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During the network reconnaissance process, attackers scan the network to gather information before
launching an attack. This is a good chance for defenders to use deception and disrupt the attacker’s
learning process. In this paper, we present an exploratory experiment to test the effectiveness of a
masking strategy (compared to a random masking strategy) to reduce the utility of attackers. A
total of 30 human participants (in the role of attackers) are randomly assigned to one of the two
experimental conditions: Optimal or Random (15 in each condition). Attackers appeared to be more
successful in launching attacks in the optimal condition compared to the random condition but the
total score of attackers was not different from the random masking strategy. Most importantly,
we found a generalized tendency to act according to the certainty bias (or risk aversion). These
observations will help to improve the current state-of-the-art masking algorithms of cyberdefense.

INTRODUCTION

Just like in physical war, in cyber war deception is
an important weapon. The art of war is the art of decep-
tion used by attackers as well as defenders (Griffith, 1963).
Cyber attackers master deception quite well; they use vari-
ous deception techniques such as frequently changing mal-
ware signatures, concealing code, encrypting exploits, and
deceiving the end-user through social engineering attacks
such as Phishing. Similarly, cyber defenders rely on many
cyber deception techniques (Gonzalez et al., 2020). De-
coys (e.g., honeypots) are commonly used to lure attackers
(Aggarwal et al., 2016; Ferguson-Walter et al., 2017), and
they have been effective in gathering information about
attacker’s tactics and to catch illicit activity or assist in
slowing attackers down (Spitzner, 2003).

Network reconnaissance is the first step in the cyber kill
chain cycle (i.e., involving reconnaissance, lateral move-
ment, and exploitation), where attackers gather informa-
tion about a target before an attack is executed. During
reconnaissance, attackers use different scanning tools (e.g.,
Nmap, Nessus, Nikto, etc.) to learn about the network in-
frastructure, services and vulnerabilities. These scanning
tools provide information such as number of systems and
their connections, Operating System, and ports and ser-
vices in the network.

Cyber defenders can use ”masking” as a cyberdecep-
tion technique during reconnaissance; changing the config-
uration provided, instead of providing the truthful network
configuration (Al-Shaer et al., 2019)). Masking is a form of
camouflaging the systems’ attributes to disguise valuable
information. The goal of these techniques is to increase
the attacker’s time spent in planning and compromising
the network. The major research challenge is to deter-
mine how to accomplish masking in order to minimize the
expected losses from an attack.

Past research used game-theoretic solutions to design

efficient masking algorithms (Schlenker et al., 2018; Wang
& Zeng, 2018). Specifically, Schlenker et al. (2018) de-
veloped a zero-sum Stackelberg game intended to design
an optimal association of systems’ true configurations into
observed configurations that minimize the utility of the
adversary. This “Masking Strategy”, is designed to op-
timize how the network will deceptively respond to the
adversary’s actions during reconnaissance. The optimal
strategy was tested against synthetic “powerful” (i.e., who
is fully aware of how the defender masks the information
during reconnaissance) and naive adversaries (i.e., an ad-
versary with a fixed set of preferences over the observed
information), none of which exist in reality.

In this paper, we evaluate such optimal masking strat-
egy against human adversaries. We also compare human
performance in the optimal strategy against a random
masking strategy. We evaluate these masking strategies in
an experiment implemented on CyberVAN (Chadha et al.,
2016), a realistic testbed that helps simulate the masking
techniques in a virtual network. Our main contribution is
to provide a first evaluation of such a masking algorithm,
and initial base-level human performance in order to im-
prove these algorithms in future work.

MASKING STRATEGY

Schlenker et al. (2018) proposed an optimal defense
masking strategy to be used during reconnaissance in order
to respond to requests from the adversary. Their algorithm
is based on a zero-sum Stackelberg game model, in which
the defender configures the network with a deception strat-
egy (i.e., how the systems should respond to scan queries
from an attacker) and the attacker scans the network and
chooses a system to attack based on the system’s responses.
The defense algorithm assumes the worst-case scenario for
the attacker’s response, i.e., considers the minimum utility
that a particular deception strategy would yield, and con-



sequently, aims to compute the strategy that maximizes
such utility. The authors show that this problem is NP-
hard and provide a mixed-integer linear program to com-
pute the optimal solution (see (Schlenker et al., 2018) for
details on their algorithm).

The essence of this masking strategy is in how systems’
true configurations (TCs) are masked into observable con-
figurations (OCs) under the feasibility constraints. Each
system in the network has attributes: an operating sys-
tem, port numbers, services hosted, service versions, etc.,
and an associated utility that defines how attractive this
system is to the adversary. The defender masks the true
features of the system with different observable features us-
ing Honeyd services. When the adversary attempts to gain
information about every system on the network, via probes
and scans, the adversary observes certain attributes, which
constitute the observable configuration (OC) of the system.

Figure 1: Masking Scenario

Figure 1 shows a masking scenario where the attacker
is trying to exploit a NGINX webserver. If there was no
masking in the network, the attacker would be able to scan
all the machines and easily find the NGINX service. How-
ever, the defender may modify the observable features of
the network nodes, so that when the adversary scans the
machines, the features observed will be different than the
real ones. Thus, in order to exploit the actual NGINX
webserver, the adversary will need to use the exploit on all
the machines. This will increase the time and effort the ad-
versary spends during reconnaissance, and it will increase
the chances for the defender to detect the irregularities of
the activity.

The defender strategy determines how many of the sys-
tems having TCs should be assigned the OCs; that is, the
strategy is represented by a matrix (Φ) with the number
of systems having TCs and OCs. We modified the optimal
masking algorithm defined by (Schlenker et al., 2018) to in-
clude the decision to select the exploit in order to generate
the Φ matrices used in our experiment. Given the defender
strategy Φ, if the attacker attacks using an exploit for TC
i on a machine masked with OC j, the attack is successful
if the attacked machine is among the Φij machines of TC
i masked by OC j. Since OC j masks

∑
i Φij machines in

total, the success probability is
Φij∑
i Φij

and consequently,

the expected attacker utility is

u(Φ, i, j) =
Φij∑
i Φij

vi. (1)

A rational attacker attacks a pair (i, j) that maximizes the
expected utility.

EXPERIMENT

We conducted an exploratory experiment using the Cyber
Virtual Ad hoc Network (CyberVAN) testbed (Chadha et
al., 2016). CyberVAN is capable of creating network sce-
narios using virtual machines which could be controlled
by either GUI or commands on a console. A major ad-
vantage of CyberVAN is that, it is possible to conduct
human-in-the-loop studies for validating various defense
algorithms. Specifically CyberVAN can be used to imple-
ment various deception tactics, including masking (e.g.,
by hiding/faking the configuration of nodes) and decoy-
ing (e.g., by using honeypots, honeynets, honeytokens,
etc.). In this experiment, we used CyberVAN to imple-
ment masking strategies and test their effectiveness against
human participants (in the role of attackers).

Experimental Design

This experiment had 2 between-subjects conditions defined
by the defense masking strategy: (1) the optimal masking
and (2) random masking. The Random Strategy involved
the random allocation of TCs to OCs and the Optimal
Strategy strategy involved the generation of the Φ matrices
according to the algorithm defined above, which minimizes
the utility of the perfectly rational attacker and reduces the
expected losses for defenders against rational attacker.

Task

Using CyberVAN we manipulated the features of TCs us-
ing the Φ matrices produced by the optimal masking and
random masking algorithms. TCs of virtual machines are
masked to fake OCs using Honeyd service in CyberVAN.
The Honeyd configuration file masks the operating systems
and ports of TCs with OCs to fool the network scanning
tools (Provos, 2003).

The task consists of 5 rounds (plus 1 practice round)
and each round consists of 12 virtual machines. The con-
figuration of virtual machines was different in each round.
Each round consists of two phases: exploration phase and
exploitation phase. During the exploration phase, partici-
pants probe the machines using Nmap command to obtain
information of the open ports, operating systems, and run-
ning services. Participants are free to probe any machines
in any order. The response from Nmap command may or
may not represent the true configurations on the machine.
Once participants explore the network and learn the fea-
tures of network (where some of machines were masked ac-
cordingly), they decide which machine to attack and what
type of exploit to use to conduct the attack. Each true
configuration has a utility associated with it, which is in



points currency (Table 1). The utility of TCs is the same
across all 5 rounds. Participants earned the sum of the
points accumulated across the 5 rounds, which were trans-
lated into dollars.

Table 1. Utility per True Configuration

Configuration Exploit Utility
Slackware slackware 2

Xbox xbox 2
Ubuntu8 ubuntu8 5

Windows XP embedded winxpemb 6
Avayagw avayagw 6
Freebsd freebsd 8

Windows XP winxp 8
Windows 2008 win2008 8
Windows 2000 win2k 15
Windows 7 Pro win7pro 15

Windows 7 enterprise win7ent 15
Openwrt openwrt 15

Participants were provided with a matrix Φ that de-
scribes the type and number of machines present in the
network (TC) and their corresponding masked configura-
tion (OC). Figure 2 presents an example of the matrix Φ
in the Optimal and Random conditions. To help inter-
pret the matrix, participants were given information re-
garding the way the TCs were mapped into OCs. For
example, in the sample matrix for the Optimal condition,
there are 6 TCs (avayagw, Ubuntu8, Win7pro, Win7ent,
WinXP, Slackware) which are mapped to 3 OCs (freeBSD,
Win7pro, and Ubuntu8). In the given matrix, 5 machines
are shown as freebsd, out of which 3 are actually avayagw
and 2 are Ubuntu8. Participants were allowed to use this
information to calculate their probability of success and
expected utility of attacking a particular machine.

Figure 2: Φ Matrices for Optimal and Random Conditions

Participants

Participants were randomly assigned to one of the two
experimental conditions: Random and Optimal. We col-
lected 30 participants (15 in each condition) (57% male,
Age Mean: 27, SD: 8). About 57% reported having or
pursuing a degree in cybersecurity, 23% bachelor’s degree
in computer science, 13% other STEM degree, 3% a de-
gree in electrical engineering and 3% reported other form
of education. Only 20% participants had no practical cy-
bersecurity experience.

After the successful completion of the experiment, all
participants were paid the base payment of $18. In ad-
dition, for each successful exploit participants received 1

point, which accumulated and were converted to a mon-
etary bonus (conversion rate of 10 points = $1). Partici-
pants could earn up to $7.5 based on their accurate detec-
tion. The average time taken to complete this experiment
was 65 minutes.

Procedure

Participants were recruited through advertisement in
email groups of cybersecurity researchers from Carnegie
Mellon University. To be qualified to participate, partic-
ipants were required to pass an online test of basic cy-
bersecurity knowledge, which included general knowledge
questions such as the definition of honeypots, SQL Injec-
tion attack, firewall, and protocols such as TELNET or
SMTP.

Qualified participants were scheduled to come to a lab-
oratory for individualized sessions of 90 minutes. First,
participants provided informed consent, then they were
asked to watch a video with instructions regarding the goal
of the test and the general procedure. Participants were
also provided with text instructions. Instructions were fol-
lowed with a brief quiz to evaluate their comprehension of
the instructions. They received feedback if they incorrectly
answered a question in the quiz. Once all their questions
were clarified, they were allowed to proceed with the ex-
periment.

Participants were informed that the experiment would
take up to 90 minutes and consisted of six rounds. They
were also provided with a cheat sheet that listed all the
commands required in the task, round wise Φ matrices,
and the utility table. In each round participants were
asked to probe the machines using the command “nmap -
O 192.168.0.100” to retrieve information about open ports
and operating systems on this IP address. They were also
allowed to scan a batch of IP addresses together using
an nmap command like, “nmap -O 192.168.0.100-111”.
After probing the machines, participants were allowed to
calculate the likelihoods of the true configurations of the
machines by looking at the utilities of each of the configu-
rations and the Φ matrices given. Next, using the attack
script, they decided what IP addresses to attack by select-
ing an appropriate exploit. Participants received points
if the exploit used matched with the true configuration;
otherwise, they received zero points. Once they finished
all the rounds, participants were asked to answer to a
demographic questionnaire and asked for their feedback
regarding the experiment.

RESULTS

During the exploration phase, we observed that a ma-
jority of the participants (29 out of 30) scanned all the
computers before launching an attack. Participants chose
to scan by providing the full range of IP addresses avail-
able to them using the Nmap command. Thus, we only
analyzed the exploit actions in the 5 real real rounds.



Success Rate

We calculate the success rate, i.e., out of 5 rounds, on
how many rounds participants used the correct exploit.
Figure 3(left) shows the average success rate for the Op-
timal and Random conditions. Surprisingly, attackers ap-
peared to be more successful when pit against the Opti-
mal algorithm compared to Random condition (suggesting
a loss for the defender). However, this difference was not
statistically significant, F (1, 28) = 2.8, p=0.10). The suc-
cess rate varied within rounds as shown in Figure 4(top).
Participants appeared to be more successful in the Opti-
mal condition compared to the Random in rounds 2 and
4. However, although there was a significant effect of the
round, (F (4, 112) = 4.45, p<0.05), there was no signifi-
cant interaction between condition and round, (F (4, 112)
= 1.37, p=0.24).

Figure 3: Success Rate (left) and Average Points (right)

Figure 4: Round wise success rate (top) and average points
(bottom)

Average points

The average points per condition are shown in Figure
3(right). Interestingly, although attackers in the Optimal
condition appeared to be more successful, they also ob-
tained lower rewards compared to attackers in the Random
condition. Again, this is only a tendency observed, as the
statistical test revealed no significant difference between
the masking conditions, F (1, 28) = 0.65, p=0.43), and
no interaction of condition and round, F (4, 112) = 2.02,
p=0.10). However, again, the round was significant, F (4,
112) = 5.35, p<0.001). The dotted lines in Figure 3(right)
represent the expected utility of a rational attacker aver-
aged over all the rounds. Overall, human attackers earned

less points in both conditions compared to what a rational
attacker would earn.

Figure 4(bottom) shows the average points per round.
Participants earned more points in the optimal compared
to the random condition in rounds 2 and 4; and except in
round 4, human attackers earned less points in both con-
ditions, compared to what a rational attacker would earn.

Distribution of Attacks on True Configurations

To investigate the underlying reasons for the observed
human behavior, we looked at the distribution of attacks
on TCs in each round, according to their probability of
success and their expected utility. Figure 5 presents the
attack distributions on the TC machines, sorted by their
expected utility (left-most bar in each round is the TC ma-
chine with the lowest expected utility and the right-most
bar in each round is the machine with the highest expected
utility). The payoffs and probability of success for each TC
machine are shown on the top of the bars (payoff, proba-
bility).

We observe that frequently attacked TC machines were
not necessarily those with the maximum expected expected
utility. For example, in round 1 of the Optimal condition,
the most commonly attacked TC machine was the one with
the lowest expected utility. In other rounds the expected
utility did not seem to matter significantly. For example,
round 5 of the Optimal algorithm and round 1 of the Ran-
dom algorithm, do not show any remarkable preference.
The pattern emerging from this analysis is that, in many
cases, participants preferred to attack TC machines that
had higher probability of success even if the outcome of
those machines was lower than the outcomes of other ma-
chines. For example, in round 1 of the optimal condition,
most participants chose to attack on “slackware” machine
which has a success probability of 1, but the lowest pay-
off (i.e., 2 points) among all the machines. In round 2,
3, and round 4 also attackers chose to attack the TC ma-
chines with high probability of success. A similar pattern
in which participants tend to attack the machine with the
highest probability of success is observed in the Random
condition.

DISCUSSION

To our knowledge, this is the first formal study con-
ducted to verify the potential effectiveness of masking as a
deception technique against human attackers in cybersecu-
rity situations. A proposed masking algorithm of defense
was compared to a random masking mapping. We observe
that the Optimal algorithm tends to lead to more success-
ful attacks but also to lower attacker’s rewards compared
to the Random algorithm. Also, generally human attack-
ers’ rewards are lower than the expected rational attackers’
rewards.

A more detailed analysis of the attack decisions re-
vealed that participants acted in agreement to a certainty
bias (Baron et al., 1988), or risk aversion, as they tried



Figure 5: Attack Distribution on True Configuration: Sorted by Expected Utility

to attack machines where the probability of success was
high, even when the potential reward was low. This con-
crete observation from our action data was supported by
a post-experiment questionnaire where participants men-
tioned that they calculated probabilities before launching
an attack.

Although the current study provides interesting in-
sights, more research is required to generalize these obser-
vations to real-world cyberdefense applications. Realistic
cyberdefense situations are extremely complicated, and of-
ten give more time to attackers for the reconnaissance. In
this study the scenario is an oversimplification of realistic
situations, and it relied on some unrealistic assumptions.
For example, that the attackers had information about
the mapping of true configurations to observable config-
urations of the machines, which real attackers are unlikely
to have; we gave participants only 90 minutes to complete
the task with a limited set of tools, and they could not use
advanced commands and tools to verify if the Nmap output
was correct or not. However, as it is expected from labo-
ratory experiments, the real benefit is that we can study
the cause-effect relationships between the treatment (e.g.,
masking algorithm) and the human behavior.

Our results provide some guidance to improve current
state-of-the-art masking algorithms of cyberdefense. The
masking strategies may be more effective by considering
the risk-aversion tendency found in this study. We will
also continue elaborating in this experimental approach
by running laboratory experiments that address the var-
ious limitations of the current study. In the near future,
we plan to develop a cognitive model that replicates at-
tacker’s behavior in this study. Using Instance Based
Learning Theory (Gonzalez et al., 2003), we can gener-
ate a computational representation of attacker’s decisions.
Such model, could be used to generate large amounts of
synthetic data, which could be useful to test the new
masking strategies, and offset the costs of human experi-
mentation in such complex scenarios.
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