presenting certain information could 

have adverse effects on defenses. Future research is therefore 

aimed at modifying the model to better capture selection 

preferences in order to gain a better understand of how con-

cealing monitoring probabilities shifts selection preferences 

and affects attacking behavior. 
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