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Abstract 

This paper improves upon recent game-theoretic 

deceptive signaling schemes for cyber defense using 

the insights emerging from a cognitive model of human 

cognition. One particular defense allocation algorithm 

that uses a deceptive signaling scheme is the peSSE 

(Xu et al., 2015). However, this static signaling scheme 

optimizes the rate of deception for perfectly rational 

adversaries and is not personalized to individuals. 

Here we advance this research by developing a 

dynamic and personalized signaling scheme using 

cognitive modeling. A cognitive model based on a 

theory of experiential-choice (Instance-Based Learning 

Theory; IBLT), implemented in a cognitive architecture 

(Adaptive Control of Thought – Rational; ACT-R), and 

validated using human experimentation with deceptive 

signals informs the development of a cognitive 

signaling scheme. The predictions of the cognitive 

model show that the proposed solution increases the 

compliance to deceptive signals beyond the peSSE. 

These predictions were verified in human experiments, 

and the results shed additional light on human 

reactions towards adaptive deceptive signals. 

1. Introduction 

In cybersecurity, static defense strategies (e.g., 

intrusion detection, firewalls, anti-malware, or anti-

virus) are effective front-line defenses that prevent 

many attacks. Despite their effectiveness, many attacks 

still succeed as adversaries continuously adapt to find 

and exploit new vulnerabilities. It is imperative to 

develop security defenses that thwart attacks before 

they occur and that adapt to ever-evolving adversaries. 

One way to actively prevent attacks is to employ 

signaling schemes based on game-theoretic algorithms. 

Security analysists can actively monitor a network 

for fraudulent activity. However, resources are often 

limited, and a network cannot be fully monitored all 

the time, therefore signaling can aid in protecting 

unprotected resources. Signaling is a defense method 

whereby information is sent to an attacker that reveals 

the protection status of a potential target. Truthful 

signals can deter some attacks, but employing 

deceptive tactics can increase the perceived coverage 

of unprotected targets by finding the correct balance 

between truthful and deceptive signals [1]. 

Deception is a form of persuasion where one 

intentionally misleads an agent into a false belief, in 

order to gain an advantage over the agent and achieve 

one’s goals [2]. Deception is often used for ill-gains, 

for example, in spear-phishing attacks or 

disinformation campaigns. However, it can also be 

used for good, to mitigate unwanted behavior or illegal 

activity, much like signage in a front lawn may deter 

would-be thieves even if no physical security system 

truly exists. In cybersecurity, deceptive signals can be 

used to deter attacks on uncovered systems beyond any 

capabilities of static defenses that do not use signaling 

or only use truthful signals. 

Finding the right balance of deceptive signaling so 

that the attacker continues to believe the signal is 

crucial to the success of the strategy. Recently, game-

theoretic research on deceptive signaling algorithms in 

Stackelberg Security Games (SSGs) has optimized the 

strategic allocation of limited defenses and the rate of 

deception so that a rational attacker would not attack 

when presented a signal [3]. However, this research 

optimized signaling for perfectly rational adversaries, 

and humans exhibit, at best, bounded rationality [4]. 

Deception is a tool used to trick the human mind, 

and as such, a better understanding of how would-be 

attackers react to and learn from deceptive tactics is 

important for developing effective cyber defenses. To 

these ends, we examined human behavior in a cyber-

security game called the Insider Attack Game (IAG) 

that pits humans, who play the role of an inside-

attacker, against cybersecurity analysts controlled by 

an algorithm. Results of laboratory experiments, and a 

cognitive model that accurately predicts human 
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performance in the IAG, show that humans behave far 

differently than predicted under assumptions of perfect 

rationality [1][5-7]. Humans exhibit nominally 

irrational behaviors that reflect capacity and 

information limitations, and the need to resort to 

heuristic strategies, that result in cognitive biases (e.g., 

confirmation bias). While signaling algorithms 

optimized for perfectly rational adversaries do improve 

defense compared to not signaling at all [3], they are 

less than effective against boundedly rational humans. 

One reason for the algorithms’ shortcomings is that 

they are static and not personalized to individuals. 

While humans are not perfectly rational, they learn 

quickly and can adjust behavior in real time. A 

signaling scheme that is adaptive to the individual can 

potentially outperform traditional signaling schemes. 

Based on our understanding of human behavior 

response to deceptive signaling in the IAG, through 

experimentation and cognitive modeling, we propose a 

signaling scheme that is adaptive to an individual’s 

experience. The signaling scheme is designed to both 

exploit and maintain the attacker’s belief in the signal. 

In what follows, we first describe a signaling 

scheme that is optimized for and effective against 

perfectly rational adversaries, and how an approach 

based on cognitive modeling would differ. Next, we 

describe an online game that was developed to 

investigate human behavior response to deceptive 

signaling. Results from humans playing the game, and 

a cognitive model that accurately predicts their 

performance, provide key insights that lead to the 

design of a signaling scheme that is grounded in 

principles of human cognition. The scheme is 

predicted, via the cognitive model, to be more effective 

against boundedly rational humans than traditional 

schemes. The results of a laboratory experiment show 

that the signaling scheme is effective at increasing 

compliance with the signal compared to traditional 

schemes, but humans still attack more often than 

predicted by the model. The human behavior results 

are compared with those of the cognitive model to shed 

light on human response to deceptive signals, guide 

avenues of future research, and aid in the development 

of more effective signaling schemes. 

2. Deceptive signaling for cybersecurity 

In cybersecurity, deception has been adopted across 

many security techniques with much success, for 

example, in the strategic allocation of honeypots [8] 

and masking the properties of systems [9]. Using 

deceptive signals in Stackelberg Security Games also 

has great potential for use in cybersecurity. 

SSGs model the interaction between an attacker 

and a defender using a game-theoretic framework. In 

the SSG, a defender plays a particular strategy (i.e., 

random patrolling of an airport terminal), the attacker 

observes the strategy, and then the attacker takes 

action. Under this framework, researchers have 

developed algorithms, such as the Strong Stackelberg 

Equilibrium (SSE), that optimally allocates limited 

defense resources across a set of targets [10]. These 

algorithms have been applied successfully across a 

number of physical security systems (e.g., protecting 

ports, scheduling air marshals, and mitigating 

poachers) [10-13]. Such security practices could be 

applied to the cyber realm, for example, in scheduling 

active monitoring of security systems by network 

administrators (e.g., security analysts). 

Xu and colleagues [3] extended the SSG models by 

incorporating elements of signaling, in which a 

defender (sender) strategically reveals information 

about their strategy to the attacker (receiver) in order to 

influence the attacker’s decision making [14-15]. 

Sending a message that reveals the protection status of 

target can influence attacker behavior. For example, a 

truthful message that reveals a target is monitored can 

deter attacks, but adversaries can attack with impunity 

when a message reveals the target is not monitored. 

However, defenders can use a combination of truthful 

and deceptive signals to help deter attacks on the 

unprotected resources. Xu et al.’s [3] solution, the 

Strong Stackelberg Equilibrium with Persuasion 

(peSSE), improves defense against a perfectly rational 

attacker compared to strategies that do not use 

signaling. For a given target, the peSSE finds the 

optimal combination of bluffing (sending a deceptive 

message that the target is monitored when it is not) and 

truth-telling (sending a truthful message that the target 

is covered) so that a rational attacker would not attack 

in the presence of a signal. 

In practice, the SSE allocates defenses 

proportionally across the set of targets so that the 

expected values of all targets are equal. Once defenses 

are scheduled, the attacker can choose a target to 

attack. Then, as determined by the peSSE, the defender 

will send a signal to the attacker revealing the 

protection status of the target, which may sometimes 

be deceptive. Based on this information, the attacker 

can then choose to continue the attack or withdraw. If 

the attacker continues the attack, then they will receive 

a penalty if the target is truly monitored, but a reward 

if the target is open. The peSSE sends deceptive 

signals at a rate that makes the expected value of 

attacking a target, given a signal, equal to the expected 

value of withdrawing the attack, or zero. Therefore, 

under the assumption of perfect rationality, when 

presented with a signal an attacker will always break 

ties in favor of the defender and choose the safer 

option, to withdraw the attack. 
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Figure 1. Screenshot of the IAG (A) and an example signal message (B). 

Unfortunately, the peSSE is less than optimal 

against humans that do not always make the rational 

best decision [6-7]. The signaling scheme can be 

improved by taking into account cognitive dynamics 

and biases that influence decisions making. What is 

needed for a cognitive-based signaling scheme is a 

computational or mathematical model of human 

reactions in all circumstances. The adaptive scheme 

can then use that model to dynamically optimize signal 

presentation given previous events and responses. 

3. Insider Attack Game 

The Insider Attack Game (IAG) is an online game 

designed to investigate the interaction between an 

attacker and defender in a cybersecurity scenario, gain 

a better understanding of how humans react to 

deceptive signals, and assess the effectiveness of 

various signaling schemes [5][7]. Figure 1(A) shows a 

screenshot of the game interface. Players take the role 

of the attacker at the center of the screen (i.e., a 

company employee) and their goal is to score points by 

“hacking” computers to steal proprietary data. There 

are six computers from which to choose to attack, but 

only two security analysts (i.e., defenders controlled by 

a computer algorithm) that can monitor one computer 

each. If the player attacks a computer that is monitored, 

they lose points denoted by the number of red stars, but 

if the computer is not monitored then they win points 

denoted by the number of yellow stars. Each computer 

shows its reward for winning, penalty for losing, and 

the probability that the computer is being monitored 

(which reflects the SSE for the game). 

Players make repeated attempts at attacking 

computers. On each turn, the player must first select a 

computer to attack. Then, the signaling algorithm 

determines whether to send a truthful signal or a 

deceptive signal. In the IAG with six targets and two 

analysts, the peSSE presents a signal every time a 

target is monitored, or 33% of trials on average. 

Additionally, the peSSE sends a signal half of the time 

when a target is not monitored, or 33% of trials on 

average. This means that, on average, a signal is 

deceptive half of the time. At this rate, the expected 

value of attacking given a signal is zero, the same 

expected value as withdrawing the attack. Therefore, a 

perfectly rational adversary that only attacks with a 

positive expected value (i.e., in the absence of a 

signal), is predicted to attack on 33% of trials on 

average (i.e., when a signal is not presented). 

Figure 1(B) shows an example message signaling 

that a target is currently being monitored. If the 

computer is not being monitored, then the first line of 

the message is omitted. After reading the message, the 

player must decide whether to continue their attack or 

withdraw and earn zero points. Players play four 

rounds of 25 trials each (after an initial five trials of 

practice). The payoff structures and monitoring 

probabilities of the targets are different in each round. 

Coverage and signaling of targets were precomputed 

for each trial. Therefore, each individual player 

experiences the same coverage and signaling schedule. 

3.1. Understanding human behavior in the IAG 

Cranford et al. [6-7] presented the results of 100 

human participants playing the IAG against the peSSE 

signaling scheme and a cognitive model of an attacker 

that accurately predicts human performance and helps 

explain human behavior. 

Figure 2 shows the mean probability of attack 

across trials. The dashed line at the bottom of the graph 

shows the predicted probability of attack of a perfectly 
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rational adversary (33%). The results showed that 

humans attacked far more often than predicted, almost 

80% of trials. Figure 3 displays the probability of 

attack on trials when a signal is presented, showing 

that humans attack more than 70% of trials while a 

perfectly rational adversary would never attack. 

 
Figure 2. Mean probability of attack across trials and 

rounds in the IAG for humans compared to the 
model, playing against the peSSE. 

 
Figure 3. Mean probability of attack when a signal is 
present, comparing humans and model playing the 

IAG against the peSSE. 

It is clear that humans do not make perfectly 

rational decisions. Instead, human behavior can be 

explained as decisions from experience [16]. To better 

understand the cognitive process underlying human 

decision making, a cognitive model was built in the 

ACT-R cognitive architecture [17-18] and decisions 

are made following instance-based learning theory 

(IBLT) [16]. According to IBLT, decisions are made 

by generalizing across past experiences, or instances, 

that are similar to the current situation. For the IAG, 

instances are represented by the features of the 

decision. This includes the context of the selected 

target, the decision, and the outcome. The context 

includes the monitoring probability [0.0, 1.0], reward 

[1, 10], and penalty values [-1, -10] associated with the 

selected target, and whether a warning signal was 

presented [present, absent]. The possible decisions are 

attack or withdraw, and the outcome is the reward or 

penalty based on the decision. In a given situation, for 

each possible decision, an associated utility is 

computed through blended memory retrieval weighted 

by contextual similarity to past instances. The decision 

with the highest expected utility is made. However, 

withdrawing always results in zero points. Therefore, 

the model only needs to determine the utility of 

attacking in order to make a choice. 

In ACT-R, the retrieval of past instances is based 

on the activation strength of the relevant instance in 

memory and its similarity to the current context. The 

activation of an instance reflects the power law of 

practice and forgetting, and includes a partial matching 

process reflecting the similarity between the current 

context elements and the corresponding context 

elements for the instance in memory. A variance 

parameter s introduces stochasticity in retrieval. 

Similarities between numeric slot values are computed 

on a linear scale from 0.0, an exact match, to -1.0. 

Symbolic values are either an exact match or 

maximally different, -2.5, to prevent bleeding between 

memories for different actions and signal types. 

A Boltzmann softmax equation determines the 

probability of retrieving an instance based on its 

activation strength. The IBL model uses ACT-R’s 

blending mechanism [16][19] to calculate an expected 

outcome of attacking a target based on a consensus of 

past instances. The expected outcome is the value that 

best satisfies the constraints of all matching instances 

weighted by their probability of retrieval. 

In summary, the outcomes of past instances are 

weighted by their recency, frequency, and similarity to 

the current instance to produce an expected outcome. If 

the value is greater than zero then the model attacks, 

else it withdraws. 

For each trial, the model first selects a target with 

the highest expected outcome, generated via blending, 

and then decides whether to continue the attack or 

withdraw based on whether a signal was presented. For 

this decision, the model uses blending to generate an 

expected outcome for the given target, but only on the 

basis of the signal and ignores the values of the target 

context (i.e., the target information is occluded from 

the participants, so it is plausible that they do not 

consider the target information beyond deciding which 

target to select initially). An instance is then saved in 

memory that represents the model’s expected outcome. 

Humans tend to remember not only the actual 

experience, but also their expectations prior to the 

experience [20]. This results in additional positive (or 

negative) instances, which in turn generates a 

confirmation bias whereby one’s pre-conception of 

winning (or losing) perpetuates itself in future trials, 

even when it is actually disconfirmed. Based on the 

value of the expected outcome, a decision is made, and 

the action and outcome slots of the current instance are 

updated to reflect the action taken by the model and the 

ground-truth outcome. This final instance is saved in 

memory and thereby influences future decisions. 

Page 1888



 

 

The model continues for four rounds of 25 trials 

each. The model behavior reflects its experiences. If an 

action results in a positive/negative outcome, then its 

future expectations will be increased/decreased, and 

the model will be more/less likely to select and attack 

that target in the future. Also, the impact of a particular 

past experience on future decisions strengthens with 

frequency and weakens with time. 

The model was run 1000 times to simulate a 

population of individuals and to generate stable 

estimates of human performance. As shown in Figures 

2 and 3, the model is highly accurate at predicting 

human performance (total RMSE = 0.04), even 

matching the trial-to-trial variations that reflect the 

underlying coverage and signaling schedules (total r = 

0.73), and that accuracy increases over time. Not only 

does the model match the average human performance 

in the IAG, but it also matches well to the individual 

performance. Figure 4 shows the distribution of 

participants by their mean probability of attack. Like 

humans, some model simulations attack at a fairly low 

rate, while a large proportion attack 95% of the time or 

more. Figure 5 shows the distribution for when a signal 

present, and indicates that some participants comply 

with the signal, to a degree, while most do not. 

 
Figure 4. Distribution of participants by probability of 

attack for humans compared to the model playing 
the IAG against the peSSE. 

 
Figure 5. Distribution of participants by probability of 

attack when a signal is present, comparing humans 
and model playing the IAG against the peSSE. 

Human decision making in the IAG is largely 

influenced by memory dynamics across past 

experiences. The peSSE suffers because human biases 

(e.g., recency, frequency, and confirmation) lead to 

overweighting of certain outcomes that, often, results 

in inflated expectations. Humans fail to fully comply 

with the signal because they are more likely to expect a 

positive outcome than a negative one as belief in the 

signal deteriorates. While deception is an effective tool 

for preventing malicious behaviors, the experience of 

successfully calling a bluff can reduce compliance with 

the signal. Regaining trust in the signal is difficult if 

not impossible to do under static signaling schemes. 

Therefore, an adaptive signaling scheme is needed that 

adjusts the rate of deception to dynamically balance 

(re)building trust in the signal and exploiting it, and 

thus optimizes compliance. 

4. Cognitive signaling scheme for adaptive 

cyber defense 

Individual attackers behave differently from one 

another, and each may learn and adjust behavior after 

repeated experience with deceptive signals. Therefore, 

an adaptive signaling scheme based on cognitive 

principles can be used to adjust the rate of deception, 

tailored to an individual’s behavior, so as to maintain 

belief in the signal. Our initial solution towards this 

problem is to interleave blocks of trials with only 

truthful signals between blocks of trials with deceptive 

signals. The assumption is that experiences of rewards 

when a signal is present increases the probability of 

attacking in the future, while experiences of penalties 

given a signal reduces the probability of attacking in 

the future. Therefore, eliminating deceptive signals for 

a short period of time can help increase penalties and 

restore belief in the signal. The goal for the cognitive 

signaling scheme is to induce, and preserve, the belief 

that attacking given a signal will result in a loss. 

Relying on the attacker’s history of behavior, this 

new cognitive signaling scheme estimates the current 

probability of attack given a signal and judges whether 

the cost of issuing a truthful block outweighs the 

benefits of a deceptive block, to effectively reduce the 

future probability of attack given a signal. At the 

beginning of each block of trials, a closed form 

equation of the current probability of attack given a 

signal, reflecting the blending process used in 

generating expectations and the recency and frequency 

power laws in chunk activations, can be formulated 

based on the times t since past actual decisions made 

by the attacker, as: 

𝑃𝑒𝑠𝑡
𝑛𝑜𝑤  𝐴 𝑆 =

 𝑡𝑖
−𝑑𝑤𝑖𝑛𝑠

𝑖 +  𝑡𝑗
−𝑑𝑙𝑜𝑠𝑠𝑒𝑠

𝑗  

 𝑡𝑖
−𝑑𝑤𝑖𝑛𝑠

𝑖 +  𝑡𝑗
−𝑑𝑙𝑜𝑠𝑠𝑒𝑠

𝑗 +  𝑡𝑘
−𝑑𝑑𝑟𝑎𝑤𝑠

𝑘

  (1) 
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Next, we estimate the change in probability of 

attack given a signal from a truthful block. Therefore, 

we need to make an additional assumption as to how 

wins and losses impact choice. We assume that the 

attacker will follow the same decision-making process, 

keeping the same format reflecting probability 

matching behavior: 

𝑃𝑎𝑠𝑠
𝑛𝑜𝑤  𝐴 𝑆 =

 𝑡𝑖
−𝑑𝑤𝑖𝑛𝑠

𝑖  

 𝑡𝑖
−𝑑𝑤𝑖𝑛𝑠

𝑖 +  𝑡𝑗
−𝑑𝑙𝑜𝑠𝑠𝑒𝑠

𝑗

  (2) 

The impact of a truthful block of size b on 

𝑃𝑎𝑠𝑠
𝑛𝑜𝑤  𝐴 𝑆    results in a new estimate 𝑃𝑎𝑠𝑠

𝑡ℎ𝑒𝑛  𝐴 𝑆   with 

an expected number 1/3 ∗ 𝑏 ∗ 𝑃𝑒𝑠𝑡
𝑛𝑜𝑤  𝐴 𝑆   of losses 

distributed randomly across the block, where 1/3 is the 

mean probability of sending a signal in a truthful 

block. For the present implementation, the block size b 

is set to 10. This value was chosen as a reasonable 

compromise that provides enough opportunities for 

switching blocks while allowing for enough experience 

within a block to impact behavior. 

The adaptive cognitive signaling scheme is as 

follows: the next block will use a truthful signal if the 

following comparison of the cost in terms of additional 

attacks allowed in the next block is less than its 

benefits (i.e., the number of attacks saved in the 

remaining r trials during the rest of the experiment 

after that block): 

 
1

3
∗ 𝑏 ∗  1 − 𝑃𝑒𝑠𝑡

𝑛𝑜𝑤  𝐴 𝑆                                            

< 𝛼 ∗ 𝑟 ∗  𝑃𝑎𝑠𝑠
𝑛𝑜𝑤  𝐴 𝑆 − 𝑃𝑎𝑠𝑠

𝑡ℎ𝑒𝑛  𝐴 𝑆   
 (3) 

Where 1/3 is the difference in probability of a signal 

being generated between deceptive (66%) and truthful 

blocks (33%), and  is a discount parameter that can 

take any value between 0.0 and 1.0 (default is 1/3). The 

discount parameter is an assumption of how long the 

impact of the truthful block on the probability of attack 

given a signal will persist. If we assume that it will 

persist until the end and all future blocks will be 

deceptive blocks, then the right value would be 2/3 

(i.e., the percentage of trials when a signal is 

generated). If it would persist indefinitely but all future 

blocks are truthful blocks, then that value would be 

1/3. In practice, it will be somewhere between 1/3 and 

2/3 depending of the mix of truthful and deceptive. The 

effect of the signal will dilute over time, so the 

minimum 1/3 is a reasonable default value. 

In summary, the cognitive signaling scheme uses a 

closed form version of the model decision procedure to 

optimize the tradeoff between the cost of building trust 

in the signal using blocks of truthful signals, and the 

benefits of exploiting that trust in future blocks of 

deceptive signals. 

4.1. Cognitive model predictions and human 

performance against cognitive signaling 

The effectiveness of the cognitive signaling scheme 

was examined through cognitive model simulations 

and a human behavioral experiment. The cognitive 

model of the attacker presented above was run through 

1000 simulations against the cognitive signaling 

scheme, and these predictions were then compared to 

performance of human participants. For the human 

experiment, 100 participants were recruited via 

Amazon Mechanical Turk. All participants resided in 

the United States. For completing the experiment and 

submitting a completion code, participants were paid 

$1 plus $0.01 per point earned in the game, up to a 

maximum of $5.50. One participant was removed from 

analysis because of incomplete data due to data 

recording errors, resulting in a final N of 99. For 

brevity, details of the experimental design can be found 

in Cranford et al. [7]. 

As an initial study, all players began with a block 

of truthful signals to establish baseline belief in the 

signal. As before, players played four rounds of trials 

each, with a different set of targets each round. Every 

10 trials overall the algorithm determined whether to 

switch to a different type of block: either using only 

truthful signals or using deception according to the 

peSSE. Figure 6 shows the proportion of players that 

received a truthful block, across each of the 10 blocks 

in the game. The first block is always a truthful block. 

From there, depending on the individual’s behavior, 

the cognitive signaling scheme assigns more truthful or 

deceptive blocks. The second block is always 

deceptive, and the third block is about evenly divided 

between truthful and deceptive. Over time, the 

proportion of truthful blocks declines because the 

estimated reduction in future probability of attack over 

the remaining blocks does not outweigh the near-term 

term costs of the truthful block. Overall, the probability 

of assigning truthful blocks is higher for humans than 

for the model, suggesting that humans are less trusting 

in the signal and more willing to attack. 

 
Figure 6. Proportion of truthful blocks assigned by 

the cognitive signaling scheme per block of 10 trials 
for humans compared to the model. 
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To assess human and model performance, the data 

was analyzed for the probability of attack across trials. 

The probability of attack was calculated as the 

proportion of players that continued the attack on a 

given trial. Figure 7 shows the probability of attack 

across trials for humans compared to the model when 

playing against the cognitive signaling scheme, which 

is compared to human performance when playing 

against the peSSE. Compared to the peSSE, the 

cognitive signaling scheme further reduces the 

probability of attack, but at the expense of giving up 

more attacks in the first block. Because all signals are 

truthful in the first block of the cognitive signaling 

condition, fewer signals are sent to deter attacks 

overall. The effect of an initial truthful block is 

immediately observable by a relatively lower 

probability of attack in trials 10 through 20 (which is 

always a deceptive block), and this trend continues 

through the game. The effect of the cognitive signaling 

scheme is more prominent in the model. As can be 

seen, humans attack more often than predicted by the 

model. Because humans tend to attack more than the 

model, the cognitive signaling scheme also presents 

more truthful blocks to humans (see Figure 6 above). 

To assess the effectiveness of the signaling scheme, 

we examine defender utility. The defender is penalized 

one point every time the player attacks a target that is 

not monitored, and zero points otherwise (e.g., if a 

player attacks a target that is monitored, or does not 

attack). This means, the more often players attack in 

the face of a deceptive signal, the worse will be 

defender utility. Since targets are not monitored 66% 

of trials on average, a defender utility less than -17 

(i.e., >2/3 of 25 trials) means the signaling scheme is 

better than a purely truthful signaling scheme, while a 

utility greater than -9 is ideal (i.e., <1/3 of 25 trials). 

While the cognitive signaling scheme reduces attacks, 

as displayed in Figure 8, defender utility is only 

marginally improved compared to the peSSE and much 

lower compared to model predictions. Compared to the 

model and the peSSE, more truthful signals were given 

to humans overall under cognitive signaling. This 

resulted in fewer signals sent to deter attacks on 

uncovered targets and consequently more free passes to 

attack with impunity, even though overall compliance 

with the signal is increased. 

At first glance, these results indicate that the 

cognitive signaling scheme is not as effective as 

predicted. However, a closer inspection of the results 

revealed that the scheme is effective at influencing 

human behavior beyond the peSSE, for some humans. 

As shown in the histogram in Figure 9, the model fails 

to account for approximately 44% of participants that 

attacked at a rate of 95% or more. However, as shown 

in Figure 10, if we separate participants into two 

Figure 7. Mean probability of attack across trials and 
rounds in the IAG for humans and the model playing 

against the cognitive signaling scheme, which are 
compared to humans playing against the peSSE. 

 
Figure 8. Defender utility for the cognitive signaling 

scheme compared to the peSSE. 

 
Figure 9. Distribution of participants by probability of 

attack for humans compared to the model playing 
the IAG against the cognitive signaling scheme. 

 
Figure 10. Mean probability of attack across trials 

and rounds in the IAG for humans compared to the 
model playing against the cognitive signaling scheme, 

separating humans that attack >=95% and <95%. 
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groups, the model is highly accurate at predicting 

performance of the approximately 56% of participants 

that attack at a rate less than 95%. 

For the participants that attacked at a rate greater 

than 95%, the cognitive signaling scheme did not 

influence behavior even after giving these participants, 

almost exclusively, truthful blocks. Figure 11 shows 

the proportion of truthful blocks assigned per block of 

10 trials for the two separate groups. The cognitive 

signaling scheme presented the same proportion of 

truthful blocks to the model as it did those participants 

that attacked less than 95% of the time. However, the 

scheme continued to present truthful blocks to the 

other group of participants because they continued 

attacking undeterred in the face of a signal. 

 
Figure 11. Proportion of truthful blocks assigned by 
the cognitive signaling scheme per block of 10 trials 
comparing the model to humans that attack >=95% 

and to those that attack <95%. 

As shown in Figure 12, the cognitive signaling 

scheme provides better defense for a subset of humans, 

as indicated by low defender utility values that match 

what was predicted by the model. However, against 

some participants the scheme performs about as poorly 

as would be expected given no signals. 

 
Figure 12. Defender utility for the cognitive signaling 

scheme, comparing the model to humans that 
attack >=95% and to those that attack <95%. 

In fact, in a post-experiment survey that asked an 

open-ended question about what strategy participants 

used when faced with a signal, a majority of 

participants that attacked more than 95% responded 

that they ignored the signal. An informal analysis was 

conducted with two independent coders, and the 

responses were categorized based on the features in 

which decisions were based or the reported actions 

taken. Discrepancies between coders were resolved 

through discussion. The results are presented in Figure 

13 comparing responses of participants that attacked 

greater than 95% to those that attacked less than 95%. 

For the former group, almost 23% reported that they 

ignored the signal while another ~10% reported that 

they always attacked. Approximately 10% reported 

that they stay and continue attacking the same target 

even after suffering a loss, while about 15% switch to 

another target and continue attacking. Meanwhile, for 

the latter group, none reported that they ignore the 

signal, while approximately 20% reported that they 

withdraw in the face of a signal, and ~12% withdraw if 

the monitoring probability was high. Overall, the 

survey results show that some participants ignore the 

signal and treat all instances equally. This means that 

the signaling scheme will not be effective against these 

participants because the expected value of attacking 

given a signal is combined with the expected value of 

attacking given no signal. Therefore, with only 2 

analysts, the overall expected values would be positive, 

resulting in constant attacks. 

 
Figure 13. Distribution of reported attack strategies 

in the IAG for humans that attack >=95% 
compared to those that attack < 95%. 

Based on these findings, we created a version of the 

cognitive model that does not consider the signal when 

generating an expected outcome of attacking the 

selected target. For this version, blending samples 

equally across past instances regardless of the signal, 

and so only recency and frequency of past instances 

play a role in decisions. The model attacks on 96.0% of 

trials (SD = 15.1%), with 54% of simulations attacking 

100% of trials and 35.8% attacking greater than 95%, 

matching well to the distribution shown in Figure 9 of 

the humans that attack >=95%, and the other measures 

(see Figures 10-12). These results stress the importance 

of understanding the features that individuals consider 

in their decisions, since one’s representation of the 

decision context strongly influences the chosen action. 
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5. General Discussion 

In this paper, we improved upon traditional game-

theoretic signaling schemes for cyber defense using a 

computational model of human cognition. The peSSE 

signaling scheme offers effective defense against 

boundedly rational human adversaries compared to not 

signaling. However, the algorithm optimizes the rate of 

deception for perfectly rational adversaries, which 

results in a static scheme that is not personalized to 

individual attackers. Through experimentation and 

cognitive modeling, we learned how humans respond 

to deceptive signals, and developed a cognitive 

signaling scheme that is adaptive and based on 

cognitive principles. Cognitive model predictions 

showed that the solution is promising at further 

influencing human behavior beyond the capabilities of 

the peSSE. These predictions were verified in human 

experiments, and the results helped shed additional 

light on individual differences in human behavior. 

The cognitive model predicts human decisions are 

made by aggregated retrieval across past experiences 

based on the similarity to the current situation [16]. 

These decisions are influenced by frequency and 

recency of past experiences, cognitive biases, and 

representation of information in memory. These are the 

core assumptions for the cognitive signaling scheme. 

Two key insights gleaned from the cognitive model 

regarding human behavior, are that: (1) decisions are 

highly affected by confirmation bias, and (2) it is 

important to consider what features the individual 

factors in their decision. The cognitive signaling 

scheme leveraged this information to induce bias and 

influence human behavior. Specifically, by relying on 

observations of actual human behavior, the cognitive 

signaling scheme estimated the probability of attack 

given a signal and, if it was too high, would send only 

truthful signals for a period of time in an attempt to 

rebuild trust in the signal and ultimately increase 

compliance. Continued attacks given truthful signals 

should strengthen the expectation that attacking in the 

future, given a signal, will result in a loss. 

An open question for the cognitive signaling 

scheme is how long do we need to display truthful 

signals to regain trust, and thus compliance? Currently, 

the approach gives up some attacks early on with an 

initial truthful block, but this is done in order to 

increase belief in the signal for the rest of the 

experiment. The algorithm only determines whether to 

switch to a different type of signal after a block of 10 

trials. Ten is a reasonable value, but the algorithm 

could be called as often as every trial. The implications 

of this are unclear at this point. It could result in too 

few truthful signals in a row to impact behavior, or it 

could help further personalize the scheme so that it is 

better adapted to the individual. Future research is 

aimed at exploring ways to optimize the proportion of 

truthful to deceptive signals over a period of time. 

Cranford et al. [7] showed that humans seem to 

ignore the context of the selected target, and only 

consider the signal when making decisions of whether 

to continue to attack. This insight allowed us to 

simplify the cognitive signaling scheme and focus on 

reducing the overall probability of attack given a 

signal, and not need to take into account individual 

target values. Afterall, the SSE normalizes targets, so 

their expected values are equal [10]. 

An important observation from the human 

experiments was that the cognitive signaling scheme is 

only effective for some participants, while others seem 

to ignore the signal when making decisions. This 

further highlights the importance of accurately 

representing decision features. For participants that do 

not consider the signal, all targets are treated equally. 

Thus, trying to reduce the probability of attack given a 

signal by adjusting the rate of deception may prove 

fruitless when the overall expected values are positive 

for all targets. An alternative, method to combat such 

adversaries could be to shift coverage instead of, or in 

addition to, adjusting the rate of deception. For 

example, while it might be difficult or impossible to 

extract attack preferences to influence behavior, it 

might be possible to extract selection preferences and 

shift coverage to induce more experiences of loss given 

a signal. Driving the expected value of attacking to 

negative values could result in attackers starting to pay 

attention to the signal, which in turn would raise the 

effectiveness of cognitive signaling. Future research is 

aimed at exploring the potential of this method. 

Another limitation of the current approach is that it 

relies only on deceiving when given a signal. 

Meanwhile, players can attack with impunity when no 

signal is presented. An alternative approach is to use 

deception two ways, when a signal is present and when 

it is absent. In this way, the attacker can lose points 

when a signal is absent, instilling further uncertainty in 

their decisions. In fact, recent research explored several 

game-theoretic algorithms that employ two-way 

deception that proved better than one-way deception 

against human participants [1]. Future research is 

aimed at exploring the potential of using two-way 

deception in the current cognitive signaling approach. 

We have already used two-way deception in an 

alternative cognitive signal scheme, but it has not been 

tested against human participants [6]. In that scheme, 

the cognitive model is used to trace human behavior in 

real time to make predictions about the human’s 

probability of attack given a signal, and determines on 

a trial-to-trial basis whether to give a signal based on 

the underlying coverage. The scheme shows potential, 
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and the use of two-way signaling is an enhancement 

over the current approach. Where the current approach 

stands out is in the fact that it is a closed-form solution 

that relies on a simplified version of the cognitive 

model to make predictions of individual behavior. 

However, there is room to refine the current cognitive 

signaling approach through the discount parameter, the 

size of the truthful block, and the assumptions 

concerning the likelihood of various coverage 

conditions. Future research will further explore the 

complexities of the cognitive signaling scheme. 

One caveat to these approaches is that they rely on 

observing and tracking an individual’s behavior. In the 

real world, it may prove difficult if not impossible to 

track all, or even some, of an adversary’s actions. 

Luckily the methods are robust and can be tailored to a 

population, sub-group, or even a time-window of 

attacks. While not as effective as at the individual 

level, such a method could still reliably influence 

human behavior. 

In conclusion, we have outlined an initial approach 

to deceptive signaling for cyber defense that relies on 

cognitive models of attacker behavior to balance the 

rate of deception in an attempt to keep belief in the 

signal high. The cognitive signaling scheme is adaptive 

and personalized, and can therefore be used to induce 

biases and influence attackers to comply with the 

signal beyond the capabilities of any static scheme. 

Future research is aimed at improving upon the current 

cognitive signaling scheme. 
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