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a b s t r a c t 

Electroencephalography (EEG) and diffuse optical tomography (DOT) are imaging methods which are widely 

used for neuroimaging. While the temporal resolution of EEG is high, the spatial resolution is typically limited. 

DOT, on the other hand, has high spatial resolution, but the temporal resolution is inherently limited by the slow 

hemodynamics it measures. In our previous work, we showed using computer simulations that when using the 

results of DOT reconstruction as the spatial prior for EEG source reconstruction, high spatio-temporal resolution 

could be achieved. In this work, we experimentally validate the algorithm by alternatingly flashing two visual 

stimuli at a speed that is faster than the temporal resolution of DOT. We show that the joint reconstruction 

using both EEG and DOT clearly resolves the two stimuli temporally, and the spatial confinement is drastically 

improved in comparison to reconstruction using EEG alone. 
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. Introduction 

Electroencephalography (EEG) is a neuroimaging method, which

s sensitive to the electrical activities of neurons. It has been one of

he most commonly used techniques for neural monitoring due to its

igh sample rate, ease of operation, and bedside compatibility. Know-

ng where the neuronal activation occurs can be crucial, for instance,

or localizing epileptic foci ( Michel and He, 2019 ). In order to identify

here activation is occurring, source localization algorithms need to

e applied. Although the temporal resolution of EEG can be very high

several kilohertz), the spatial resolution is typically limited (a few cen-

imeters), especially when low-density systems are used ( Grover and

enkatesh, 2017 ). 

In order to improve the spatial accuracy of EEG source localization,

nformation about where the activation occurs, often referred to as spa-

ial priors, can be used. This can be achieved by simultaneous recording

f functional magnetic resonance imaging (fMRI). While the temporal

esolution of fMRI is inherently limited by the nature of the hemody-

amics that it measures (on the order of 10 s Keles et al., 2016 ), the

patial resolution is very high (mm-scale). Despite the differences in

he specific assumptions and implementations, most of the algorithms

re based on the same basic assumption ( Ferdowsi et al., 2015; Hen-
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on et al., 2010; Liu and He, 2008; Oberlin et al., 2015 ): neuronal and

emodynamic activities are closely coupled and co-localized. The high-

esolution spatial information from fMRI can therefore be used to in-

orm and spatially confine the EEG reconstruction. It has been shown in

oth simulations and experiments that EEG-fMRI fusion algorithms can

chieve spatio-temporal reconstruction of neuronal activities ( Liu and

e, 2008 ). While fMRI can improve spatial resolution of source local-

zation, combined measurements can be difficult because some subjects

ay not be fMRI-compatible e.g. those with implants. Moreover, that

he experiments have to be conducted within an fMRI machine makes

t infeasible to have bedside or long-term measurements. 

As an alternative to fMRI, diffuse optical tomography (DOT) can be

sed to obtain spatial priors from the cerebral cortex. DOT is an op-

ical imaging method that, similar to fMRI, reconstructs the hemody-

amic responses in the brain, and has seen a rapid increase in popu-

arity in recent years. Particularly, a commonly-used continuous-wave

OT system, which is used in this study, reconstructs the changes of

xy- and deoxy-hemoglobin (changes of HbO and Hb, or ΔHbO and ΔHb

or short, respectively) with regard to baseline. It has been shown that

MRI-comparable spatial resolution can be achieved when using a high-

ensity system ( Eggebrecht et al., 2012 ), and various recent neonatal

nd clinical applications ( Ayaz et al., 2022 ) indicate that the DOT tech-

ology is quickly maturing. In comparison to fMRI, DOT has the ben-
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fits of being relatively low-cost, compatible with subjects with metal

mplants, and portable. We therefore explored feasibility of using DOT

n place of fMRI to derive spatial priors for EEG reconstruction. 

Indeed, work has been done to improve EEG source reconstruction

sing simultaneously recorded functional near-infrared spectroscopy

fNIRS) ( Aihara et al., 2012 ), which is based on the same physical prin-

iples as DOT. A key limitation of this method is that when using fNIRS,

he spatial prior was derived by projecting the hemodynamic responses

nto the brain surface instead of obtained by solving an inverse prob-

em as is used in DOT. We showed in our previous work ( Cao et al.,

021 ) that the spatial accuracy of projection is much lower than that

f the solution to the inverse problem, and the improvement of EEG

econstruction is therefore inferior. 

In our previous work ( Cao et al., 2021 ), we proposed a method that

tilizes the reconstruction results from simultaneously recorded DOT as

he spatial prior to improve the spatial accuracy of EEG. We showed, us-

ng computer simulations on a realistic head model, that high-resolution

patio-temporal reconstruction of neuronal sources could be achieved,

nd the improvement was more drastic than the fNIRS projection-based

ethod ( Aihara et al., 2012 ). 

In this work, we experimentally validated the previously proposed

EG-DOT combination algorithm by showing that two sequentially acti-

ated brain regions can be resolved both spatially and temporally with

etter accuracy than using either of the two modalities alone. In partic-

lar, we displayed a checkerboard wedge at two locations alternatingly

nd record EEG and DOT simultaneously. The use of a checkerboard

edge at two different locations as the visual stimulus is derived from

he conventional retinotopic mapping experiments done in the DOT as

ell as fMRI field ( White and Culver, 2010a; Zeff et al., 2007 ), which

re well-known to evoke strong hemodynamic responses in the visual

ortex. According to the retinotopy theory, displaying the checkerboard

edge at two locations will activate two different corresponding brain

egions on opposite hemispheres in occipital cortex ( Zeff et al., 2007 ).

hile using EEG alone can distinguish between the two stimulus lo-

ations, it is difficult to accurately estimate the spatial content of the

ctivated brain region, because the large point spread of EEG will likely

verestimate it. The rate at which the two stimuli alternate was chosen

o be fast enough, such that when the two brain regions are alternatingly

ctivated, our DOT alone does not have the sufficient temporal resolu-

ion to reliably differentiate them (see Section 4 ). Therefore, the experi-

ent design allows us to demonstrate the effectiveness of our EEG-DOT

oint source reconstruction algorithm by showing a) the two activated

rain regions can be temporally resolved, and b) spatially, the activated

rain regions can be reconstructed with better confinement. In the fol-

owing sections, we first describe the experiment protocol in detail and

riefly explain the joint reconstruction algorithm. After that, we present

he results of reconstruction using only EEG, only DOT, and EEG with

OT-derived prior, and show the improved spatio-temporal resolution

chieved by using the EEG-DOT joint source reconstruction algorithm.

inally, we discuss some potential drawbacks of the method as well as

uture directions. 

. Methods 

.1. Experiment protocol 

The study was approved by the Institutional Review Board of

arnegie Mellon University (STUDY2019_00000021). Nineteen healthy

olunteers participated in the experiments, which is close to the num-

er of subjects used in classic literature ( Eggebrecht et al., 2014 ). A

5-degree-wide black-and-white checkerboard wedge was displayed al-

ernatingly on the left- and right-hand side (stimulus “A ” and “B ”, as

s illustrated in Fig. 1 (a)) of the bottom half of a 24-inch monitor on a

0% gray background. A crosshair was also displayed at the center of

he monitor, and the subjects were asked to fixate the center of their

isual field on the crosshair. The subjects were seated in a dark room
2 
0 cm away from the monitor, with each checkerboard extending to a

isual angle of approximately 8 degrees from fixation, consistent with

he typical values reported in the literature ( White and Culver, 2010a ).

The experimental protocol followed a block design (see Fig. 1 (b) for

llustration). Particularly, one block was 35 s long, consisting of 10 s

f fixation on a blank (except for the fixation crosshair) gray screen,

ollowed by 15 s of stimuli and another 25 s of fixation on a blank gray

creen for the hemodynamics to fully reset. A gray screen was displayed

etween the blocks, and the pause periods were manually terminated

y the subjects through keyboard interaction. During the stimulation

eriod, each of the checkerboard positions was displayed for 200 ms,

ith a 175 ms stimulus-off period in between. The sequence of “stimulus

 - blank - stimulus B - blank ” was considered as one trial, and the trial

as repeated continuously for 20 times in each block, which formed

he above-mentioned 15-second stimulation period. The inter-stimulus

nterval for each stimulus (A or B) was effectively 550 ms. The block was

epeated 25 times for each subject except for Subject 1 and Subject 9.

ubject 1 underwent 15 blocks due to time constraints, and Subject 9

nderwent 13 blocks because of a hardware issue. 

While the stimuli are similar to those used in the eccentricity ex-

eriment in ( Zeff et al., 2007 ), the checkerboard wedges were chosen

o be displayed in a fast alternating pattern, such that DOT alone does

ot have enough temporal resolution to distinguish between the two lo-

ations. In addition, while EEG reconstruction can distinguish between

he two locations (see Section 3 ), the spatial accuracy (in terms of the

pread of spatial extent) would still be low because only 64 electrodes

ere used in the experiment (see Section 2.2 for the hardware setup).

ccording to literature ( Grover and Venkatesh, 2017 ), the point spread

f a 64-channel EEG system is on the order of several centimeters. 

.2. Data acquisition 

DOT was recorded using a continuous-wave NIRSport 2 system

NIRx, Medical Technologies, LLC), sampling at 5.1 Hz. A total of 24

ources and 21 detectors were used, forming 76 channels that covered

rimarily the visual cortex and the adjacent regions ( Fig. 2 ). For each

OT source, two wavelengths, namely 760 nm and 850 nm were used.

he DOT grid has an average source-detector separation of 2.7 cm. Ex-

ept for Subjects 1 and 2, three-dimensional accelerometer and gyro-

cope data were simultaneously recorded using the built-in sensor of

he NIRSport 2 device, with the sensor placed close to the Cz location. 

EEG was simultaneously recorded using an ActiveTwo system

BioSemi B.V., Amsterdam, Netherlands), sampling at 2048 Hz. We used

4 channels to measure the whole head, following the standard 10-10

ocations ( Oostenveld and Praamstra, 2001 ). All the DOT optode hold-

rs and EEG electrode holders were installed on the same BioSemi cap,

nd the layout of the cap is illustrated in Fig. 2 (b). 

.3. Forward modeling 

For both EEG and DOT, the forward model was assumed to have the

inear form, 

 = 𝐀𝐱 + 𝛜 (1)

here 𝐲 is the measurement vector, 𝐀 is the forward matrix, 𝐱 is the

rain activity vector, and 𝛜 is the measurement noise. 

To generate the EEG forward model, the standard model consisting

f scalp, skull, and brain layers available in the Fieldtrip toolbox, which

s based on the Colin27 model ( Oostenveld et al., 2011; 2003 ), was used.

n the triangularized boundary elementy model (BEM), there were 500,

000, 1500 nodes, and 996, 1996, 1996 triangles in the three layers

espectively. The 8196 neuronal sources were chosen to be at the stan-

ard locations defined in Fieldtrip, which is also based on the Colin27

odel ( Oostenveld et al., 2011; 2003 ). The same toolbox was used to

ompute the forward matrix, where the resistivities of the three layers

ere assumed to be 1:80:1 ( Grover and Venkatesh, 2017 ). 
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Fig. 1. (a) An illustration of the visual stimuli used in the experiments. 

The two checkerboard wedges A and B were displayed alternatingly. 

(b) An illustration of the block design. 

Fig. 2. The configuration of DOT and EEG used in the experiments. (a) 

A 2D illustration of the setup. Black dots: EEG electrodes; red dots: DOT 

sources; blue dots: DOT detectors; green lines, DOT channels. (b) The cap 

used in the experiments mounted on a mannequin. White rings: BioSemi 

EEG electrode holders; black rings in the back: NIRx optode holders; black 

rings in the middle: locations where the accelerometer and the cable or- 

ganizers were installed. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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The same segmented head model was converted to a solid tetrahe-

ral mesh using the iso2mesh toolbox ( Fang and Boas, 2009 ), form-

ng 189,274 nodes and 1,177,487 tetrahedrons in total. The tetrahedral

esh was then loaded into the NIRFASTer toolbox ( Dehghani et al.,

009 ), where a finite element model (FEM) was used to compute the

tandard forward matrix (i.e. optical density changes resulting from the

bsorption coefficient changes of the neuronal sources) of the DOT sys-

em, where the optical properties of the three layers were chosen ac-

ording to Eggebrecht et al. (2012) . Finally, the desired forward model

as constructed by, 

 𝐷𝑂𝑇 = 

( 

𝐉 760 ⋅ 𝜉𝐻𝑏𝑂, 760 𝐉 760 ⋅ 𝜉𝐻𝑏, 760 
𝐉 850 ⋅ 𝜉𝐻𝑏𝑂, 850 𝐉 850 ⋅ 𝜉𝐻𝑏, 850 

) 

(2)

here 𝐉 760 and 𝐉 850 are the standard forward matrices at the two wave-

engths, and 𝜉𝑐,𝜆’s are the extinction coefficients of chromophore 𝑐 at

avelength 𝜆. The final forward model therefore linearly relates the

ensor-space optical density changes to the hemoglobin changes in the

rain. 

.4. Data preprocessing 

The EEG data was re-referenced to the average of the two mastoid

hannels, bandpass filtered between 1 and 50 Hz, and downsampled to

56 Hz. Independent component analysis (ICA) was performed to reject

he components related to eye-blinking artifacts, which were defined as

he components highly correlated (Pearson correlation greater than 0.4)

ith the average of channels Fp1, Fp2, and Fpz. The approximation was

mpirically determined to effectively remove the eye blinking artifacts.

ad electrodes were defined as those that had excessive standard devia-

ion (greater than 50 𝜇𝑉 ), and they were repaired by interpolating using

he neighboring electrodes. The number of bad electrodes that needed

o be repaired ranged from 0 to 9, with an average of 1.3 per subject.

he neighboring electrodes were defined according to the default of the

ieldtrip toolbox. PCA filter ( Santosa et al., 2018 ) was applied to filter

ut remaining noise and interference noise from DOT while preserving

he evoked potentials. The first principle component was removed for
3 
ll subjects except for Subject 16, where the first seven principle compo-

ents were removed to sufficiently remove the noise. The data was then

ivided into epochs that started from 50 ms before the onsets of the tri-

ls (see Section 2.1 ) until 750 ms after, totaling 800 ms. Epochs with

ny channel having high amplitudes (100 𝜇𝑉 ) were rejected. Finally,

verage epochs were calculated across all trials of all the subjects. 

The DOT data was first converted to optical density changes ( ΔOD)

nd detrended using a 2nd order polynomial. After that, the temporal

erivative distribution repair (TDDR) algorithm ( Fishburn et al., 2019 )

as applied to remove the motion artifacts. A moving window of 6 s

as then used to remove the remaining motion artifacts. Specifically, if

he summation of the absolute values of the temporal differential in a

indow was high, the data in the window was replaced with a straight

ine connecting the starting point the and the ending point of the win-

ow. The data was then highpass filtered above 0.01 Hz, and further

tted to a generalized linear model (GLM), where the design matrix

onsisted of a linear trend regressor, a constant bias regressor, a regres-

or of interest constructed by convolving the stimuli with the canoni-

al hemodynamic response function used in SPM12 toolbox), and the

otion artifact regressors. In subjects 1 and 2, the motion artifact re-

ressor was approximated by the average of all the optical density mea-

ures, and in all other subjects, it was chosen to be the three-dimensional

ata from both the accelerometer and the gyroscope which was filtered

bove 0.01 Hz, totaling six regressors. The GLM model was then solved

sing an autoregression-iteratively reweighted least square (AR-IRLS)

ethod ( Barker et al., 2013 ) to reduce the impact of artifacts in the

ata. 

.5. Reconstruction 

When performing EEG reconstruction, Tikhonov regularization was

pplied to each time point of the averaged epoch, where the reg-

larization coefficient was chosen to be 5e-8 using the L-curve

ethod ( Grech et al., 2008 ). 

Before performing DOT reconstruction, the signal quality of each

hannel was estimated. Specifically, heart rate was first estimated as
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he strongest frequency component between 0.8 and 1.5 Hz. After that,

or each channel, the signal-to-noise ratio (SNR) was estimated by divid-

ng the spectral power around the heart rate ( ± 0.1 Hz) by the spectral

ower around 1.5 times the heart rate ( ± 0.1 Hz). Only the 850 nm sig-

al was used because it is more sensitive to cardiac pulsations. Finally, a

patially variant Tikhonov regularization was applied to the beta values

hat resulted from the GLM fitting for each subject using only the “good

hannels, which were defined as those with SNR above 1.5. The method

olves the following optimization problem, 

rg min 
𝐱 

||𝐲 − 𝐀𝐱 ||2 2 + α||𝐋𝐱 ||2 2 (3)

here 𝐋 is a diagonal matrix with, 

 = 

√
𝐀 

𝑇 𝐀 + 𝛽 (4)

and 𝛽 are the hyperparameters, and were chosen to be 𝛼 = 0 . 01 and

= 0 . 1 respectively according to Eggebrecht et al. (2014) . 

After performing reconstruction of ΔHbO and ΔHb during the visual

timulation for each individual subject, the group averaged reconstruc-

ion was then calculated. Subjects 4, 9, and 15 were excluded from the

roup average due to excessive amounts of noise (more than 30 channels

ere noisy according to the previously mentioned SNR criteria). 

In order to demonstrate the improvement of EEG reconstruction with

OT, the algorithm proposed in our previous work ( Cao et al., 2021 )

as used. Briefly, the algorithm makes the assumption that a brain voxel

hould only have high electrical activity (reconstructed from EEG) when

he hemodynamic activity (reconstructed from DOT) is high. In partic-

lar, the algorithm attempts to solve the following restricted maximum

ikelihood (ReML) problem, 

rg max 
𝐱, 𝐂 N , 𝐂 P 

− ||Y − 𝐀𝐱 ||2 
𝐂 −1 N 

− ||𝐱||2 
𝐂 −1 P 

− log |𝐂 N | − log |𝐂 P | (5)

here 𝐂 𝑁 

denotes the covariance matrix of measurement noise, 𝐂 𝑃 de-

otes the covariance matrix of the prior distribution of the neuronal

ources, and for some arbitrary matrices 𝐗 and 𝐌 , the notation ||𝐗 ||𝐌 

enotes the weighted norm: ||𝐗 ||2 𝐌 

= 𝐗 

𝑇 𝐌𝐗 . 

The measurement noise was assumed to be independent and identi-

ally distributed (i.i.d.), i.e. 𝐂 𝑁 

∝ 𝐈 , where 𝐈 is an identity matrix with

he dimensionality of the number of electrodes. To incorporate the DOT

econstruction as the spatial prior for EEG, the reconstructed HbO was

rst normalized between 0 and 1 by, 

 

′ = 

|�̂� 𝐻𝑏𝑂 |
max |�̂� 𝐻𝑏𝑂 | (6)

here �̂� 𝐻𝑏𝑂 denotes the reconstructed HbO changes. After that, we in-

orporated the assumption that one voxel may have strong electrical ac-

ivities if and only if the hemodynamic responses are strong by imposing

he following constraint on the neuronal source covariance matrix, 

 𝑃 { 𝑖,𝑖 } ∝ 1 − exp 

( 

− 

𝐱 ′
𝑖 
+ 𝑎 

𝑏 

) 

(7)

here the subscript 𝑖 denotes the 𝑖 th element, 𝑎 and 𝑏 are scalar constants

ontrolling how strongly the DOT prior affects the EEG reconstruction.

n this paper, they were empirically chosen to be 0.1 and 1. A detailed

iscussion of the algorithm and the parameter selection can be found in

ur previous work ( Cao et al., 2021 ). 

The problem was then solved at each time step of the averaged EEG

rial for each subject, with each time step using the same DOT prior.

he EEG reconstruction results were then averaged across all subjects

xcept for the three with excess DOT noise. Note that only ΔHbO is used,

ecause it typically has higher SNR than ΔHb ( Abdelnour et al., 2010 ).

In our previous work ( Cao et al., 2021 ), we showed using simulation

hat while it is possible to use fNIRS projection as the spatial prior to

mprove EEG source reconstruction, as is done in ( Aihara et al., 2012 ),

he improvement is less substantial and can be insufficient. To validate

he simulation result using real data, we first calculated the projection

f ΔHbO on the cortical surface. Specifically, the same preprocessing
4 
ipeline described in Section 2.4 was followed until the highpass filter-

ng, after which the filtered ΔOD was converted into ΔHbO and ΔHb

sing the modified Beer-Lambert law for each channel. The calculated

HbO was then fitted to the same GLM used in Section 2.4 , the result

f which was projected onto the cortical surface using the method de-

ailed in our simulation study ( Cao et al., 2021 ). Finally, EEG source re-

onstruction with ΔHbO projection prior was performed using the same

ipeline described above, with the only exception that �̂� 𝐻𝑏𝑂 in this case

enotes the projected activity, instead of the reconstruction. 

. Results 

The group average of the DOT reconstruction is shown in Fig. 3 .

ne-sided 𝑡 -test (mean greater than zero and mean less than zero for

HbO and ΔHb) was performed for each voxel. The results with and

ithout 𝑝 -value masking ( 𝑝 < 0 . 05 ) are shown in the first and second

ow, respectively. An increase of HbO and a decrease of Hb can be ob-

erved in the middle and superior occipital cortex, agreeing with the ex-

ected response locations given the stimuli used in this study ( Ferradal

t al., 2014; White and Culver, 2010a ) (highlighted in green boxes).

ote that the reconstructed changes of Hb are weaker on the right hemi-

phere. This can be because of the relatively low SNR of ΔHb, which is

 well-known property of Hb, making it difficult to reconstruct in gen-

ral ( Abdelnour et al., 2010 ). 

The improvement of spatial accuracy of EEG source reconstruction

hen using the DOT-derived spatial prior is illustrated at the respec-

ive N170 peaks of stimuli A and B in Fig. 4 . Particularly, shown in the

gure are the group-averaged reconstruction results of the individual

ubjects. Two-sided 𝑡 -test was performed for each voxel to test if the

econstructed activity is non-zero. For all the subfigures in Fig. 4 , only

oxels with 𝑝 < 0 . 05 are shown. The N170 peaks were chosen because,

n this experiment, these are the time points where the strongest EEG

ctivation was observed, as is shown in Fig. 5 , where the group aver-

ge time traces of three EEG channels, namely PO3, POz, and PO4, are

hown. They are chosen because PO3 and PO4 are approximately above

he active regions in response to stimuli A and B, and POz is in the

iddle equally picking up responses from both stimuli. Reconstruction

esults in comparison to the standard AAL brain atlas ( Rolls et al., 2020 )

re shown in Supplementary Fig. S2. Comparison between EEG recon-

truction results with and without DOT prior at various time points can

e found in Supplementary Fig. S4. Videos showing the full process of

he reconstructed visual responses with and without DOT prior can also

e found in Supplementary materials. 

The results of ΔHbO projection onto the cortical surface is shown in

ig. 6 . One-sided 𝑡 -test was performed at each voxel to test if the mean is

reater than zero. It can be seen that in comparison to Fig. 3 (a) and (c),

he inferred active regions are largely the same, but the spatial spread of

rojection is much larger, spreading into parietal lobe, where activation

s not expected. 

The improvement of spatial accuracy of EEG source reconstruction

hen using the ΔHbO projection prior is illustrated at the respective

170 peaks of stimuli A and B in Fig. 7 . The same two-sided 𝑡 -test de-

cribed above was also performed. Improved confinement of the spa-

ial content when using the prior can be observed, but much less sub-

tantial in comparison to the results shown in Fig. 4 . This is to be ex-

ected because the projection-based spatial prior has greater spatial

pread in comparison to the reconstruction-based prior, and the less

ubstantial decrease in sptatial spread is consistent with our simulation

esults ( Cao et al., 2021 ). Reconstruction results are localized to middle

nd superior occipital cortex in comparison to the standard brain atlas,

hich is shown in Supplementary Fig. S3. 

The improvement spatial accuracy can be further quantitatively com-

ared using a spread metric, which is defined as the radius of the small-

st ball that centers at a given center point, and contains all the voxels

hose amplitudes are above (in absolute value) half of the highest am-

litude. In this paper, we picked the center to be the center of mass of
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Fig. 3. Group average of the reconstructed HbO and Hb activation, nor- 

malized between -1 and 1. Colorbars slightly saturated for better visualiza- 

tion. The green boxes roughly indicate the regions where strong activity 

is expected to be observed according to retinotopy theory. First row: plain 

group average. Second row: only voxels with 𝑝 < 0 . 05 are displayed. The 

standard Colin27-based brain surface from Fieldtrip is used. (For inter- 

pretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 4. Improved spatial confinement of source reconstruction at the re- 

spective N170 peaks when using DOT as the spatial prior. Each subfigure 

was individually normalized between -1 and 1 for better clarity. Color- 

bars slightly saturated for better visualization. Only voxels with 𝑝 < 0 . 05 
are displayed. The standard Colin27-based brain surface from Fieldtrip is 

used. 
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p  

a  
he left and right hemispheres (for stimulus B and stimulus A, respec-

ively) calculated using the 𝑝 -value masked ΔHbO reconstruction. The

omparison of the group-level spread (mean and standard deviation) is

hown in Fig. 8 . One-sided paired 𝑡 -test was performed to test if there is

n average a decrease of spread when using a spatial prior. It can be seen

hat for both stimuli, the decrease of spatial spread using reconstruction-

ased DOT prior is more substantial, which is also reflected in the cal-

ulated 𝑝 -values. This is especially true for stimulus B, in which case

he null hypothesis that the average spread metric is the same with and

ithout projection-based prior could not be rejected at level 0.05. The

esults of statistical testing also agree with the qualitative observations
 p  

5 
hat can be made in Figs. 4 and 7 . This suggests that while projection-

ased spatial priors can improve the spatial confinement of EEG source

econstruction, there are still cases where they are insufficient, agreeing

ith the results shown in our simulation work ( Cao et al., 2021 ). 

. Discussion 

This work is the first experimental validation of our previously pro-

osed high spatio-temporal resolution neuronal activity reconstruction

lgorithm, showing that by using DOT reconstruction as the spatial

rior, the spatial accuracy of EEG reconstruction can be substantially
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Fig. 5. Group average time traces at EEG channels PO3, POz, and PO4. 

Error bars indicate the standard errors. The blue and red solid lines in- 

dicated the start of stimuli A and B, and the dashed lines indicate the 

respective N170 peaks. It can be observed that PO3, which is on the left 

hemisphere, shows strong response to stimulus but barely any response to 

stimulus A, and vice versa for PO4. POz, which is in the middle, responds 

equally to both stimuli, albeit with lower amplitude due to the greater 

distance from the centers of neuronal activity. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 6. Group average projection of ΔHbO onto the cortical surface. The 

amplitudes are normalized between -1 and 1. (a) Plain group average. (b) 

Only voxels with 𝑝 < 0 . 05 are displayed. Notice the larger spatial spread in 

comparison to Fig. 3 (a) and (c). The standard Colin27-based brain surface 

from Fieldtrip is used. 

Fig. 7. Improved spatial confinement of source reconstruction at the re- 

spective N170 peaks when using ΔHbO as the spatial prior. Each subfigure 

was individually normalized between -1 and 1 for better clarity. Color- 

bars slightly saturated for better visualization. Only voxels with 𝑝 < 0 . 05 
are displayed. The standard Colin27-based brain surface from Fieldtrip is 

used. 
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Fig. 8. Comparison of group level spread metric using no prior, DOT 

prior, and ΔHbO projection prior. Shown are group averages, standard 

deviations, as well as results of statistical testing for the two stimuli sep- 

arately. 
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mproved. We also showed that while ΔHbO projection prior can also

mprove the EEG reconstruction accuracy, it can be insufficient in re-

ucing spatial spread. 

While DOT does have the potential of achieving spatial resolutions

hat are comparable with fMRI, such setups typically require a very high-

ensity optode grid ( Eggebrecht et al., 2012 ), and when a lower-density

rid is used, the resolution can be lower (albeit still higher than that

f regular density EEG, as is shown in this work) and artifacts may

rise ( White and Culver, 2010b ). Nevertheless, the fact that the rela-

ively low-density DOT grid still led to a substantial improvement in

he spatial accuracy of EEG reconstruction, both in simulation and ex-

erimental data, implies that the effectiveness of the algorithm is only

nderestimated, because the more accurate spatial priors derived from

igh-density DOT systems can potentially further improve the results. 

Indeed, there exist DOT systems with sample rates up to

50 Hz ( Scholkmann et al., 2014 ), which can theoretically distinguish

etween the two stimuli used in the experiment. However, the combi-

ation of EEG and DOT is still of value because it allows us to gain more

nformation beyond mere distinguishability: the temporal evolution of

euronal activities in response to stimuli, e.g. the signal propagation

hown in Fig. S4 and the Supplementary Videos. The fast neuronal dy-

amics cannot be resolved using only DOT due to the slow nature of the

emodynamics, and spatial accuracy can be lacking when using EEG

lone. 

In Section 2.5 , we assumed the EEG sensor noise to be i.i.d. This is

 commonly-made assumption in the field of EEG source reconstruction

or better tractability, and good results have been obtained although

he assumption may not always be satisfied ( Grech et al., 2008; Hen-

on et al., 2010; Luessi et al., 2011; Morioka et al., 2014 ). Although we

ade the conventional assumption in this paper, it is possible that if

he noise profile of the EEG sensors (i.e. the covariance matrix) can be

ore accurately quantified, the results can be further improved, and

t is straightforward to incorporate improved assumptions using our

ethod. 

Without having access to the individual structural MRI scans, we

sed a standard (Colin27) brain model for our data analyses, which can

e another limiting factor of reconstruction accuracy. The asymmetry

f the head model may also have contributed to the slightly asymmetric

esponses shown in Fig. 3 . The effect of the incorporation of subject-

pecific structural scans should be investigated in future work. 

In addition to the physical dimensions of the optode and elec-

rode holders, another major factor that limits the density of the DOT
7 
rid is the size of the region of interest (ROI) and the typically small

umber of available optodes. In this paper, the locations of the op-

odes in both simulations and experiments were heuristically deter-

ined, and it is possible that an improved positioning of the optodes

an further improve the results. There are some algorithms proposed

o optimally place the optodes given an ROI ( Brigadoi et al., 2018;

orais et al., 2018 ). However, such algorithms are optimized for spec-

roscopy (i.e. only sensor space analyses, but no source reconstruc-

ion) instead of tomography, and the optimal positioning of optodes for

OT applications still remains an open question and requires further

nvestigation. 

We made the simplifying assumptions that the neuronal activation

nd hemodynamic response are tightly coupled, in that neuronal ac-

ivation should be strong if and only if the hemodynamic response is

lso strong, and vice versa. However, this may not hold if, e.g., one

f the neuronal sources is not visible in the DOT reconstruction due

o low signal-to-noise ratio, insufficient coverage of the grid, or too

eep inside the brain such that DOT is not sensitive to it, etc. Further,

he neuronal and hemodynamic activities may have altered coupling

r even decoupling in certain diseases such as stroke and traumatic

rain injury ( Girouard and Iadecola, 2006 ). In these situations, caution

ust be used when applying the algorithm. One may tune the param-

ters in the ReML formulation ( Section 2.5 ) to relax the constraints,

r use the algorithm in conjunction with other robust algorithms that

re specifically designed for mismatches in different modalities, such

s Twomey ( Liu et al., 2006 ). The algorithm should be further tested

n diseased cases to better understand its limitations and potential im-

rovements. 

Although the improved spatial accuracy of EEG reconstruction using

OT prior shown using experimental data is highly promising, without

aving access to the ground truth, it is not fully known if such confine-

ent is a result of over-constraining by the prior. This could be verified

n future studies by incorporating recordings from other modalities i.e.

MRI, MEG that can possess higher volumetric spatial resolution than

OT (and EEG), potentially providing measurements closer to ground

ruth localization of neuronal and hemodynamic activity. 

In conclusion, joint neuronal source reconstruction using simultane-

us EEG and DOT shows great potential of being able to resolve neuronal

ctivity with high spatio-temporal resolution. This can be of great ben-

fit to both clinical applications and basic neuroscientific studies, e.g.

ocalization of epileptic foci and understanding the information flow in

he brain. 
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