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Purpose of review

Biological hypersensitivity to environmental stimuli is a

fundamental feature of atopy predisposing to a number of

clinically expressed disorders including allergic rhinitis,

atopic dermatitis or eczema, and allergic asthma. There is

provocative evidence that psychological stress constitutes

an increased risk for atopy. This risk is thought to be

mediated by the effects of stress on

neuroimmunoregulation which in turn modulates the

hypersensitivity response. The primary objective is to review

recent evidence updating our understanding of the role for

psychological stress in atopy.

Recent findings

The Th1–Th2 paradigm has been central to interpreting

quantitative differences in cytokine expression in response

to environmental stimuli like stress. Here we argue that

examination of other mechanisms (e.g. oxidative stress

pathways, glucocorticoid resistance, nerve–mast cell

interactions, intestinal dysbiosis) and a broader range of

cytokines and neuropeptides produced by cells both within

and outside the immune system may better delineate the

true complexity of the underlying mechanisms linking stress

to allergic sensitization and asthma. The role of genetics and

gene by environment interactions – based on evolving

knowledge of candidate genes that may be relevant to both

the stress response in general and pathways linked

specifically to atopy – is also discussed.

Summary

Psychological stress may be conceptualized as a social

pollutant that, when ‘breathed’ into the body, may disrupt

biological systems related to inflammation through

mechanisms potentially overlapping with those altered by

physical pollutants and toxicants.
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Introduction
Atopy may be considered a genetically and environmen-

tally determined predisposition to a number of clinically

expressed disorders including allergic rhinitis, atopic

dermatitis or eczema, and allergic asthma regulated

through immune phenomena in which many cells

(i.e. mast cells, eosinophils, and T lymphocytes) and

associated cytokines, chemokines and neuropeptides

play a role. Mechanisms of inflammation central to

the pathophysiology of these atopic disorders overlap

and involve a cascade of events that include the

release of immunologic mediators triggered by both

IgE-dependent and independent mechanisms. The

exploration of host and environmental factors that may

alter immune expression and potentiate the expression of

atopic disorders is an active area of research. Indeed,

atopy has been conceptualized as an epidemic of dys-

regulated immunity [1,2].

Mechanisms linking psychological stress, personality,

and emotion to atopic disease continue to be elucidated.

Hormones and neuropeptides released into the circula-

tion when individuals experience stress are thought to be

involved in regulating both immune-mediated and neu-

rogenic inflammatory processes [3]. Dysregulation of

normal homeostatic neural, endocrine, and immunologic

mechanisms can occur in the face of chronic stress,

leading to chronic hyperarousal or hyporesponsiveness

that may impact disease expression [4–7]. This discussion

updates a previous review [3] providing further insights

into potential mechanisms linking stress to atopic dis-

orders.

Psychological stress and the endocrine
system
Psychological stressors have been associated with the

activation of the sympathetic and adrenomedullary (SAM)

system and the hypothalamic–pituitary–adrenocortical

(HPA) axis (see Wright et al. [3] for a detailed review).

Negative emotional responses disturb the regulation of

the HPA axis and the SAM systems; that is, in the face of

stress, physiological systems may operate at higher or
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lower levels than during normal homeostasis. It is

the disturbed balance of these systems that is relevant

to disease. Immune, metabolic, and neural defensive

biological responses important for the short-term

response to stress may produce long-term damage if

not checked and eventually terminated [5]. The potential

detrimental cost of such accommodation to stress has

been conceptualized as allostatic load (i.e. wear and tear

from chronic under or overactivity of the allostatic sys-

tem) [5]. This is exemplified by shifts in the circadian

rhythm of cortisol found among persons under chronic

stress [8].

There is evidence of increases in HPA, SAM, and inflam-

matory reactions in response to stress in patients with

atopic dermatitis [9]. For example, there is increased

responsiveness of the HPA axis in response to a heel

prick stressor in newborns with a family history of atopy

or elevated levels of cord blood IgE [10��]. This same

group also found increased eosinophil counts and ele-

vated IgE expression in response to stress in patients with

atopic dermatitis [11]. Recent animal data suggest that

increased maternal stress prenatally was associated with

an elevated cortisol response to stress in the newborn

affecting Th1/Th2 cell differentiation [12].

While the ability to activate an increase in cortisol in

response to some stimuli in early life may be adaptive,

prolonged exposure to stress may change the cortisol

response if examined at a later developmental stage

[13]. Chronic stress may induce a state of hyporespon-

siveness of the HPA axis, whereby cortisol secretion is

attenuated leading to increased secretion of inflammatory

cytokines typically counterregulated by cortisol. A state

of stress-induced HPA hyporesponsiveness has been

demonstrated in some research participants with chronic

inflammatory disorders [14]. Wamboldt and others [15�]

found an attenuated cortisol response among adolescents

with positive skin test reactivity and a clinical history of

allergic rhinitis, atopic dermatitis, or asthma compared

with those with skin test positivity alone or nonatopic

individuals. Further studies are needed to examine rela-

tionships between individual patterns of cortisol response

to stress across different developmental periods and the

subsequent expression of atopy.

Other regulatory pituitary (i.e. corticotropin) and

hypothalamic hormones (i.e. corticotropin-releasing hor-

mone and arginine vasopressin) of the HPA axis have

systemic immunopotentiating and proinflammatory

effects [16]. Theoharides and colleagues [17] have shown

that acute psychological stress (immobilization in rats)

results in skin mast cell degranulation, an effect inhibited

by anti-corticotropin-releasing hormone serum adminis-

tered prior to stress [17]. Mast cell mediators are res-

ponsible for many of the immediate symptoms of
nasal allergy and manifestations of atopic dermatitis.

Mechanisms linking stress and mast cell function have

been extensively reviewed [18��]. Although hormones of

the sympathetic and adrenal medullary and HPA systems

are those most often discussed as the biochemical

substances involved in stress responses, alterations in

a range of other hormones, neurotransmitters, and

neuropeptides found in response to stress may also

play a part in the health effects of stress and need to

be further studied (e.g. prolactin, endorphins, enkepha-

lins) [19].

Stress and autonomic control of airways
Further study of the balance among functional parasym-

pathetic and functional sympathetic activity in relation to

stress, emotional stimuli, and immune function in

patients with asthma is needed. Local interactions

between the immune system and the autonomic nervous

system in the lung in particular are poorly understood and

constitute an area of needed research [20��]. Increased

activity of the parasympathetic nervous system was once

thought to be the dominant mechanism responsible for

the exaggerated reflex bronchoconstriction in asthma

patients, although more recent work challenges this idea

[21]. In the initial phases, narrowing of the airways in

asthma is thought to result primarily from inflammation.

Evidence suggesting a number of cholinergic antiinflam-

matory pathways triggered through vagus nerve activa-

tion including inhibition of macrophages and secretion of

tumor necrosis factor (TNF)-a [22] complicate our

understanding and need to be explored in the context

of atopy.

More recent evidence demonstrating nerve–mast cell

communication in response to stress and the potential

import of these interactions in the respiratory system

suggests this may be a fruitful area of research relative

to stress and asthma [23]. Tachykinins produced by

nonadrenergic noncholinergic (NANC) nerves influence

airway smooth muscle contraction, mucus secretion, vas-

cular leakage, and neutrophil attachment. In experimen-

tal studies, tachykinins, especially substance P, have

been linked to neurogenic inflammation [24��] and reg-

ulation of stress hormonal pathways [25] as well as being

implicated in asthma [26,27] and neurogenic skin dis-

orders [28]. Recent data from a mouse model suggested

that stress-induced airway hyperreactivity and enhanced

allergic inflammation (OVA sensitization) was mediated

by tachykinins [29��].

Stress and immune function
Atopic inflammation is thought to be orchestrated by

activated T lymphocytes and the cytokines they produce.

The T-helper cell Th2 cytokine phenotype promotes

IgE production, with subsequent recruitment of inflam-

matory cells that may initiate or potentiate allergic
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inflammation [3]. For most children who become allergic

or asthmatic, the polarization of their immune system into

an atopic phenotype probably occurs during early child-

hood [30].

These findings have sparked vigorous investigation into

the potential influence of early life environmental risk

factors for asthma and allergy on the maturation of the

immune system, in the hope of understanding which

factors will potentiate (or protect from) this polarization.

There is evidence that parental reports of life stress are

associated with subsequent onset of wheezing in children

between birth and 1 year [31]. It has been speculated that

stress triggers hormones in the early months of life which

may influence Th2 cell predominance, perhaps through a

direct influence of stress hormones on the production of

cytokines that are thought to modulate the direction of

differentiation. We examined relationships between

caregiver stress on markers of early childhood immune

response including IgE expression, mitogen and

allergen-specific lymphocyte proliferative response,

and subsequent cytokine expression (INF-g, TNF-a,
IL-10, and IL-13) in the same prospective birth cohort

when the children were 2–3 years of age [32��]. In

adjusted analyses, higher caregiver stress in the first 6

months after birth was associated with a greater allergen-

specific proliferative response, higher total IgE levels,

and increased production of TNF-a and reduced INF-g.

For individuals with existing asthma, psychological stress

may potentiate antigen-induced airway inflammation

and contribute to exacerbations and disease severity.

Liu and colleagues [33] reported a direct relationship

between increased stress and increased eosinophilic air-

way inflammation to antigen challenge in patients with

mild asthma.

Stress and glucocorticoid resistance
An alternative hypothesis linking stress, neuroendocrine

and immune function and inflammatory disease expres-

sion considers a glucocorticoid resistance model [34]. As

we have come to understand the central role of airway

inflammation and immune activation in asthma patho-

genesis, asthma treatment guidelines have focused on the

use of antiinflammatory therapy, particularly inhaled

glucocorticoids. Asthma patients, however, have a vari-

able response to glucocorticoid therapy [35]. Although

the majority of patients readily respond to inhaled glu-

cocorticoids, a subset of patients have difficult to control

asthma even when treated with high doses of oral

steroids. The cellular and molecular mechanisms under-

lying steroid resistance in asthma and other inflammatory

diseases have been recently reviewed [36�]. Notably,

the majority of patients with glucocorticoid-resistant or

glucocorticoid-insensitive asthma have an acquired form

of steroid resistance induced by chronic inflammation or
immune activation. Thus it is important to investigate

those factors that may potentiate the development of

functional steroid resistance. For example, studies have

shown that allergen exposure effects glucocorticoid

receptor binding affinity in T lymphocytes from atopic

asthma patients [37]. It has been proposed that chronic

psychological stress, resulting in prolonged activation of

the HPA and SAM axes, may result in downregulation of

the expression or function of glucocorticoid receptors,

leading to functional glucocorticoid resistance [34].

Psychological stress and oxidative stress
Another potential mechanism linking stress to atopy and

asthma is through oxidative stress pathways. A common

feature of inflammation in living organisms is that it is

frequently mediated by reactive oxygen species, either

acquired exogenously or as by-products of normal meta-

bolism. Individuals may differ in their ability to deal with

oxidant burdens, either due to genetic factors or other

environmental factors that induce or augment oxidative

stress. It has been proposed that differences in host

detoxification provide the basis for either resolution or

progression of inflammation in atopic individuals after

exposure to an environmental trigger. Spiteri and col-

leagues [38] postulated that the inability to detoxify

reactive oxygen species among atopic patients leads to

the release of chemotactic factors, the activation and

recruitment of immune effector cells, prolonged inflam-

mation, and the stimulation of bronchoconstricting

mechanisms. Suggested factors which predispose suscep-

tible individuals to asthma include chronic exposure to

oxidative toxins (tobacco smoke, air pollution). An exten-

sion of the oxidative stress hypothesis is that psycholo-

gical stress may be an additional environmental factor

that could augment oxidative toxicity and increase airway

inflammation.

There is evidence that psychological stress augments

oxidative damage [39–41]. Irie and colleagues [42] used

classical conditioning to illustrate the role of chronic

stress and oxidative damage. In these experiments, rats

treated with ferric nitrilotriacetate, an oxidant, and

conditioned to associated treatment with taste aversion

therapy, had increased 8-OhdG, a biomarker of oxidative

toxicity, with further taste therapy compared with uncon-

ditioned animals.

Evidence also supports the notion that psychological

stress modifies the host response to inflammatory oxida-

tive toxins [43–46]. Recent animal data support a role for

oxidative/antioxidative imbalance influencing a shift

toward a Th2 phenotype in a model of autoimmunity

in the rat [47�].

Environmental exposures that may interact with stress

through these pathways include air pollution and tobacco
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smoke. While epidemiologic evidence suggests that

asthma symptoms can be worsened by air pollution, air

pollution has not been clearly associated with increased

risk of sensitization and induction of disease [48]. Several

investigators have suggested that the ability of air pollu-

tion to generate reactive oxidative species may explain its

role in asthma and other respiratory diseases [49–51].

Ultrafine particles (<0.1 mm in diameter) have been

demonstrated to increase oxidatively mediated inflam-

mation in the lungs of rats [52,53]. In-vitro studies

demonstrate that PM10 is responsible for the production

and release of inflammatory cytokines by the respiratory

tract epithelium as well as the activation of the transcrip-

tion factor nuclear factor kB and that these properties are

mediated by the production of reactive oxygen species

[53]. Air pollution contains other oxidative toxins, such as

reactive quinones and polycyclic aromatic hydrocarbons

[51]. Tobacco smoke also contains a number of com-

pounds with oxidative potential, at least 50 of which are

procarcinogens [54]. These include polycyclic aromatic

hydrocarbons [54–56]. Elevated levels of biomarkers

linked to oxidative stress have been found among

smokers relative to nonsmokers [57,58]. Young children

exposed to environmental tobacco smoke have increased

levels of 8-OhdG, a biomarker of oxidative toxicity in

infants [59].

The effects of environmental toxins (air pollution,

tobacco smoke) on atopy and asthma may be mediated

by the common pathway of oxidative stress, a process that

could be potentiated by chronic psychological stress.

Further research is needed to examine these relation-

ships.

Genetics
Studies to determine the role of genetics inmodifying the

risk of the social/physical environment experienced

through psychological stress may further inform pathways

through which stress may impact asthma expression [60].

Genetic factors of potential import include those that

influence immune development and airway inflammation

in early life, corticosteroid regulatory genes, adrenergic

system regulatory genes, biotransformation genes, and

cytokine pathway genes.

Genes expressed in the lung involved in determining

the effects of oxidative stress, specifically the gluta-

thione S tranferases, have been found to be functionally

[61] and clinically [62,63] significant in recent studies

related to atopic risk. Gilliland and colleagues [64�]

found that specific glutathione-S transferase P1 variants

are associated with increased histamine and IgE

responses to air pollution oxidants and allergen

in vivo. Maternal genetics related to oxidative stress

genes may influence the child’s atopic risk beginning

in utero [65�]. The fetal immune response is influenced
prenatally [66]. Seasonal sensitization of cord blood

mononuclear cells to pollens has been demonstrated

[67,68].

Variants of the glucocorticoid receptor gene may con-

tribute to interindividual variability in HPA axis activity

and glucocorticoid sensitivity in response to stress

[69�,70]. Studies related to factors regulating the feed-

back mechanisms involved in the glucocorticoid response

to stress are also of interest [71�]. A recent study exam-

ined polymorphisms of the TNF-a promoter region

(TNF-a –308G/A) and linked specific variants to

increased C-reactive protein, a proinflammatory marker

[72�]. These are potentially interesting candidate genes

to include in future studies of risk for atopic disease. Such

studies that consider gene–environment interactions (i.e.

stress by pathway genes) may inform specific mechan-

isms related to stress and atopy.

Stress and dysbiosis
Recently there has been growing interest in the integrity

of the indigenous microflora of the gastrointestinal tract

in early life and the relationship to atopic disorders.

Epidemiological and clinical studies suggest that non-

pathogenic microbes including Lactobacillus in the gut

play a role in the maturation of the immune system

toward a nonatopic phenotype [73]. Intestinal dysbiosis

– or alterations in the integrity of indigenous microflora in

the gastrointestinal tract – is now believed to be a

contributing factor to atopic diseases among others

[74�]. Factors including antibiotics, psychological and

physical stress, and dietary components have been found

to contribute to intestinal dysbiosis. A number of pro-

spective intervention studies modifying the gut flora

from birth have yielded results supporting the notion

that this may be a promising approach to primary pre-

vention of atopy in the future [75–77]. Studies have

shown that psychological and physical stress may disrupt

the normal balance of intestinal microflora that may

contribute to later disease. Bailey and Coe [78] showed

that separation of infant monkeys from their mothers, a

psychological stressor, was associated with a significant

decrease in protective fecal flora, particularly lactobacilli.

This same group demonstrated that this influence may

begin even before birth. Bailey and colleagues [79�]

documented alteration in the intestinal microflora in

newborn and infant monkeys when their mothers were

exposed to an acoustical startle stress paradigm during

pregnancy.

Evidence suggests that shifts in the population dynamics

of enteric bacteria can be modulated by psychological

stress. Stress results in increased bacterial adherence and

decreased luminal lactobacilli in the gut [80]. These data

suggest another pathway through which stress may be

operating to influence risk for atopy.
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Insights from psychological intervention
studies
Clinical studies demonstrating the efficacy of alternative

modalities that reduce stress and alter mood states in

treating atopic disorders add further support to the

hypothesized link with stress and suggest alternative

treatment approaches. These have been reviewed else-

where [81�].

Conclusion
Although the Th1–Th2 paradigm remains an important

functional dichotomy to consider when interpreting

quantitative differences in cytokine expression in

response to environmental stimuli like stress, examina-

tion of other mechanisms (e.g. oxidative stress pathways,

neural–immune interactions, intestinal dysbiosis) or a

broader range of cytokines and neuropeptides produced

by cells both within and outside the immune system

may better delineate the true complexity of the under-

lying mechanisms linking stress to allergic sensitization

and asthma. Psychological stress should be concep-

tualized as a social pollutant which can be ‘breathed’

into the body and disrupt a number of physiological

pathways similar to how air pollutants and other physical

toxicants may lead to increased risk for atopy. Stress may

have independent effects as well as influencing atopy

through the enhancement of neuroimmune responses to

other environmental factors operating through similar

pathways.
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