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Abstract

Coordination of individual behavior is essential for success in
any goal-directed team task. In particular, the ability to coor-
dinate in the absence of explicit communication among team
members will depend on the task structure and features of
the environment. This work investigates how environmental
variables—agent positioning, reward distribution, and inter-
agent visibility—impact the ability of agents to learn coordi-
nated behavior in a goal-directed multi-agent task. We also
relate the learnt coordination to learning behavioral special-
ization of agents and discuss the relationship between coor-
dination and specialization. Our agents are cognitive models
built from Instance-Based Learning Theory, a theory of hu-
man decisions from experience. The results and insights from
our simulation reveal how environmental factors can facilitate
or inhibit coordinated behavior for successful performance of
a team task.

Introduction
Environmental factors play a critical role in how and what
we learn through experience. Indeed, distinct environmental
attributes can give rise to disparate behavior, particularly in
the case of social or multi-agent settings. This research in-
vestigates how environment variables impact agents’ ability
to learn to coordinate without communication in a multi-
agent task. We rely on Instance-Based Learning Theory
(IBLT) (Gonzalez, Lerch, and Lebiere 2003) to instanti-
ate a cognitive model, which is used to simulate individual
agents. IBLT is employed given a cognitively plausible set
of decision mechanisms that often account for human deci-
sions in risky tasks (Gonzalez and Dutt 2011) with delayed
feedback (Nguyen and Gonzalez 2020b). Through a simu-
lation experiment, we explore three environmental variables
and how they determine the specialization and coordination
among agentsin a multi-agent target-seeking task: (1) the
distribution of rewards; (2) the starting point of the agents
(i.e., spawn location); and (3) the inter-agent visibility. Re-
ward schemes are fundamental in reinforcement and vary-
ing rewards can facilitate coordination among (Tampuu et al.
2017; Grzes 2017). Similarly, levels of observability are key
in the development of environments, as is reflected in the
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key distinction of Markov Decision Processes (MDPs) and
Partially Observable MDPs (Gronauer and Diepold 2021).

We test the following hypotheses. First, we expect that the
distribution of the rewards will influence agents’ coordina-
tion; for example, if there is only one target of high value and
other targets of low value, it is expected that all agents will
aim for the high value target (i.e. low coordination). Second,
we expect that the relative spawn locations will also influ-
ence the agents’ coordination. If the starting point is differ-
ent for all members of a team, coordinating may be easier
compared to when all team members have the same start-
ing location due to potential collisions with other agents. Fi-
nally, we also expect that a larger “field of view”, FoV (i.e.,
range of inter-agent visibility surrounding an agent), would
result in better coordination among the agents, as they will
be able to observe other team members and condition their
actions on the observations of others.

Multi-Agent Gridworld Environment
We use a gridworld with an 11× 11 grid that contains walls
and four colored targets. An example is depicted in Figure 1.
Each target has an associated reward that ranges from 0 to 1,
which an agent receives upon reaching the target. Gridworld
simulations are comprised of episodes, and each episode en-
tails a maximum of 31 timesteps, in each of which agents
make a decision. Each decision entails selecting one of the
four cardinal directions to move in.

Figure 1: A Gridworld configuration. Black squares repre-
sent walls and colored squares are targets. Four agents (black
circles) start in different spawn locations.

A gridworld is formalized as a Markov Decision Process



(MDP). Each MDPM has a state space S , and, in its most
simple form, each (x, y)-coordinate in the grid represents a
state S ∈ S. At each within-episode time step t ∈ {1, ..., T},
an agent j observes their state Sj,t, then takes an action Aj,t
from a common action spaceA (up/down/left/right) to move
into state Sj,t+1 and observes the reward (or cost) Rj,t. By
executing a policy πj in the environmentM, an agent cre-
ates a trajectory denoted by Tj = {(Sj,t, Aj,t)}Tt=1. Each
environment is a 11× 11 grid that contains obstacles (black
cells) and four colored targets, an example of which is de-
picted in Figure 1. Each target has an associated reward that
ranges from 0 to 1 which an agent receives upon reaching
the target. See also: (Nguyen and Gonzalez 2020a,b).

The multi-agent gridworld simulations include four
agents, each acting in agreement with the IBL algorithm (de-
scribed below). Each agent is penalized for each step taken
in the environment (-0.01) and for running into walls or other
agents (-0.05). If two agents attempt to move to the same
position, one is randomly prioritized and moves success-
fully, while the other receives the collision penalty (-0.05)
and their position is unchanged. At the beginning of each
episode, agents spawn at their respective location and each
agent simultaneously takes an action until all agents have
reached a target or 31 steps have elapsed, forming a trajec-
tory. Importantly, no two agents may reach the same target;
once a target has been reached by one agent, they occupy
that position and stop interacting with the environment until
the episode terminates.

Instance-Based Learning Model in the Multi-Agent
Gridworld task
Each agent acts according to an algorithm defined in the
Instance-Based Learning Theory (IBLT) (Gonzalez, Lerch,
and Lebiere 2003). Each agent in the team stores and man-
ages its own memory of instances. In IBLT an instance is a
memory unit stored when a decision is evaluated or experi-
enced, and it is comprised of three distinct parts: a situation
(or state) S (the attributes describing the context of the de-
cision), a decision (or action) A, and a utility (or reward) R.
The IBL agent of the gridworld stores instances that contain
the location (x, y), the decision is the possible movement of
the agent, and the outcome that the agent receives as a result.

To make choices, IBL models use the choice mechanism
Blending (Gonzalez and Dutt 2011), defined as an expected
value for each alternative, where the outcomes of past in-
stances are weighted by the probability of retrieving such
instances from memory. The IBL model selects the alterna-
tive with the highest blended value.

Let an option k = (S,A) be defined by taking an action
A in state S. At time t, assume that there are nk,t different
generated instances (k, xi,k,t) for i = 1, ..., nk,t, which cor-
respond to selecting k and achieving outcome xi,k,t. Then,
IBLT associates each instance i in memory with an activa-
tion value (Eqn. 1), representing how readily available that
information is in memory (Anderson and Lebiere 2014):

Acti,k,t = ln
( ∑
t′∈Ti,k,t

(t− t′)−d
)

+ σ ln
1− ξi,k,t
ξi,k,t

(1)

where d and σ are decay and noise parameters, re-
spectively; Ti,k,t ⊂ {0, ..., t − 1} is the set of previous
steps in which the instance i was observed, and ξi,k,t ∼
Uniform(0, 1) is a randomly generated value. The activa-
tion is used to determine the probability of retrieval (Eqn. 2)
of an instance from memory:

pi,k,t =
eActi,k,t/τ∑nk,t

j=1 e
Actj,k,t/τ

(2)

This, in turn, is used to calculate the expected utility, or
blended value (Eqn. 3, of an option k, based on a blending
mechanism designed for choice tasks (Lebiere 1999; Lejar-
raga, Dutt, and Gonzalez 2012; Gonzalez and Dutt 2011):

Vk,t =

nk,t∑
i=1

pi,k,txi,k,t (3)

where τ is the Boltzmann constant that we define as τ =
σ
√

2.

Simulation Experiment
We ran a 2 (Distribution of rewards: Dirichlet or Uniform)×
2 (Spawn location: common or distinct)× 2 (Field of View
(FoV): 1 or 3) simulation experiment.

Reward distribution: target rewards are distributed ac-
cording to a Dirichlet distribution, where one target is val-
ued significantly higher than the rest, or uniformly, where
reaching any target will return a reward of 1.0.

Spawn location: the Spawn location is either common to
all agents (with the common spawn point changing in each
episode) or distinct (agents rotate through these distinct po-
sitions between episodes).

Inter-agent visibility: the FoV refers to the observability
of the agent’s surroundings. FoV1 indicates the the agent
“sees” nothing around it, where FoV3 indicates that the
agent observes whether another agent is in a space of size
3× 3 around its current x− y coordinate. This changes the
instance representation of agent j from Sj = (xj , yj) to
Sj = (xj , yj , {xk, yk}#agents

k=1,k 6=j) where xk, yk are null values
if agent k is not within the 3× 3 field of view.

For the dependent measures, we considered the following
metrics:

(1) Efficiency: the ratio of their positive rewards to the
movement cost, formally measured for each agent’s trajec-
tory Tj :

Efficiency(Tj) = (δ|Tj |)−1
|Tj |∑
i=1

max(0, Rj,t)

where δ = 0.01 is the step penalty.
(2) Coordination: the proportion of times that all agents

reach a target in a single episode. In our task, we define co-
ordinated behavior to be behavior that results in successful
completion of the task—reaching all of the unique targets in
an episode. In order for this to occur, the agents must each
navigate to distinct targets, and avoid competition or strate-
gic mismatches that result in collisions.



Figure 2: Results for the simulations in terms of (a) efficiency, (b) specialization, and (c) coordination.

(3) Specialization: for each agent we use the inverse en-
tropy of the distribution over outcomes. Formally, this is de-
fined by

Entropy(j)
−1

=
[
ε−

∑
o

p(oj) log p(oj)
]−1

where ε = 10−4 and p(oj) is given by the proportion of
times that agent j reached outcome o in a given gridworld.
This metric captures the extent to which agents successfully
reach a single target across episodes, as opposed to varied
targets. Such behavior would correspond to varying learned
strategies, such as “always go to the green target” as opposed
to “go to the nearest target.”

Simulations consist of 11 different gridworld configura-
tions (different location of goals and obstacles and specific
reward values in the Dirichlet case). Agents learn over 1,000
episodes, where the environment and agent position are re-
set at the initialization of each episode. These runs of 1,000
episodes occur independently for each gridworld configura-
tion. We then average over the results of these independent
runs. We perform min-max normalization for both the effi-
ciency and specialization metrics.

Results
Results for each condition are shown in Figure 2. Efficiency
(Fig. 2a) is higher with uniform than with Dirichlet rewards.
We also observe that common spawn points result in lower
levels of efficiency compared to distinct spawns. The in-
creased field of view (FoV3) results in higher efficiency in
both reward distributions but only when spawn positions are
distinct. Essentially, there is higher efficiency when agents
do not need to compete for a high-value goal, spawning
from different locations reduces such competition making
the agents more efficient, particularly with a larger FoV.

We observe increased specialization (Fig. 2b) when
agents spawn from a common location and have a FoV1
rather than FoV3. With a FoV3 an agent “sees” other agents
getting a target, enabling them to alter their trajectory to-
wards a different target.

When the spawn locations are identical, we observe high
specialization. Figure 3 shows the target reached, or lack
thereof, in a sample trial on a single grid configuration for
the distinct and common spawn conditions, both with FoV1
and Dirichlet Rewards. In the Distinct condition, agents
reach a variety of different targets, and often fail to reach
one at all. In contrast, in the common spawn condition,
agents learn to specialize and attempt to reach a particular
target—resulting in higher coordination (when all targets are
reached) and relatively fewer occurrences of any agent not
reaching a target at all.

These results offer a potential explanation for a lower ef-
ficiency in the common spawn conditions: agents attempt to
reach a specific target, even if it is less efficient than reach-
ing a goal near the spawn location; a distinct spawn condi-
tion may lead agents to seek out the goal that they believe is
closest to them.

Finally, we observe better coordination (Fig. 2c) in Uni-
form compared to Dirichlet rewards. Coordinated behavior
is also learned faster in the uniform reward case, and particu-
larly so with FoV1 and common spawn. Figure 4 depicts the
level of coordination over time for each condition, showing
that Uniform reward conditions tend to reach higher levels
of coordination both overall and earlier in the trials. It simi-
larly shows common spawn conditions outperform their dis-
tinct spawn counterpart conditions. The results for improved
coordination in Uniform conditions may be due to agents
being able to “settle” for distinct outcomes that are equally
valued, as opposed to lower value outcomes in the Dirichlet
case. FoV1 results in better coordination compared to FoV3
in the common spawn conditions; particularly in the case
of a Dirichlet reward distribution. This may be attributed to
the increased difficulty of strategy formation: agents have
the ability to alter their paths based on the location of other
agents, and doing so is more complex as they must both
navigate to a goal and select actions such that collisions are
avoided. We also note that the highest specialization corre-
sponds to the highest coordination. High specialization cor-
responds to simple strategies, and it is easier to coordinate
when the behavior is less complex.



(a) Distinct Spawn

(b) Common Spawn

Figure 3: Goals reached by a single agent with FoV1 and Dirichlet rewards in each episode.. Targets are ordered highest to lowest value in
descending order. Specialization is low in (a) with a distinct spawn position, and high in (b) with a common spawn position.

Conclusion
In summary, through multi-agent simulations using a
human-like decision algorithm, we illustrate how the initial
positions of agents, the distribution of rewards, and inter-
agent visibility can influence the specialization and coordi-
nation of a team without communication. Our results can
provide insights into how strategies are developed in multi-
agent, distributed coordination tasks and provide predictions
from cognitive models about potential human coordination
in such tasks.

Figure 4: The proportion of times all targets were reached
(coordination) over time in each condition. We observe con-
sistently higher levels of coordination with Uniform re-
wards, and the fastest convergence with FoV1 and Common
Spawn in both reward distribution conditions.
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