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Objective:  We aim to learn about the cognitive mecha-
nisms governing the decisions of attackers and defenders in cy-
bersecurity involving intrusion detection systems (IDSs).

Background:  Prior research has experimentally studied 
the role of the presence and accuracy of IDS alerts on attack-
er’s and defender’s decisions using a game-theoretic approach. 
However, little is known about the cognitive mechanisms that 
govern these decisions.

Method:  To investigate the cognitive mechanisms govern-
ing the attacker’s and defender’s decisions in the presence of 
IDSs of different accuracies, instance-based learning (IBL) mod-
els were developed. One model (NIDS) disregarded the IDS 
alerts and one model (IDS) considered them in the instance 
structure. Both the IDS and NIDS models were trained in an 
existing dataset where IDSs were either absent or present and 
they possessed different accuracies. The calibrated IDS model 
was tested in a newly collected test dataset where IDSs were 
present 50% of the time and they possessed different accuracies.

Results:  Both the IDS and NIDS models were able to ac-
count for human decisions in the training dataset, where IDS 
was absent or present and it possessed different accuracies. 
However, the IDS model could accurately predict the decision-
making in only one of the several IDS accuracy conditions in the 
test dataset.

Conclusions:  Cognitive models like IBL may provide some 
insights regarding the cognitive mechanisms governing the deci-
sions of attackers and defenders in conditions not involving IDSs 
or IDSs of different accuracies.

Application:  IBL models may be helpful for penetra-
tion testing exercises in scenarios involving IDSs of different 
accuracies.

Keywords: cybersecurity, behavioral game theory, 
instance-based learning theory, alerts

INTRODUCTION

There is a need for better decision support tools 
in an increasingly complex cybersecurity world, 
where large amounts of data are collected by net-
work sensors while defender’s cognitive abilities 
are limited (Gonzalez et  al., 2014; Sawyer & 
Hancock, 2018; Sawyer et al., 2015). An import-
ant technology that may help support defender’s 
detection of threats is the intrusion detection sys-
tem (IDS; Bhatt et  al., 2011; Mukherjee et  al., 
1994). IDSs provide the human defender with 
alerts that may signal potential cyberattacks. 
Although IDSs may reduce the workload of 
defenders in cyber threats detection, they are also 
prone to inaccuracies such as false alarms and 
misses (Jajodia et al., 2010; Roy et al., 2010). In 
fact, false and negative information from IDSs 
and the associated mental workload on defend-
ers may severely influence their decision-making 
(Finomore et al., 2013; Mancuso et al., 2013).

Prior human factors research has found 
alerts, alarms, and decision aids to be an import-
ant component of decision-making processes 
(Meyer et  al., 2014). People often trust alerts 
and rely and comply with them to make deci-
sions (Meyer, 2004). Compliance is the ten-
dency to respond as if there is a problem when 
an alert is generated, for example, defending the 
network when the IDS generates an alert for a 
cyber threat. However, reliance is a tendency to 
continue with the normal activity when an alert 
is absent, for example, not defending the net-
work when the IDS does not generate any alerts. 
Sometimes, alerts may have inaccuracies such 
as misses and false alarms, which could affect 
reliance and compliance differently. Human fac-
tors research has investigated how inaccuracies 
in general alarm systems affects human reliance 

https://orcid.org/0000-0003-2488-8959
mailto:aggarwalpalvi12@gmail.com
mailto:aggarwalpalvi12@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0018720820945425&domain=pdf&date_stamp=2020-09-20


Month XXXX - Human Factors2

and compliance on such systems (Chancey 
et  al., 2017; Wiczorek et  al., 2014; Wiczorek 
& Meyer, 2016). For example, Wiczorek and 
Meyer (2016) found that alarm systems’ false 
alarms and misses create an asymmetry bias as 
false alarms affect both compliance and reli-
ance; however, misses affect only reliance and 
not compliance.

In this research, we aim at advancing our 
understanding about the cognitive mecha-
nisms underlying the decisions of attackers 
and defenders when relying on the alerts of 
an IDS-like system in a cybersecurity con-
text. Specifically, we use computational cog-
nitive models to emulate the process by which 
humans make decisions in the presence of alerts 
of diverse accuracy in a two-player cybersecu-
rity game. The cognitive models developed help 
elucidate the mechanisms involved in trusting 
alerts while making attack or defend decisions 
in a cybersecurity setting.

BACKGROUND

The current research relies and advances 
the research from Dutt et al. (2016) (hereafter, 
DMG). DMG studied the impact of presence 
and accuracy of IDS alerts on attacker’s and 
defender’s decisions in a two-person game. 
DMG varied the availability of IDS alerts as 
well as the accuracy of IDS alerts when IDS 
was present. When IDSs were absent, there 
were no IDS alerts; whereas, when IDSs were 
present, they generated alerts against the hack-
er’s actions (i.e., attack or not-attack). These 
alerts were of various accuracies, where IDSs 
correctly alerted defenders about cyberattacks 
or no-attacks on 10%, 50%, or 90% of the tri-
als. DMG found that the proportion of defend 
actions was similar when IDS was absent and 
when it was only 50% accurate. However, the 
proportion of defend actions was reduced when 
the IDS was mostly inaccurate (10% accuracy) 
or very accurate (90% accuracy). The propor-
tion of attack actions were similar across all 
conditions.

The human factors literature (e.g., Bliss et al., 
2002; Meyer, 2004) would suggest that results 
from DMG show reliance and compliance with 
IDS alerts when they are accurate and show 

mistrust by taking the reverse action when IDS 
alerts are inaccurate. Contrary to defenders, 
attackers do not get IDS alerts, but they receive 
“feedback” regarding the success of their attacks 
and what an IDS is potentially reporting to 
the defender. In DMG’s results, the attackers 
reduced their attack actions when the IDS alerts 
were highly accurate. Attackers were able to 
learn when the defender relied on highly accu-
rate IDS alerts and acted accordingly to reduce 
their attack actions in the fear of being caught.

In the current research, we will try to explain 
and advance DMG’s findings in three ways. 
First, we use a theoretical perspective of deci-
sions from experience, building cognitive mod-
els that represent the attacker’s and defender’s 
decision processes; specifically, we aim at 
explaining why the proportion of defend actions 
were reduced when IDSs were highly accurate 
and IDSs were highly inaccurate, and why the 
attack proportions reduced when IDS alerts 
were highly accurate. We develop a cognitive 
model based on instance-based learning theory 
(IBLT; Gonzalez & Dutt, 2011; Gonzalez et al., 
2003), a theory of decisions from experience, 
to help explain the decisions made by attackers 
and defenders, while accounting for the inaccu-
racies or unavailability of IDS alert systems.

Second, we use the data collected in Dutt 
et  al. (2016) to calibrate the IBL models and 
their cognitive parameters and compare the 
model’s attack and defend actions to those 
from the human participants in DMG. Third, 
to demonstrate that this is not simply an over-
fitting exercise of model to human data, we test 
the generalization of the model’s predictions in 
a newly collected dataset. However, to address 
some of the limitations of the DMG design, our 
new experiment involved a slightly different 
scenario where the IDS was only available on 
50% trials with different levels of accuracies.

THE IDS GAME

The goal of both attackers and defend-
ers in the DMG’s IDS game was to maximize 
their payoffs in the task. In this game, first, 
the attacker (hacker) made a choice to attack 
or not-attack a network. The attacker’s choice 
triggered an IDS alert (when IDS is present) for 



Modeling Decisions in a Cybersecurity Game Involving Alerts 3

defenders (analysts) indicating whether the net-
work event was a cyber threat or not. Based on 
IDS alerts, defenders made a choice to defend 
or not defend the network. Once the defender 
had made her choice, both players were pro-
vided with information about the actions taken 
and payoffs obtained for both players, IDS alerts 
from the previous trial (if IDS was present), and 
the players’ own cumulative payoff (opponent’s 
cumulative payoff was not shown; Figure  1). 
The attackers knew whether the IDS was active 

or not and it was accurate or not accurate at the 
time of feedback.

When attackers and defenders took not-attack 
and not-defend actions respectively, then both 
players received 0 points. However, if attack-
ers took attack actions while defenders took 
not-defend actions, then attackers received +10 
points and defenders −15 points. In contrast, 
if defenders took defend actions and attackers 
took not-attack actions, then attackers received 
0 points and defenders −5 points. Finally, if the 

Figure 1.  The dynamics of a trial in one of the IDS-present conditions in the cybersecurity game. The arrows 
indicate the sequence of events in a trial involving an attacker (hacker) and a defender (analyst). IDS = Intrusion 
Detection System. Source. Dutt et al. (2016).
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defenders took defend actions while attackers 
took attack actions, then attackers received −5 
points and defenders +5 points (Figure 2).

TRAINING AND TEST DATASETS
The training dataset was collected by Dutt 

et  al. (2016) using the IDS game above. We 
used their data set for model parameter calibra-
tion. The test dataset was newly collected in this 
research for the purpose of testing the calibrated 
models in novel IDS scenarios.

Training Dataset
DMG experimentally investigated the impact 

of the presence and accuracy of IDS alerts on 
decision-making in a simulated two-player cyber-
security game. The presence of IDS was varied 
as IDS absent or IDS present and the accuracy 
was varied as 10% accurate, 50% accurate, and 
90% accurate. In the experiment, participants 
were randomly paired together to act as attackers 
or defenders. They were assigned to one of the 
following four between-subject conditions over 
100 trials: IDS-absent (N = 20 pairs) IDS-present 

(accuracy: 10 %, N = 25 pairs; 50%, N = 29 pairs; 
and 90%, N = 26 pairs) to make attack-and-defend 
decisions. Figure  3 reproduces the proportion 
of attack and defend actions by human partici-
pants and Nash equilibrium reported originally 
in DMG. In this figure, the dependent variable 
(y-axis) was computed by first coding the attack/
defend action as 1.0 and not-attack/not-defend as 
0.0 for each participant and each trial. Next, the 
proportion of attack/defend actions were com-
puted by averaging the 1.0s and .0s across all 

Figure 2.  Payoff matrix in a security game played 
repeatedly between a hacker and an analyst.

Figure 3.  The average proportion of attack or defend actions in human data across different between-subject 
conditions. The dotted lines show the proportion of optimal Nash actions. Source Dutt et al. (2016).
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trials and participants in each condition. Ideally, 
a smaller proportion of attack actions and a larger 
proportion of defend actions is desirable as this 
combination reduces cyberattacks.

As seen in Figure 3, the defend proportions were 
similar when the IDS was absent (0.63) and when 
it was 50% accurate (0.60). However, the defend 
proportions reduced when the IDS was present 
and when it was either inaccurate (10% accurate; 
0.46) or accurate (90% accurate; 0.29) compared 
to when IDS was absent (0.63). The attack propor-
tions were not influenced by the IDS’s presence 
and accuracy. In a majority of the conditions, the 
human proportions deviated from the optimal Nash 
actions (dotted lines; reported in Aggarwal et al., 
2018; Dutt et al., 2016).

We also analyzed the proportion of attack 
and defend actions as a function of IDS alerts 
(Figure 4). When IDS was inaccurate (10% accu-
racy), both attacker and defender took more (less) 
attack and defend actions when IDS reported a non-
threat (threat). As the accuracy of IDS increased, 
the proportion of defend and attack actions reduced 
(increased) when IDS alert reported nonthreat 
(threat).

Test Dataset

DMG only considered the situations where 
IDSs were either completely present or absent. 
We conducted a new study in this research 
where the IDS was present randomly in only 
50% of the trials with an overall accuracy of 
10%, 50%, and 90%. Other procedures were 
same as those in DMG. Thus, this dataset rep-
resents a mixture of two experimental training 
conditions, where the IDS was present in some 
trials and absent in others.

Experimental design and procedures.  In 
the test dataset, 136 Amazon MTurk partici-
pants performed the task and were randomly 
paired together to act as attackers or defenders. 
They were assigned to one of the following three 
between-subjects IDS conditions over 100 trials: 
10% accurate (N = 22 pairs), 50% accurate (N = 
21 pairs); and 90% accurate (N = 25 pairs).

Across all conditions, the IDS was present in 
only 50% of the trials. In trials where the IDS 
was not present, the IDS alerts were not avail-
able to both players. The study was approved 
by respective committees at the Indian Institute 

Figure 4.  The proportion of defend and attack actions when the IDS issued an alert (threat) and when it did not 
(nonthreat) in the training dataset.
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of Technology Mandi and Carnegie Mellon 
University. Participation was completely vol-
untary and participants signed a consent form 
before starting their study. All participants were 
from STEM backgrounds and their ages ranged 
from 18 years to 67 years (mean = 34 years; SD 
= 11 years).

Results
Similar to the results from DMG in the train-

ing dataset, we found that the proportion of 
attack actions for human participants were sim-
ilar in all three IDS accuracy conditions in the 
test dataset (Figure 5). Similarly, the proportion 
of defend actions reduced when the IDS was 
90% accurate compared to when it was 50% 
accurate. However, unlike the training dataset, 
the proportion of defend actions was similar in 
conditions when the IDS was 10% accurate and 
50% accurate.

The proportion of attack and defend actions 
as a function of IDS alerts in test dataset showed 
similar results as the training data set (Figure 6). 
When the IDS was inaccurate (10% accuracy), 
both attacker and defender took more (less) 
attack and defend actions when the IDS alert 

reported nonthreat (threat). As the accuracy of 
IDS increased from 10% to 50% and 90%, the 
proportion of defend and attack actions reduced 
(increased) when IDS alert reported nonthreat 
(threat).

AN INSTANCE-BASED MODEL OF 
BINARY CHOICE

We developed cognitive models of defender 
and attacker using an IBL model of binary 
choice (Dutt et  al., 2013; Gonzalez & Dutt, 
2011; Lejarraga et  al., 2012). IBL models use 
the formalization of the memory mechanisms 
from the adaptive control of thought-rational 
(ACT-R) cognitive architecture (Anderson & 
Lebiere, 1998) and the decision process from 
IBLT (Gonzalez et  al., 2003). An instance in 
the IBL model is a unit of experience consisting 
of the situation (attributes of task), the decision 
made in the current situation, and the utility (the 
outcome of choosing an option in the current 
situation). In the IBL model, among all options, 
the option that has the highest expected utility 
(i.e., blended value) is chosen as a decision. The 
blended value ‍Vk,t‍ of option k at trial t is com-
puted using equation (1):

Figure 5.  The average proportion of attack and defend actions in human data across 
different between-subject conditions in the test dataset. The dotted lines show the proportion 
of optimal Nash actions. The Nash proportion when the IDS was absent were 0.20 and 
0.67 for hacker and defender, respectively. The error bars represent a 95% confidence 
interval around the mean value.
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	﻿‍
Vk,t =

n∑
i=1

Pi,k,t ∗ Xi,k,t‍�
(1)

where ‍xi,k,t‍ represents the outcome of an instance 
i for option k at trial t (outcome could be −5, 0, 
+ 5, +10 shown in Figure 2) and ‍pi,k,t‍ represents 
the probability of retrieval of an instance i for 
option k at any trial t (value of k is either to 
attack/defend or to not-attack/not-defend).

The retrieval probability of an instance i 
is the ratio of activation of ith instance corre-
sponding to the activation of all instances (1, 2, 
… n; where n is total instances) created within 
the option k at trial t. The retrieval probability 
is defined as

	﻿‍

Pi,k,t =
eAi,k,t/τ
n∑
i=1

eAi,k,t/τ
‍�

(2)

Here, ‍τ = σ ∗
√
2‍ and σ is a free noise param-

eter. Noise captures the inaccuracy of remem-
bering past experiences from memory. At each 
trial t, activation of an instance i on option k is 
computed as

	
‍
Ai,k,t = ln

( ∑
tp∈{1,,t−1}

(t− tp)−d
)
+ s ∗ ln

(
1−γi,k,t
γi,k,t

)

‍
� (3)

Where d is decay parameter; γi,k,t represents a 
random number drawn from a uniform distribu-
tion between 0 and 1; and tp represents all the 
previous trials where the instance i was either 
created or its activation was reinforced due to 
its reoccurrence. The numbers of terms in sum-
mation correspond to the frequency of obser-
vations and the difference between two time 
periods correspond to the recency of outcomes. 
The activation of an instance increases with 
frequency and recency of outcomes. For larger 
values of d (>1.0), the model pays more atten-
tion to recent events compared to the smaller 
value of d (<1.0). The noise parameter s helps 
to capture the individual variability in human 
behavior.

IBL Models for Attackers and Defenders
We developed two IBL models: one model 

(NIDS) disregarded the IDS alerts and the 
second model (IDS) considered them in the 
instance structure. In the NIDS model, the situ-
ation part of instances consisted of only actions 
of attackers and defenders without consider-
ation for IDS alerts. In the IDS model, the sit-
uation part of instances consisted of actions of 
attackers, defenders, and IDS alerts. The NIDS 
model was calibrated to data in the IDS-absent 

Figure 6.  The proportion of defend and attack actions when the IDS issued an alert (threat) and when it did 
not (nonthreat) in the test dataset.
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condition and the IDS model was calibrated to 
data in the IDS present conditions.

The models were initialized with two pre-
populated instances for each player (attacker: 
attack/not-attack; defender: defend/not-defend), 
and the IDS alert slot was initialized to no alert. 
The outcome of prepopulated instances was cal-
ibrated in models as free parameters. Both NIDS 
and IDS models used prepopulated instances in 
memory to take decisions in the first few rounds 
(Lejarraga et al., 2012).

Model fitting.  IBL models were created in 
MATLAB® and possessed four free parame-
ters per player: decay d, noise σ, prepopulated 
instance values for attack/defend actions, and 
not-attack/not-defend actions. The model used 
the same number of model agents as of human 
participants to play the role of attackers and 
defenders repeatedly for 100 trials across differ-
ent between-subject conditions.

First, we found the best set of d and s param-
eters and prepopulated instance values in dif-
ferent models using the training dataset. The 
NIDS model was calibrated on IDS-absent 
condition and the IDS model was calibrated on 
IDS-present (10%, 50%, and 90% accuracy) 
conditions in the training dataset. To get the 
optimized parameters, we minimized the sum of 
mean-squared deviations (MSDs), which is the 
squared difference between human and model 
actions. MSDs was computed over the propor-
tion of attack and defend actions separately 
using the following equation:

	﻿‍
MSD = 1

100

100∑
t=1
(Model Actionst − Human Actionst)

2

‍
� (4)

Where, ‍Model Actionst‍ and ‍Human Actionst‍ 
refers to the average proportion of attack or 
defend actions from the model and human data, 
respectively, in trial t (total trials = 100). The 
average proportion of attack or defend actions 
for a trial were computed by averaging these 
actions across all participants for the trial. A 
genetic algorithm (Konak et al., 2006) was used 
to optimize the parameter values for both attacker 
and defender participants in the game. As done 
in prior research (Gonzalez & Dutt, 2011), the 
d and s parameters were varied between 0.0 

and 10.0, and the prepopulated instances were 
varied between 0.0 and 15.0, where the upper 
bound chosen for prepopulated instances was 
much higher compared to the outcomes pos-
sible in the cybersecurity game. These ranges 
ensured that the optimization could capture the 
optimal parameter values with high confidence. 
The genetic algorithm had a population size of 
20, a crossover rate of 80%, and a mutation rate 
of 1%. The algorithm stopped when any of the 
following constraints were met: stall genera-
tions = 200, function tolerance = 1 × 10–8, and 
when the average relative change in the fitness 
function value over 200 stall generations was 
less than function tolerance (1 × 10–8). These 
assumptions are like other studies in literature 
where models have been fitted to human data 
using the genetic algorithm (Aggarwal et  al., 
2017; Sharma & Dutt, 2017).

Furthermore, we generated predictions from 
the IDS models across different conditions in 
the test dataset, and we evaluated the goodness 
of predictions by comparing them to human 
data collected in the test dataset using the MSD. 
For generating predictions, we ran the models in 
the test dataset with matching parameter values 
that were determined in the training dataset. For 
example, the IDS model parameters obtained in 
the training dataset in the 10% accuracy con-
dition were run in the 10% accuracy condition 
in the test dataset (similarly for the other two 
accuracies).

Hypotheses
Based on the IBLT, we propose the following 

hypotheses from the models:

H1: We expect the defender’s model to 
take more defend actions compared to 
not-defend actions, except when guided 
by accurate IDS alerts. In addition, we 
expect the attacker’s model to take less at-
tack actions in all the conditions to avoid 
negative rewards.

H2: We expect the defenders to rely on 
their past experiences when IDS alerts are 
absent (i.e., because these players do not 
have any other source of information to 
rely upon in the absence of IDS alerts). 
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Thus, the NIDS model of defender is 
expected to exhibit low memory decay (d) 
leading to high primacy effect.

H3: We expect the attackers to rely on 
recent actions of defenders to learn if they 
defend more often in the absence of IDS 
alerts (i.e., because attackers do not have 
information about IDS alerts during feed-
back). Thus, the NIDS model of attacker 
is expected to exhibit high memory decay 
(d) leading to recency effect.

H4: We expect the defender to rely more 
on recent information such as IDS alerts 
as the accuracy of IDS alerts increases. 
Thus, the IDS model for defender is 
expected to show higher value of decay 
(d) for IDS 50% and IDS 90% accuracy 
conditions compared to IDS 10% accu-
racy condition.

H5: We expect attackers to always rely on 
recent information to avoid losses. Thus, 
both NIDS and IDS models for attackers 
are expected to show high decay (d) value.

MODEL RESULTS
Training Results

NIDS model.  Figure 7 shows the attack and 
defend proportions from the calibrated NIDS 
model and human participants in the IDS-
absent condition. The model defenders showed 
high defend proportions and the model attack-
ers showed less attack proportions. The model 
behaved in agreement with our hypothesis H1 
and H2. In the absence of IDS alerts, defend-
ers became risk averse and took high defend 
actions to secure the network. This behavior 
of defender made attackers cautious and thus 
the model attacker showed less attack actions. 
Overall, the NIDS model for attackers was more 
accurate in replicating human attacker actions 
(MSD = .0004) compared to human defender’s 
decisions (MSD = .0279). The defend actions 
from NIDS model are comparatively less that 
human defend actions as shown in Figure 7.

Table  1 presents the calibrated parameters 
for attackers and defenders for the NIDS model. 
The d value was higher for attackers compared 
to defenders. These results suggest greater 
reliance on recent information for attackers 

Figure 7.  The proportion of defend and attack actions for the NIDS model and human participants 
in the IDS-absent condition. The error bars represent a 95% confidence interval around the mean.
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compared to defenders. Attackers relied on 
recent actions of defender and defenders relied 
on their past experiences to defend the net-
work. The s value was high for both defenders 
and attackers. Thus, both players showed more 
variability in their trial-to-trial decisions. These 
results agree with hypothesis H5.

IDS model.  Next, we calibrated the IDS 
model in each of the three between-subject con-
ditions in the training dataset, using the proce-
dure described above. Figure 8 shows the attack 
and defend proportions from the IDS model 
and human participants in various conditions. 

As hypothesized in H1, the IDS model showed 
larger (smaller) defend proportions when IDS 
was 50% accurate (10% or 90% accurate). 
These results indicate that inaccurate and 
accurate IDS alerts both create similar results 
for the defender’s actions. In case of accurate 
IDS alerts, defenders relied and complied with 
these alerts. However, in case of inaccurate IDS 
alerts, defenders mistrusted the alerts and took 
the opposite action. Furthermore, as hypoth-
esized in H1, the attack proportions remained 
similar across all conditions. This behavior 
could be explained using cognitive parameters 
of IBL models.

Table 2 shows the MSDs from the IDS model 
in different conditions. The IDS model could 
accurately account for the decisions of both 
defenders and attackers in different IDS-present 
training conditions.

We also analyze the model to check if it 
could account for conditional attack and defend 
actions as reported in Figures  4 and 6 for the 
human data. The model was less accurate at 
accounting for conditional defend actions, that 
is, defend when IDS said threat and defend 
when IDS said nonthreat, in all conditions 
(overall MSD = .076) compared to the other 
results reported above. However, the model 

TABLE 1: NIDS Model Parameters in the  
IDS-Absent Condition

Condition Attacker Defender

IDS absent d1 = 3.10, s2 = 7.10, 
HA

3= 6.80,  
HNA

4 = 14.93, MSD 
= .0004

d = .03, s = 9.98, 
AD

5 = 14.79,  
AND

6 = .07, MSD7 
= .0279

Note. 1The decay parameter. 2The noise parameter. 
3Prepopulated instance value for attack actions. 
4Prepopulated instance value for not-attack actions. 
5Prepopulated instance value for defend actions. 
6Prepopulated instance value for not-defend actions. 
7MSD calculated as mean square deviation between the 
model action proportion and human action proportion.

Figure 8.  The proportion of defend and attack actions for IDS model and human participants in the IDS-
present condition. The error bars represent a 95% confidence interval around the mean. .
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could accurately account for conditional attack 
actions in all conditions (MSD = .005).

Table  3 shows the calibrated parameters 
of IDS model across different conditions in 
the training dataset. As stated in H4 and H5, 
the d value was higher for both attackers and 
defenders across all the conditions except in the 
10% IDS accuracy condition for the defender. 
This signifies that the attacker relied on recent 
actions to decide whether to attack or not. The 
defender’s reliance on recent information was 
high when the accuracy of IDS alerts was high. 
The s value was higher for both attackers and 
defenders in all conditions except for defender 
in the 10% IDS accuracy and for attacker in the 
90% IDS accuracy.

TEST RESULTS
Figure  9 presents the generalization results 

from the IDS model for different IDS accu-
racy conditions in the test dataset. In addition, 

Table 4 presents the MSDs for the IDS model 
predictions using human data in the test dataset.

As seen in Table 4, the MSDs were very low 
when the IDS was 50% accurate. However, 
the MSDs were considerably higher with the 
IDS was 10% and 90% accurate. As seen in 
Figure  9, the model predicted the responses 
for the 50% condition with admirable accu-
racy. However, for the two other conditions, 
the model underestimated the attack and defend 
proportions consistently. In addition, the model 
was less accurate at accounting for conditional 
defend and attack actions across all conditions 
in the test dataset (conditional defend MSD = 
.053; conditional attack MSD = .061).

DISCUSSION AND CONCLUSIONS
We build on DMG’s work and investigate the 

effect of different accuracies on the defender’s 
reliance and compliance on the IDS. We found 
that with increased inaccuracy of the IDS, 
both the reliance and compliance increased. To 
understand the decision processes of human 
defenders and attackers, we use computational 
models and these models were used to predict 
human actions in novel situations.

The NIDS model was calibrated to IDS-
absent data and the resulting parameters sug-
gested two main effects. First, we found more 
reliance on recent actions for attackers com-
pared to defenders. It is possible that defend-
ers acted risk-averse and took more defend 
actions when the IDS was absent. When 
defenders defend excessively, attackers likely 
rely on recent information about their own and 

TABLE 2: MSDs Obtained in the IDS Model in 
Different Conditions in the Training Dataset

Condition Attacker Defender

IDS present 
accuracy = 10%

MSD = .0103 MSD = .0003

IDS present 
accuracy = 50%

MSD = .0030 MSD = .0001

IDS present 
accuracy = 90%

MSD = .0055 MSD = .0067

Note. IDS = Intrusion Detection System;  
MSD = Mean-Squared Deviation.

TABLE 3: Model Parameters in the IDS Model in Different Conditions in the Training Dataset

Condition Attacker Defender

IDS present accuracy = 10% d1 = 9.85, s2 = 2.77, HA
3 = .11,  

HNA
4 = 12.83

d1 = .19, s2 = .62, AD
5 = 12.18, 

AND
6 = 14.99

IDS present accuracy = 50% d1 = 9.69, s2 = 2.34, HA
3 = 8.51, 

HNA
4 = 14.16

d1 = 8.34, s2 = 2.90,  
AD

5 = 14.03, AND
6 = 13.18

IDS present accuracy = 90% d1 = 5.65, s2 = .19, HA
3 = 9.35,  

HNA
4 = 2.52

d1 = 9.90, s2 = 3.65,  
AD

5 = 14.81, AND
6 = 13.90

Note. 1The decay parameter. 2The noise parameter. 3Prepopulated instance value for attack actions. 
4Prepopulated instance value for not-attack actions. 5Prepopulated instance value for defend actions. 
6Prepopulated instance value for not-defend actions.
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their opponent’s actions to decide between 
their attack or not-attack actions, explaining 
the higher recency for attackers compared to 
defenders. Second, we found excessive reli-
ance on recency mechanisms in all conditions 
for both attackers and defenders except for the 
defender when the IDS was 10% accurate. This 
may be explained if attackers and defenders 
relied on the IDS alert information to increase 
their utility. When IDSs were inaccurate (10% 
accurate), the recent experience of IDS alerts 
was unlikely to be solely helpful for defend-
ers to decide their actions. Thus, defenders 

also tended to rely on the historical IDS alerts 
in their memories and experience in order to 
decide their actions. However, for attackers, 
the recent actions of defenders, including the 
recent IDS alerts, likely helped determine their 
actions. When the IDS was accurate (90% 
accurate), defenders tended to rely on recent 
IDS alerts and acted according to these alerts. 
Similarly, the attackers also relied on IDS 
alerts to avoid negative rewards. In contrast, 
when the IDS was 50% accurate, then defend-
ers and attackers likely relied on recent infor-
mation about the actions of their opponents 
during feedback to decide their actions in the 
next round.

We also tested the model in a new dataset where 
IDS alerts were partially available. The IDS model 
could not capture the exact proportions in test data 
particularly for the 10% and 90% accuracy condi-
tions. One likely reason is that the IDS model used 
the recency and noise parameters as those derived 
in the training conditions. Perhaps, the partial 
availability of the IDS in the test data decreased 
attacker’s and defender’s reliance on IDS informa-
tion. Overall, the decay parameter suggests that the 
defenders would heavily rely on IDS alerts to take 
their action if the alerts are accurate and available.

Figure 9.  The prediction of attack and defend proportions from the IDS model and their 
validation from human data collected in the prediction dataset. The error bars represent a 
95% confidence interval around the mean.

TABLE 4: MSDs Obtained in the IDS Model in 
Different Conditions in the Test Dataset

Condition Attacker Defender

IDS present 
accuracy = 10%

MSD = .030 MSD = .023

IDS present 
accuracy = 50%

MSD = .000 MSD = .001

IDS present 
accuracy = 90%

MSD = .039 MSD = .025

Note. IDS = Intrusion Detection System; MSD = 
Mean-Squared Deviation.
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In addition, the IDS model could only capture 
for the proportion of attack actions as a function 
of IDS alerts in only training conditions. It could 
not capture the proportion of defend actions as 
a function of IDS alerts in both training and test 
conditions. This result is likely due to the way the 
model was fitted to the overall proportion of defend 
and attack actions in the training data and due to 
the model’s instance structure that only considered 
the IDS alerts (where humans may also store an 
expectation about the accuracy of the IDSs in their 
memories). Overall, the models could be improved 
in future to account for these observations.

An important implication of this research is that 
cognitive agents may be used against penetration 
testing in networks. However, several improve-
ments to the current models will need to be imple-
mented. For example, the models could be modified 
to capture the overall accuracy of IDS alerts into 
miss rates and false alarm rates, as defenders and 
attackers might behave differently to such miss and 
false alarm rates. In addition to improvements in 
the model, we would also like to study how misses 
and false alarms affect defender’s reliance or com-
pliance on IDS.

Future research may also investigate how 
defenders react to different inaccuracies based 
upon different combinations of miss and false 
alarm rates. It would also be important to evalu-
ate how the IBL model accounts for human deci-
sions in scenarios where the IDS alerts could be 
verified with additional information checking, and 
how would defenders identify inaccuracies that are 
very rare (Sawyer & Hancock, 2018; Sawyer et al., 
2015). One could evaluate the IDS model in envi-
ronments where the IDS’s accuracy dynamically 
varies between 50% accuracy and 100% accu-
racy. We are currently addressing some of these 
and other related ideas in our research program on 
behavioral cybersecurity.

Appendix

Nash Calculations
Dutt et al. (2016) generated Nash equilibria 

by the Gambit software (McKelvey et  al., 
2006). It is clear from the game in Figure 2 that 
there exists no Nash equilibrium in pure 

strategies (in each of the four possible out-
comes, one player is better off deviating). As a 
result, the only equilibrium solution in this 
game is in mixed strategies (i.e., selecting each 
action with some probability), which specifies 
the following: the hacker attacks with 0.2(‍

1
5‍) 

probability, while the analyst defends with 
0.66(‍

2
3‍) probability.

Next, Dutt et al. (2016) extend the definition 
of the above security game by introducing an 
IDS that can alert the analyst regarding the deci-
sion made by the hacker (thus, the analyst does 
not see the actions of the hacker directly; rather, 
she gets messages from the IDS based upon the 
hacker’s decisions). The hacker first makes a 
choice, followed by the IDS that reports the 
existence/absence of an attack to the analyst. In 
the security game, we define pa as the probabil-
ity of the IDS to accurately predict the hacker’s 
choice (a wrong prediction therefore occurs 
with probability 1-pa). The report from the IDS 
is determined through probability pa (e.g., if the 
hacker attacks by choosing a, IDS reports an 
attack with probability pa and nonattack with 
probability 1-pa). After receiving the IDS rec-
ommendation, the analyst makes a choice.

Figure  A1 lists the Nash equilibria in the 
cybersecurity game described above for pa = 
10% (IDS is 10% accurate). The extensive form 
of the cybersecurity game in Figure A1 along 
with the Nash equilibria were generated by the 
Gambit software. As shown in Figure A1, first 
the hacker makes a choice to attack or not-
attack the network, the IDS alerts the analyst by 
an “attack” or “not-attack” message and finally 
the analyst makes a choice.

Let p(a) be the probability (proportion) of 
attack actions; p(na) be the probability of not-
attack actions; p(d) be the probability of defend 
actions; and p(nd) be the probability of not-
defend actions. As shown in Figure A1, when 
the IDS is 10% accurate, the probability of 
attack is (0.027 ~ 03%).

Overall, the values obtained from Gambit in 
Figure A1 are:

p(a) = .03; p(na) = .97; p(“a”|a)= .10; 
p(“a”|na) = .90; p(d|“a”) = 0; and, p(nd|“a”) = 1, 
where, p(“a”|a) is the probability of IDS to say 
“attack” given that the hacker attacks; p(“a”|na) 
is the probability of IDS to say “attack” given 
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that the hacker does not attack; p(d|“a”) is the 
probability of the analyst to defend the network 
given that the IDS say “attack”; and, p(d|“a”) is 
the probability of the analyst to not defend the 
network given that the IDS say “attack.”

Now, we apply the Bayes’ rule to p(“a”), that 
is, the probability of the IDS to say “attack” as 
per the following:

	 p(“a”) = p(“a”|a) * p(a) + p(“a”|na) * p(na) �(1)

Using the values of p(“a”|a), p(a), p(“a”|na), 
and p(na) from Figure A1 in (1), we get:

	 p(“a”) = .87 and p(“na”) = .12 � (2)

Now, we apply the Bayes’ rule to p(d), that 
is, the probability of the analyst to defend as per 
the following:

	 p(d) = p(d|“a”) * p(“a”) + p(d|“na”) * p(“na”) 
� (3)

Using the values of p(“a”) and p(“na”) from 
(2) in (3), we get:

	 p(d) = .09 and p(nd) = .81 � (4)

Thus, the Nash proportion of attack and 
defend actions equaled to 3% and 9%, respec-
tively, when the IDS was 10% accurate.

Using the same derivation, the Nash propor-
tion of attack and defend actions equaled to 
20% and 67%, respectively, when the IDS was 
50% accurate. Also, the Nash proportion of 
attack and defend actions equaled to 3% and 
9%, respectively, when the IDS was 90% 
accurate.
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KEY POINTS

●● Two cognitive models, that is, NIDS and IDS 
model based on IBLT, were developed to explain 
the attacker’s and the defender’s behavior in 
IDS absence and IDS presence with different 
accuracies.

●● Model defenders also showed higher proportion 
of defend actions when IDS alerts were either 
absent or 50% accurate compare to when IDS 
alerts were either 10% or 90% accurate.

●● Model attackers showed similar proportion of 
attack actions across all IDS availability and 
accuracy conditions.

●● Attackers exhibit high reliance on recent infor-
mation to pay attention to defenders’ actions.

●● Defenders did not rely on recent information 
when IDS alerts were absent.

●● Defenders’ reliance on recent information was a 
function of accuracy of IDS alerts. The reliance 
on recent alerts increases as the alerts became 
more accurate.
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