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Objective: To determine the effects of an 
adversary’s behavior on the defender’s accurate and 
timely detection of network threats.

Background: Cyber attacks cause major work 
disruption. It is important to understand how a defender’s 
behavior (experience and tolerance to threats), as well 
as adversarial behavior (attack strategy), might impact 
the detection of threats. In this article, we use cognitive 
modeling to make predictions regarding these factors.

Method: Different model types representing a 
defender, based on Instance-Based Learning Theory 
(IBLT), faced different adversarial behaviors. A defender’s 
model was defined by experience of threats: threat-prone  
(90% threats and 10% nonthreats) and nonthreat-prone 
(10% threats and 90% nonthreats);  and different tolerance 
levels to threats: risk-averse (model declares a cyber attack 
after perceiving one threat out of eight total) and risk-
seeking (model declares a cyber attack after perceiving 
seven threats out of eight total). Adversarial behavior is 
simulated by considering different attack strategies: patient 
(threats occur late) and impatient (threats occur early).

Results: For an impatient strategy, risk-averse 
models with threat-prone experiences show improved 
detection compared with risk-seeking models with 
nonthreat-prone experiences; however, the same is not 
true for a patient strategy.

Conclusions: Based upon model predictions, 
a defender’s prior threat experiences and his or her 
tolerance to threats are likely to predict detection 
accuracy; but considering the nature of adversarial 
behavior is also important.

Application: Decision-support tools that consider 
the role of a defender’s experience and tolerance to 
threats along with the nature of adversarial behavior are 
likely to improve a defender’s overall threat detection.

Keywords: cyber situation awareness, Instance-Based 
Learning Theory, defender, adversarial behavior, experi-
ences, tolerance

Cyber attacks are the disruption in the nor-
mal functioning of computers and the loss of 
private information in a network due to mali-
cious network events (threats), and they are 
becoming widespread. In the United Kingdom, 
organizers of the London 2012 Olympic Games 
believe that there is an increased danger of 
cyber attacks that could seriously undermine 
the technical network supporting everything, 
from recording world records to relaying results 
to commentators at the Games (Gibson, 2011). 
With the prevalence of “Anonymous” and 
“LulzSec” hacking groups and other threats to 
corporate and national security, guarding 
against cyber attacks is becoming a significant 
part of IT governance, especially because most 
government agencies and private companies 
have moved to online systems (Sideman, 2011). 
Recently, President Barack Obama declared 
that the “cyber threat is one of the most serious 
economic and national security challenges we 
face as a nation” (White House, 2011). 
According to his office, the nation’s cyber-
security strategy is twofold: (1) to improve our 
resilience to cyber incidents and (2) to reduce 
the cyber threat. To meet these goals, the role of 
the security analyst (called “defender” 
onwards), a human decision maker who is in 
charge of protecting the online infrastructure of 
a corporate network from random or organized 
cyber attacks, is indispensable (Jajodia, Liu, 
Swarup, & Wang, 2010). The defender protects 
a corporate network by identifying, as early and 
accurately as possible, threats and nonthreats 
during cyber attacks.

In this article, we derive predictions about 
the influence of a simulated defender’s experi-
ence and his or her tolerance to threats on threat 
detection accuracy for different simulated 
adversarial behaviors using a computational 
model. Adversarial behaviors are exhibited 
through different simulated attack strategies 
that differ in the timing of threat occurrence in a 
sequence of network events. We simulate a 
defender’s awareness process through a compu-
tational model of dynamic decision making 
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based on the Instance-Based Learning Theory 
(IBLT) (Gonzalez, Lerch, & Lebiere, 2003) and 
derive predictions on the accuracy and timing 
of threat detection in a computer network  
(i.e., cyber situation awareness or cyberSA).

Generally, situation awareness (SA) is the 
perception of environmental elements with 
respect to time and/or space, the comprehension 
of their meaning, and the projection of their sta-
tus after some variable has changed, such as 
time (Endsley, 1995). CyberSA is the virtual 
version of SA and includes situation recogni-
tion: the perception of the type of cyber attack, 
source (who, what) of the attack, and target of 
the attack; situation comprehension: under-
standing why and how the current situation is 
caused and what is its impact; and situation pro-
jection: determining the expectations of a future 
attack, its location, and its impact (Jajodia et al., 
2010; Tadda, Salerno, Boulware, Hinman, & 
Gorton, 2006).

During a cyber attack, there could be both 
malicious network events (threats) and benign 
network events (nonthreats) occurring in a 
sequence. Threats are generated by attackers, 
while nonthreats are generated by friendly users 
of the network. In order to accurately and timely 
detect cyber attacks, a defender relies on highly 
sophisticated technologies that aid in the detec-
tion of threats (Jajodia et al., 2010). One of 
these cyber technologies is called an intrusion 
detection system (IDS), a program that alerts 
defenders of possible network threats. The IDS 
is not a perfect technology, however, and its 
predictions have both false positives and false 
negatives (PSU, 2011). Although there is ample 
current research on developing these technolo-
gies, and on evaluating and improving their 
efficiency, the role of the defender behavior, 
such as the defender’s experience and tolerance 
to threats, is understudied in the cyber-security 
literature (Gardner, 1987; Johnson-Laird, 2006; 
PSU, 2011). In addition, it is likely that the 
nature of adversarial behavior also influences 
the defender’s cyberSA (Gonzalez, 2012). One 
characteristic of adversarial behavior is the 
attacker’s strategy regarding the timing of 
threats during a cyber attack: An impatient 
attacker might inject all threats in the beginning 
of a sequence of network events; however, a 

patient attacker is likely to delay this injection 
to the very end of a sequence (Jajodia et al., 
2010). For both these strategies, there is pre-
vailing uncertainty in terms of exactly when 
threats might appear in a cyber attack. Thus, it 
is important for the defender to develop a timely 
and accurate threat perception to be able to 
detect a cyber attack. Thus, both the nature of 
the defender’s and adversary’s behaviors may 
greatly influence the defender’s cyberSA.

Due to the high demand for defenders, their 
lack of availability for laboratory experiments, 
and the difficulty of studying real-world cyber-
security events, an important alternative used to 
study cyberSA is computational cognitive mod-
eling. A cognitive model is a representation of 
the cognitive processes and mechanisms 
involved in performing a task. An important 
advantage of computational cognitive modeling 
is to generate predictions about human behavior 
in different tasks without first spending time 
and resources in running large laboratory exper-
iments involving participants. Of course, the 
model used would need to be validated against 
human data to generate accurate predictions 
with high confidence. The cognitive model of 
cyberSA that we present here relies on the 
Instance-Based Learning Theory, a theory of 
decisions from experience in dynamic environ-
ments that has demonstrated to be comprehen-
sive and robust across multiple decision making 
tasks (Gonzalez & Dutt, 2011; Gonzalez, Dutt, 
& Lejarraga, 2011; Gonzalez et al., 2003; 
Lejarraga, Dutt, & Gonzalez, 2010).

In the next section, we explain the role that a 
defender’s experience and tolerance to threats 
and the role that the nature of adversarial behav-
ior might play in determining a defender’s 
cyberSA. Then, we present IBLT and the par-
ticular implementation of a cognitive model of 
cyberSA. This presentation is followed by a 
simulation experiment where the model’s expe-
rience, tolerance, and the exposure to different 
adversarial behaviors were manipulated. Using 
the model, we predict two measures of cyberSA: 
timing and accuracy. Finally, we conclude with 
the discussion of the results and their implica-
tions to the design of training and decision- 
support tools for improving a defender’s detec-
tion of cyber attacks.
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ROLE OF EXPERIENCE, TOLERANCE, 
AND ADVERSARIAL BEHAVIOR

A defender’s cyberSA is likely to be influ-
enced by at least three factors: the mix of threat 
and nonthreat experiences stored in memory; 
the defender’s tolerance to threats, namely, how 
many network events a defender perceives as 
threats before deciding that these events repre-
sent a cyber attack; and the adversarial behavior 
(i.e., an attacker’s strategy). The adversarial 
behavior is different from the first two factors. 
First, actions from the attacker are external or 
outside of the defender’s control. Second, pre-
viously encountered adversarial behaviors 
might influence the defender’s current experi-
ences and tolerance to threats.

Prior research indicates that the defender’s 
cyberSA is likely a function of experience with 
cyber attacks (Dutt, Ahn, & Gonzalez, 2011; 
Jajodia et al., 2010) and tolerance to threats 
(Dutt & Gonzalez, in press; McCumber, 2004; 
Salter, Saydjari, Schneier, & Wallner, 1998). 
For example, Dutt, Ahn, et al. (2011) and Dutt 
and Gonzalez (in press) have provided initial 
predictions about a simulated defender’s cyber 
SA according to its experience and tolerance. 
Dutt and Gonzalez (in press) created a cognitive 
model of a defender’s cyberSA based upon 
IBLT and populated the model’s memory with 
threat and nonthreat experiences. The model’s 
tolerance was determined by the number of 
events perceived as threats before it declared 
the sequence of network events to be a cyber 
attack. Accordingly, a model with a greater pro-
portion of threat experiences is likely to be 
more accurate and timely in detecting threats 
compared with one with a smaller proportion of 
such experiences. That is because, according to 
IBLT, possessing recent and frequent past expe-
riences of network threats also increases the 
model’s opportunity to remember and recall 
these threats with ease in novel situations. 
However, it is still not clear how results in Dutt 
and Gonzalez (in press) were impacted by dif-
ferent adversarial behaviors.

Furthermore, recent research in judgment 
and decision making has discussed how experi-
encing outcomes, gained by sampling alterna-
tives in a decision environment, determines our 
real decision choices after sampling (Gonzalez 

& Dutt, 2011; Hertwig, Barron, Weber, & Erev, 
2004; Lejarraga et al., 2010). For example, hav-
ing a greater proportion of negative experiences 
or outcomes in memory for an activity (e.g., 
about threats) makes a decision maker (e.g., 
defender) cautious about said activity (e.g., cau-
tious about threats) (Hertwig et al., 2004; 
Lejarraga et al., 2010).

Prior research has also predicted that a 
defender’s tolerance to threats is likely to influ-
ence his or her cyberSA. For example, Salter, 
Saydjari, Schneier, and Wallner (1998) high-
lighted the importance of understanding both 
the attacker and the defender’s tolerance, and 
according to Dutt and Gonzalez (in press), a 
defender is likely to be more accurate when his 
or her tolerance is low rather than high. That is 
because possessing a low tolerance is likely to 
cause the defender to declare cyber attacks very 
early on, which may make a defender more 
timely and accurate in situations actually 
involving early threats. Although possessing 
low tolerance might be perceived as costly to an 
organization’s productivity, it is expected to 
boost the organization’s productivity.

The studies discussed previously provided 
interesting predictions about a simulated 
defender’s experience and tolerance. However, 
these studies did not consider the role of adver-
sarial behavior (i.e., attacker’s strategies) and 
the interactions between a defender’s behavior 
and an adversary’s behavior. Depending upon 
adversarial behavior, threats within a network 
might occur at different times and their timing 
is likely to be uncertain (Jajodia et al., 2010). 
For example, an impatient attacker could exe-
cute all threats very early on in a cyber attack, 
whereas a patient attacker might decide to delay 
the attack and thus threats would appear late in 
the sequence of network events. There is evi-
dence that the recency of information in an 
observed sequence influences people’s deci-
sions when they encounter this information at 
different times (early or late) in the sequence 
(Dutt, Yu, & Gonzalez, 2011; Hogarth & 
Einhorn, 1992). The influence of recency is 
likely to be driven by people’s limited working 
memory capacity (Cowan, 2001), especially 
when making decisions from experience in 
emergency situations (Dutt, Cassenti, & 
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Gonzalez, 2011; Dutt, Ahn, et al., 2011; 
Gonzalez, 2012). Given the influence of 
recency, we expect a defender with a greater 
proportion of threat experiences and a low tol-
erance to be more accurate and timely against 
an impatient attack strategy compared with a 
defender with fewer threat experiences and a 
high tolerance. However, we do not expect that 
to be the case for a patient attack strategy. That 
is because according to IBLT, a model (repre-
senting a defender) will make detection deci-
sions by recalling similar experiences from 
memory. When the model has a greater propor-
tion of threat experiences in memory, it is more 
likely to recall these experiences early on, mak-
ing it accurate if threats occur early in an attack 
(i.e., generated by an impatient strategy). The 
activated threat experiences would be recalled 
faster from memory and would also increase the 
likelihood that the accumulation of evidence for 
threats exceeds the model’s low tolerance. By 
the same logic, when threats occur late in cyber 
attacks (i.e., generated by a patient strategy), 
the situation becomes detrimental to the accu-
racy and timeliness of a model that possesses 
many threat experiences in memory and has a 

low tolerance. In summary, a model’s experi-
ence of threats, its tolerance to threats, and an 
attack strategy may limit or enhance the mod-
el’s cyberSA. These model predictions generate 
insights for the expected behavior of a defender 
in such situations.

CYBER INFRASTRUCTURE  
AND CYBER ATTACKS

The cyber infrastructure in a corporate net-
work may consist of different types of servers 
and multiple layers of firewalls. We used a 
simplified network configuration consisting of 
a webserver, a fileserver, and two firewalls (Ou, 
Boyer, & McQueen, 2006; Xie, Li, Ou, Liu, & 
Levy, 2010). An external firewall (“firewall 1” 
in Figure 1) controls the traffic between the 
Internet and the Demilitarized Zone (DMZ; a 
subnetwork that separates the Internet from the 
company’s internal LAN network). Another 
firewall (“firewall 2” in Figure 1) controls the 
flow of traffic between the webserver and the 
fileserver (i.e., the company’s internal LAN 
network). The webserver resides behind the 
first firewall in the DMZ (see Figure 1). It 
handles outside customer interactions on a 
company’s Web site. The fileserver resides 
behind the second firewall and serves as repos-
itory accessed by workstations used by corpo-
rate employees (internal users) to do their daily 
operations. These operations are made possible 
by enabling workstations to run executable files 
from the fileserver.

Generally, an attacker is identified as a com-
puter on the Internet that is trying to gain access 
to the internal corporate servers. For this cyber-
infrastructure, attackers follow a pattern of 
“island-hopping” attack (Jajodia et al., 2010, p. 
30), where the webserver is compromised first, 
and then it is used to originate attacks on the 
fileserver and other company workstations.

A model of the defender, based upon IBLT, is 
exposed to different island-hopping attack 
sequences (depending upon the two adversarial 
timing strategies). Each attack sequence is com-
posed of 25 network events (a combination of 
both threats and nonthreats), whose nature 
(threat or nonthreat) is not known to the model. 
However, the model is able to observe alerts 
that correspond to some network events (that 

Figure 1. A typical cyber-infrastructure in a 
corporate network. The attacker uses a computer on 
the Internet and tries to gain access to the company’s 
workstations through the company’s webserver and 
fileserver.
Source. Adapted from Xie, Li, Ou, Liu, and Levy 
(2010).
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are regarded as threats) generated from the 
intrusion-detection system (Jajodia et al., 2010). 
Out of 25 events, there are 8 predefined threats 
that are initiated by an attacker (the rest of the 
events are initiated by benign users). The model 
does not know which events are generated by 
the attacker and which are generated by corpo-
rate employees. By perceiving network events 
in a sequence as threats or nonthreats, the model 
needs to identify, as early and accurately as pos-
sible, whether the sequence constitutes a cyber 
attack. In this cyber-infrastructure, we repre-
sented adversarial behavior by presenting event 
sequences with different timings for the 8 
threats: an impatient strategy, where the 8 
threats occur at the beginning of the sequence, 
and a patient strategy, where the 8 threats occur 
at the end of the sequence.

INSTANCE-BASED LEARNING  
MODEL OF DEFENDER’S CYBER SA

IBLT is a theory of how people make deci-
sions from experience in dynamic environments 
(Gonzalez et al., 2003). Computational models 
based on IBLT have been shown to generate 
accurate predictions of human behavior in many 
dynamic decision-making situations similar to 
those faced by defenders (Dutt, Ahn, et al., 2011; 
Dutt, Cassenti, et al., 2011; Dutt & Gonzalez, in 
press; Gonzalez & Dutt, 2011; Gonzalez et al., 
2011). IBLT proposes that every decision situa-
tion is represented as an experience called an 
instance that is stored in memory. Each instance 
in memory is composed of two parts: situation 
(S) (the knowledge of attributes that describe an 
event), a decision (D) (the action taken in such 
situation), and utility (U) (a measure of expected 
result of a decision that is to be made for an 
event). For a situation involving securing a net-
work from threats, the situation attributes are 
those that can discriminate between threat and 
nonthreat events: the IP address of a computer 
(webserver, fileserver, or workstation, etc.) 
where the event occurred, the directory location 
in which the event occurred, whether the IDS 
raised an alert corresponding to the event, and 
whether the operation carried out as part of the 
event (e.g., a file execution) by a user of the net-
work (which could be an attacker) succeeded or 
failed. In the IBL model of a defender, an 

instance’s S part refers to the situation attributes 
defined previously, and the U slot refers to the 
expectation in memory that a network event is a 
threat or not. For example, an instance could be 
defined as [webserver, c:\, malicious code, suc-
cess; threat], where “webserver,” “c:\,” “mali-
cious code,” and “success” constitute the 
instance’s S part and “threat” is the instance’s U 
part (the decision being binary: threat or not, is 
not included in this model).

IBLT proposes that a decision maker’s men-
tal process is composed of five mental phases: 
recognition, judgment, choice, execution, and 
feedback. These five decision phases represent 
a complete learning cycle where the theory 
explains how knowledge in instances is 
acquired, reused, and reinforced by human 
decision makers. Because the focus of this arti-
cle is on cyberSA rather than on decision mak-
ing, we only focus on the recognition, judgment, 
and choice phases in IBLT (not the execution 
and feedback phases). Among these, the IBLT’s 
recognition and judgment phases accomplish 
the recognition and comprehension stages in 
cyberSA, and IBLT’s choice phase is used to 
make a decision in different situations after rec-
ognition and comprehension has occurred. To 
calculate the decision, the theory relies on 
memory mechanisms such as frequency and 
recency. The formulation of these mechanisms 
has been taken from a popular cognitive archi-
tecture, ACT-R (Anderson & Lebiere, 1998, 
2003) (the model reported here uses a simpli-
fied version of the activation equation in 
ACT-R).

Figure 2 shows an example of the processing 
of network events through the three phases in 
IBLT. The IBLT’s process starts with the recog-
nition phase in search for decision alternatives to 
classify a sequence of network events as a cyber 
attack or not. During recognition, an instance 
with the highest activation and closest similarity 
to the network event is retrieved from memory 
and is used to make this classification. For exam-
ple, the first instance in memory matches the first 
network event because it is most similar to the 
event, and thus, it is retrieved from memory for 
further processing. Next, in the judgment phase, 
the retrieved instance is used to evaluate whether 
the network event currently being evaluated is 
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perceived as a threat or not. As seen in Figure 2, 
this evaluation is based upon the U part of the 
retrieved instance (as described previously, the 
instance’s U part indicates the expectation 
whether the network event is a “threat” or “non-
threat”). Based upon the U part, a “threat-evi-
dence” counter is incremented by one unit if the 
network event is classified as a threat; otherwise 
not. The threat-evidence counter represents the 
accumulation of evidence for threats and in a 
new network scenario, it starts at 0. For the first 
network event in Figure 2, the retrieved instance’s 
U part indicates a nonthreat, so the threat-evi-
dence counter is not incremented and remains at 
0. For the second network event, however, the 
retrieved instance’s U part indicates a threat, so 
the counter is incremented by 1.

In the choice phase, the model decides 
whether to classify a set of previously evaluated 
network events in the sequence as part of a cyber 
attack or to keep accumulating more evidence by 
further observing network events. In IBLT, this 
classification is determined by the “necessity 
level,” which represents a satisficing mechanism 
used to stop search of the environment and be 

“satisfied” with the current evidence (e.g., the 
satisficing strategy; Simon & March, 1958). This 
necessity level is the mechanism used to simulate 
defenders of different tolerance levels. Tolerance 
is a free parameter that represents the number of 
network events perceived as threats before the 
model classifies the sequence as a cyber attack. 
Therefore, when the threat-evidence counter 
becomes equal to the tolerance parameter’s 
value, the model classifies the sequence as a 
cyber attack. For example, for the first network 
event in Figure 2, the threat-evidence counter  
(=0) is less than the tolerance (=1) and the model 
continues to evaluate the next network event. For 
the second network event, however, the threat-
evidence counter (=1) becomes equal to the tol-
erance (=1) and the model stops and classifies 
the entire sequence of events as a cyber attack. 
Translated to actual network environments, the 
convergence of the threat-evidence counter with 
tolerance would mean stopping online operations 
in the company. Otherwise, the model will keep 
observing more events and let the online opera-
tions continue undisrupted if it has not classified 
a sequence as a cyber attack.

Figure 2. The processing of network events by the Instance-Based Learning model. The model uses 
recognition, judgment, and choice phases for each observed event in the network, and it decides to stop 
when the threat-evidence counter equals the tolerance parameter.
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An instance is retrieved in the recognition 
phase from memory according to an activation 
mechanism (Gonzalez et al., 2003; Lejarraga  
et al., 2010). The activation of an instance i in 
memory is defined using a simplified version of 
ACT-R’s activation equation:

A
i
 = B

i
 + Sim

i
 + ε

i
,

where i refers to the ith instance that is pre-pop-
ulated in memory, and i = 1, 2, . . . constitutes 
the total number of pre-populated instances in 
memory; B

i
 is the base-level learning mecha-

nism and reflects both the recency and fre-
quency of use for the ith instance since the time 
it was created; and ε

i
 is the noise value that is 

computed and added to an instance i’s activa-
tion at the time of its retrieval attempt from 
memory.

The B
i
 equation is given by

B t ti i
d

t ti

= −








−

∈ −
∑ln ( )

{ ,..., }1 1

.

In this equation, the frequency effect is pro-
vided by t – 1, the number of retrievals of the ith 
instance from memory in the past. The recency 
effect is provided by t – t

i
, the time since the tth 

past retrieval of the ith instance (in Equation 2, 
t denotes the current event number in the sce-
nario). The d is the decay parameter and has a 
default value of 0.5 in the ACT-R architecture, 
and this is the value we assume for the IBL 
model.

Sim
i
 refers to the similarity between the attri-

butes of the situation and the attributes of the ith 
instance. Sim

i
 is defined as

Sim P * Ml li

k

i l
=

=∑ 1

The P Ml lil

k
*

=∑ 1  is the similarity compo-
nent and represents the mismatch between a 
situation’s attributes and the situation (S) part of 
an instance i in memory. The k is the total num-
ber of attributes for a situation event that are 
used to retrieve the instance i from memory. 
The value of k = 4 as there are four attributes 

that characterize a situation in the network. As 
mentioned previously, these attributes are IP, 
directory, alert, and operation in an event. The 
match scale (P

l
) reflects the amount of weight-

ing given to the similarity between an instance 
i’s situation part l and the corresponding situa-
tion event’s attribute. P

l
 is generally a negative 

integer with a common value of –1.0 for all situ-
ation slots k of an instance i, and we assume this 
value for the P

l
. The M

li
 or match similarities 

represents the similarity between the value l of 
a situation event’s attribute and the value in the 
corresponding situation part of an instance i in 
memory. Typically, M

li
 is defined using a 

squared distance between the situation event’s 
attributes and the corresponding instance’s situ-
ation slots (Shepard, 1962). Thus, M

li
 is equal to 

the sum of squared differences between a situa-
tion event’s attributes and the corresponding 
instance’s S part. In order to find the sum of 
these squared differences, the situation events’ 
attributes and the values in the corresponding S 
part of instances in memory were coded using 
numeric codes. Table 1 shows the codes 
assigned to the S part of instances and the situa-
tion events’ attributes.

The noise value ε
i
 (Anderson & Lebiere, 

1998; Lejarraga et al., 2010) is defined as

ε
η

η
i

i

i

s= ×
−







ln 

1
,

where η
i
 is a random draw from a uniform dis-

tribution bounded in [0, 1] for an instance i in 
memory. We set the parameter s in an IBL 
model to make it a part of the activation equa-
tion (Equation 1). The s parameter has a default 
value of 0.25 in the ACT-R architecture, and we 
assume this default value in the IBL model. We 
use default values of d and s parameters.

EXECUTION AND RESULTS OF  
THE IBL MODEL

The IBL model representing a simulated 
defender was created using Matlab. The model 
runs over different network event sequences that 
represent the different timing strategies of attack 
as described previously. All sequences contained 
25 network events. The model’s memory was 
prepopulated with instances representing defend-

(1)

(2)

(3)

(4)
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ers with different experiences, and the model used 
different levels of tolerance. The IBL model used 
Equations 1, 2, and 3 to retrieve an instance with 
the highest activation and made a decision about 
whether an event is a threat or nonthreat. The 
proportion of threat and nonthreat instances in the 
model’s prepopulated memory classified it into 
two kinds: threat-prone model, whose memory 
consisted of 90% of threat instances and 10% of 
nonthreat instances for each network event in the 
sequence, and nonthreat-prone model, whose 
memory consisted of 10% of threat instances and 
90% of nonthreat instances for each situation 
event in the sequence. Although we assumed that 
the 90% and 10% classification for threat-prone 
and nonthreat-prone models as extreme values, 
one could readily change this assumption to other 
intermediate values (between 90% and 10%) in 
the model.

After an instance was retrieved from memory, 
a decision was made to classify a sequence as a 
cyber attack or not depending upon the tolerance 
and the value of the threat-evidence counter. The 
tolerance level would classify the model into two 
kinds: risk-averse (model declares a cyber attack 
after perceiving one threat) and risk-seeking 
(model declares a cyber attack after perceiving 
seven threats). Based upon the aforementioned 
manipulations, we created four simulated model 
types: nonthreat-prone and risk-seeking, non-
threat-prone and risk-averse, threat-prone and 
risk-seeking, and threat-prone and risk-averse. 

Furthermore, adversarial behavior was simulated 
by considering different attack strategies about the 
timing of threats: patient (the last eight events in 
an event sequence were actual threats) and impa-
tient (the first eight events in an event sequence 
were actual threats).

We had initially assumed 1,500 simulations 
in the model; however, we found that by reduc-
ing the number of simulations to one third 
(=500) of that, there was a minuscule change in 
values of our dependent variables. Thus, we 
decided to use only 500 simulations of the 
model as they were sufficient for generating 
stable model results. We ran 500 simulations 
(each simulation consisting of 25 network 
events), and the model’s cyberSA was evalu-
ated using its accuracy and detection timing in 
eight groups defined by: experience (threat-
prone and nonthreat-prone), tolerance (risk-
averse and risk-seeking), and attacker’s strategy 
(impatient and patient). Accuracy was evalu-
ated by computing the d′ (= Z[hit rate] – Z[false-
alarm rate]), hit rate (= hits/[hits + misses]), and 
false-alarm rate (= false alarms/[false alarms + 
correct rejections]) (Wickens, 2001) over the 
course of 25 network events and averaged 
across the 500 simulations. The model’s deci-
sion for each network event was marked as a hit 
if an instance with its U slot indicating a threat 
was retrieved from memory for an actual threat 
event in the sequence. Similarly, the model’s 
decision was marked as a false alarm if an 
instance with its U slot indicating a threat was 
retrieved from memory for an actual nonthreat 
event in the sequence. Hits and false alarms 
were calculated for all events that the model 
observed before it declared a cyber attack and 
stopped or when all the 25 events had occurred 
(whichever came first). In addition to the hit 
rate, false-alarm rate, and d′, we also calculated 
the model’s accuracy of stopping in different 
simulations of the scenario. Across the 500 sim-
ulations of the scenario, the simulation accu-
racy was defined as Number of scenarios with a 
hit/(Number of scenarios with a hit + Number 
of scenarios with a miss). The model’s decision 
for each simulated scenario (out of 500) was 
marked as a “scenario with a hit” if the model 
stopped before observing all the 25 events; oth-
erwise, if the model observed all the 25 events 
in the scenario, its decision was marked as a 

TABLE 1: The Coded Values in the S Part of 
Instances in Memory and Attributes of a Situation 
Event

Attributes Values Codes

IP Webserver 1
 Fileserver 2
 Workstation 3
Directory Missing value –100a

 File X 1
Alert Present 1
 Absent 0
Operation Successful 1
 Unsuccessful 0

aWhen the value of an attribute was missing, then the 
attribute was not included in the calculation of similarity.
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“scenario with a miss.” As both the patient and 
impatient scenarios were only attack scenarios 
where an attacker attacked the network, we 
were only able to compute the simulation accu-
racy in terms of scenarios with a hit or a miss. 
Furthermore, detection timing was calculated in 
each simulation as the “proportion of attack 
steps,” defined as the percentage of threat 
events out of a total 8 that have occurred after 
which the model classifies the event sequence 
as a cyber attack and stops. Therefore, higher 
percentages of attacks steps would indicate the 
model to be less timely in detecting cyber 
attacks. Again, we expected a threat-prone and 
risk-averse model to be more accurate and 
timely against an impatient attack strategy com-
pared with a nonthreat-prone and risk-seeking 
model; however, we don’t expect that to be the 
case for a patient attack strategy.

RESULTS
Accuracy

As expected, the attack strategy interacted 
with the model’s type (experience and tolerance) 
to influence its accuracy. This interaction is illus-
trated in Figure 3, which shows averages of d′, 
hit rate, and false-alarm rate, across the 500 
simulated participants in each of the eight groups. 
For an impatient strategy, the d′ was higher for 
threat-prone models than the nonthreat-prone 
models, regardless of the risk tolerance (threat-
prone risk-seeking: M = 2.26, SE = .05; threat-
prone risk-averse: M = 2.71, SE = .05; 
nonthreat-prone risk-seeking: M = −0.06, SE = 
.05; nonthreat-prone risk-averse: M = 0.33, SE = 
.05). However, for the patient strategy the d′ was 
higher for the nonthreat-prone models than for 
the threat-prone models, again regardless of the 
risk tolerance (threat-prone risk-seeking: M = 
−2.63, SE = .05; threat-prone risk-averse: M = 
−2.63, SE = .05; nonthreat-prone risk-seeking: M 
= −0.29, SE = .05; nonthreat-prone risk-averse: 
M = −0.35, SE = .05). These results suggest that 
the nonthreat-prone model is unable to recognize 
threats from nonthreats for both patient and 
impatient attack strategies. In all cases of the 
nonthreat-prone models, the hit rates and false-
alarm rates are very low. Similarly, in the patient 
strategy, the accuracy (d′) is very low. The mod-
els show very high false-alarm rates and very 
low hit rates. Also, as expected it is only when 

the attack strategy is impatient and the model has 
a threat-prone and risk-averse disposition that 
the d′ is the highest.

Furthermore, we compared the effect of 
model type and attack strategy on the model’s 
simulation accuracy of stopping. The simula-
tion accuracy was higher for the impatient strat-
egy (M = 60.70%, SE = .01) compared with the 
patient strategy (M = 50.60%, SE = .01). Also, 
the simulation accuracy was higher was for 
threat-prone models (96.95%) compared to 
nonthreat-prone models (16.75%) and risk-
averse models (59.55%) compared to risk-seek-
ing models (54.15%). However, the attack 
strategy did not interact with the model type to 
influence the simulation accuracy. Thus, irre-
spective of the attack strategy (patient or impa-
tient), the threat-prone and risk-averse models 
performed more accurately compared to non-
threat-prone and risk-seeking models.

Timing

Again as expected, the attack strategy inter-
acted with the model type (experience and toler-
ance) to influence the proportion of attack steps. 
Figure 4 shows the nature of this interaction 
across 500 simulated participants in each of the 
eight groups. For the impatient strategy, it mat-
tered whether models were threat- or nonthreat-
prone, as well as whether they were risk-averse 
or risk-seeking, whereas for the patient strategy, 
it only mattered whether the models were threat- 
or nonthreat-prone, irrespective of whether they 
were risk-seeking or risk-averse. For the impa-
tient strategy, the proportions of attack steps 
needed by threat-prone models (53.15%) were 
much less than those needed by nonthreat-prone 
models (92.60%). Also, for the impatient strat-
egy, the proportions of attack steps needed by 
risk-averse models (50.90%) were much less 
compared with risk-seeking models (94.85%). 
For the patient strategy, however, although the 
proportion of attack steps needed by threat-prone 
models (10.10%) were much less than nonthreat-
prone models (88.80%), there were no differ-
ences in the proportion of attack steps between 
risk-averse (48.80%) and risk-seeking (50.10%) 
models. In general, as expected, the threat-prone 
and risk-averse model used the least proportion 
of attack steps irrespective of the attack strategy, 
patient or impatient.
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DISCUSSION
Cyber attacks are becoming increasingly 

common and they might cause major disruption 
of work and the loss of important information. 

Therefore, it is important to investigate defender 
and adversarial behaviors that influence the 
accurate and timely detection of network 
threats. In this endeavor, Instance-Based 

Figure 3. The influence of model type and the attack strategy on model’s accuracy.
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Learning Theory predicts that both defender 
and adversary behaviors are likely to influence 
the defender’s accurate and timely detection of 
threats (i.e., cyberSA). Results from an IBL 
model predict that defender’s cognitive abili-
ties, namely, experience and tolerance, and the 
attacker’s strategy about timing of threats 
together impact a defender’s cyberSA.

First, we found that the model’s accuracy (d′) 
is positive only when the attack strategy is 
impatient and the model has a threat-prone dis-
position regardless of the model’s tolerance. 
This result is explained given the influence of 
recency of information on decisions in the 
model (Dutt, Ahn, et al., 2011; Gonzalez & 
Dutt, 2011). That is because an impatient strat-
egy’s early threats would increase the activation 
of threat instances in the threat-prone model’s 
memory early on, and the early threats are also 
likely to increase the chances that the accumu-
lation of evidence for threats would exceed the 
model’s tolerance level, irrespective of whether 
it is risk-seeking or risk-averse. Therefore, both 
factors are likely to make the model perform 
more accurately against an impatient strategy 
when its cognitive disposition is threat-prone, 
irrespective of its risk tolerance.

Second, we found that the proportion of attack 
steps was influenced by both memory and toler-
ance against the impatient strategy, whereas only 
the memory seemed to influence the proportion of 
attack steps against the patient strategy. We believe 

the likely reason for this observation is the fact 
that when threats occur early, the accumulation of 
evidence builds up toward the tolerance level and 
it influences the timing of detection; however, 
when threats occur late, the accumulation of evi-
dence might have already reached the tolerance 
level causing the model to stop much before 
encountering these late occurring threats. This 
observation is supported by increased number of 
false alarms, as well as the model needing lesser 
proportion of attack steps against the patient strat-
egy (i.e., when the threats occurred late).

Also, we found an interaction between dif-
ferent attack strategies and the model’s type: 
For an impatient attack strategy, possessing 
threat-prone experiences helped the model’s 
accuracy (due to high hit rates), whereas pos-
sessing threat-prone experiences hurt the mod-
el’s accuracy against a patient strategy (due to 
high false-alarm rates). This result is expected 
given that when threats occur early, possessing 
a majority of threat instances in the model 
increases the likelihood of detecting these 
threats early on. Moreover, based on the same 
reasoning, increasing the likelihood of detect-
ing threats causes the model to detect these 
threats earlier, which hurts the accuracy when 
these threats actually occur late in the attack.

Another important observation is that the 
model possessing nonthreat-prone experiences 
seemed to show a close to zero d′ irrespective of 
the attack strategy. A probable reason for this 

Figure 4. The influence of model type and the attack strategy on proportion of attack steps.
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observation is the following: Having lesser pro-
portion of threat experiences in memory would 
make it difficult for the model to retrieve these 
experiences whether the attack occurs early or 
late. Thus, the overall effect would be a decrease 
in ability to detect threats from nonthreats when 
the proportion of threat experiences in memory 
is low. Indeed we find that the hit rate in the 
model possessing nonthreat-prone experiences 
is very low.

Our results are clear in the one way to 
improve defenders’ performance: It is important 
to train defenders with cases involving multiple 
threats that would results in a threat-prone 
memory and prepare them for impatient attack-
ers. Furthermore, it is important to determine 
the defender’s tolerance to risk, as that will 
determine how timely the defenders address an 
attack from impatient attackers. Unfortunately, 
as our results show, these two requirements 
would not be sufficient to prepare defenders for 
patient attacker strategies. Because the model’s 
predicted accuracy (d′) is low in all cases in 
which the attacker follows a patient strategy, we 
would need to determine better ways to improve 
accuracy in these cases. Being trained with a 
threat-prone memory would not be enough in 
this case, given the high number of false alarms 
produced in this type of training, although for-
tunately only a small number of steps would be 
needed to determine an attack in these cases.

Although in our experimental manipulations 
we have simulated defenders with characteristics 
of memory and tolerance that varied at two oppo-
site ends of the spectrum of several possibilities, 
one could easily modify our defender characteris-
tics in the model to intermediate values. Thus, for 
example, the threat-prone and nonthreat-prone 
defenders could each have a 60%–40% and 40%–
60% mix of threat and nonthreat instances in 
memory rather than the currently assumed 90%–
10% and 10%–90% mix. Even if one changes this 
mix to intermediate values, we believe the direc-
tion of results obtained would agree with our cur-
rent results. Second, recent research in cyber 
security has led to develop methods for correlat-
ing alerts generated by IDS sensors into attack 
scenarios and these methods seem to greatly sim-
plify security defenders’ job functions (Albanese, 
Jajodia, Pugliese, & Subrahmanian, 2011; Debar 
& Wespi, 2001; Ning, Cui, & Reeves, 2002). In 

future work, we plan to consider analyzing a 
defender’s behavior with respect to these newer 
tools. Third, given the low d′ values we could 
attempt to improve the model’s performance by 
using feedback for the decisions made. Feedback 
was not provided because defenders in the real 
world do not get this feedback during a real-time 
cyber attack (and might only learn about the 
attack after it has occurred). However, we do use 
a squared similarity assumption in the model and 
this assumption enables the model to observe the 
different attributes of network events. We believe 
that this similarity mechanism allows the model 
to produce some differences between hit and 
false-alarm rates on account of the memory and 
tolerance manipulations.

If our model’s predictions on defender 
behavior (experiences and tolerance) are correct 
and the model is able to represent the cyberSA 
of human defenders, then it would have signifi-
cant potential to contribute toward the design of 
training and decision-support tools for analysts. 
Based on our model predictions, it might be bet-
ter to devise training and decision-support tools 
that prime analysts to experience more threats 
in a network. Moreover, our model’s cyberSA 
was also impacted by how risk-seeking it was to 
the perception of threats. Therefore, companies 
recruiting analysts for network-monitoring 
operations would benefit by evaluating the 
defender’s risk-seeking/risk-aversion tenden-
cies by using risk measures like BART (Lejuez 
et al., 2002) or DOSPERT (Blais & Weber, 
2006). Furthermore, although risk-orientation 
may be a person’s characteristic (like personal-
ity), there might be training manipulations that 
could make defenders conscious of their risk-
orientation or alter it in some ways.

At present, we know that predictions gener-
ated from the model in this article need to be 
validated against real human data; however, it is 
difficult to study real-world cyber-attack events 
because these occurrences are uncertain, and 
many attacks occur on proprietary networks 
where getting the data after they have occurred 
raises ownership issues (Dutt, Ahn, et al., 2011). 
Yet, as part of future research, we plan to run 
simulated laboratory studies assessing human 
behavior in situations involving different adver-
sarial strategies that differ in the timing of 
threats. An experimental approach involving 
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human participants (even if not real defenders) 
will allow us to validate our model’s predictions 
and improve its relevance and the default 
assumptions made with its free parameters. In 
these studies, we believe that some of the inter-
esting factors to manipulate would include the 
threat/nonthreat experiences stored in memory. 
One method is to provide training to partici-
pants on scenarios that present them with a 
greater or smaller proportion of threats before 
they actually participate in detecting threats in 
island-hopping attacks (i.e., priming memory of 
participants with more or less threat instances 
as we did in the model). Also, we plan to record 
the participants’ risk-seeking and risk-averse 
behavior using popular measures involving 
gambles to control for their tolerance level (typ-
ically a risk-seeking person is more tolerant to 
risks compared with a risk-averse person). 
Thus, our next goal in this research program 
will be to validate our model’s predictions.
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KEY POINTS

•• Due to most corporate operations becoming 
online, the threat of cyber attacks is growing; a 
key element in keeping online operations safe 
is the cyber security awareness (cyberSA) of a 
defender, who is in charge of monitoring online 
operations.

 • The defender’s cyberSA is measured by his or 
her accurate and timely detection of cyber attacks 
before they affect online operations. It is likely 
influenced by the defender’s behavior (experi-
ence and tolerance level) and adversary’s behav-
ior (strategies about different timing of threats).

 • Defenders who are risk-averse and possess prior 
threat experiences are likely to improve their 
detection performance in situations involving 
impatient attackers; however, not in situations 
involving patient attackers.

 • A cognitive model based on the Instance-Based 
Learning Theory (IBLT) represents a simulated 
defender. The model is simulated 500 times each 
for the different combination of the adversary’s 
and defender’s behaviors. This experiment gener-
ates predictions about the effects of those behav-
iors on the defender’s cyberSA.

 • Application of our results include the design of 
training tools that increase defenders’ compe-
tency and the development of decision-support 
tools that improve their on-job performance in 
detecting cyber attacks.
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