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Abstract: Transcranial electrical stimulation (tES) is a non-invasive neuromodulatory technique
that alters ongoing neural dynamics by injecting an exogenous electrical current through the scalp.
Although tES protocols are becoming more common in both clinical and experimental settings, the
neurophysiological mechanisms through which tES modulates cortical dynamics are unknown. Most
existing tES protocols ignore the potential effect of phasic interactions between endogenous and
exogenous currents by stimulating in an open-looped fashion. To better understand the mechanisms
of closed-loop tES, we first instantiated a two-column Jansen and Rit model to simulate neuronal
dynamics of pyramidal cells and interneurons. An echo-state network (ESN) reservoir computer
inverted the dynamics of the model without access to the internal state equations. After inverting the
model dynamics, the ESN was used as a closed-loop feedback controller for the neural mass model
by predicting the current stimulation input for a desired future output. The ESN was used to predict
the endogenous membrane currents of the model from the observable pyramidal cell membrane
potentials and then inject current stimulation to destructively interfere with endogenous membrane
currents, thereby reducing the energy of the PCs. This simulation approach provides a framework for
a model-free closed-loop feedback controller in tES experiments.

Keywords: tACS; closed-loop; reservoir computing; echo-state network; neural mass model

1. Introduction

The human brain coordinates the activity of billions of neurons to give rise to cog-
nition and perception. Traditional attempts to understand neural mechanisms rely on
observing indirect measures of neural activity when a subject performs a carefully de-
signed, controlled cognitive task. Electroencephalography (EEG), which measures voltages
on the scalp that reflect the summation of activity of tens of thousands pyramidal cells
(PCs) in the cortex [1], provides one common tool for such observations. Many cognitive
tasks elicit rich oscillatory EEG dynamics; however, correlative observational studies can-
not address whether such patterns in local field potentials (and subsequently EEG) serve a
mechanistic purpose or are simply an epiphenomenon not directly related to cognition [2].
To address this issue, experimenters have used neuromodulation to demonstrate a causal
role of oscillatory patterns by perturbing neural activity and observing impacts on cogni-
tive behavior [3]. For instance, transcranial electrical stimulation (tES) studies, in which
an electric field is injected into the scalp to alter the local field potential, have been shown
to affect neural oscillations important in attention [4–6] and working memory [7,8].

While tES has contributed to our understanding of neural mechanisms that underlie
cognitive processes, both the technology itself and the experimental designs that use tES
suffer from important limitations. First and most critically, the way in which tES modulates
neural activity and behavior is not clear. Some argue that low intensity, random noise stim-
ulation can bias a neuron to respond when its activity is close to its firing threshold through

Appl. Sci. 2023, 13, 1279. https://doi.org/10.3390/app13031279 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9436-6772
https://orcid.org/0000-0002-5096-5914
https://doi.org/10.3390/app13031279
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031279?type=check_update&version=2


Appl. Sci. 2023, 13, 1279 2 of 17

stochastic resonance [9]. On the other hand, a higher intensity sinusoidal current may cause
network entrainment in which external and internal oscillations synchronize [10]. Models
of coupled oscillators suggest that the frequency of the externally applied current should
match the natural resonance of the internal model to best facilitate entrainment [11–13].
However, practical considerations lead many experimenters to opt instead for a simpler,
less tailored scheme in which all subjects receive the same fixed-frequency stimulation [14].
This failure to individualize stimulation may lead to inconsistent effects in tES experiments,
since resonant frequencies of neural oscillators can vary across subjects for the same cogni-
tive task [15,16]. To further complicate issues, keeping tES electrode placement fixed while
ignoring individual anatomical differences can impact the effective strength of the imposed
electric field at a targeted brain region [17].

These shortcomings of tES experimental designs can be ameliorated using a closed-
loop design, where current stimulation hyperparameters (e.g., stimulation waveform and
location) are updated in response to ongoing brain activity [18]. The ideal tES closed-
loop setting would utilize rhythmic resonance, which is similar to stochastic resonance;
however, in rhythmic resonance excitation is precisely timed to real-time membrane po-
tential recordings to bias a single neuron near the threshold [13]. Non-invasive tES using
existing technologies, such as with state-of-the-art targeting algorithms combined with
high-definition stimulation electrodes, cannot achieve this. Stimulation spreads widely,
across entire gyri, rather than being localized to small subsets of neurons [19,20]. Addi-
tionally, though artifact removal algorithms have shown some success in recovering the
underlying EEG signal, real-time neural recordings with simultaneous tES still are contami-
nated by electrical artifacts [21,22]. One closed-loop study attempted to deliver transcranial
alternating current stimulation (tACS) in-phase with ongoing alpha oscillations recorded
via EEG, but found that alpha amplitude modulation was independent of the endogenous
alpha phase, inconsistent with predictions from rhythmic resonance [23]. Closed-loop tACS
that matched both frequency and phase of slow-wave oscillations during sleep improved
sleep quality compared to a sham condition; however, no open-loop control condition was
performed to assess whether this improvement was due to the closed-loop design for the in-
crease in sleep quality [24]. These results hint that closed-loop tES protocols can be effective,
but more robust methodologies and controls are needed to produce consistent results.

One way to study mechanisms of closed-loop tES while sidestepping some practical
constraints is to investigate neural population behaviors using computational models. Such
models avoid complications introduced by human variability and technology limitations to
explore more directly how stimulation can affect the brain. The Jansen and Rit neural mass
model (JRNMM) [25] provides one platform that lends itself to simulating neural dynamics
and how electrical perturbation can shift population behavior. The JRNMM treats a column
of cortex as interconnected layers of excitatory interneurons, pyramidal cells and inhibitory
interneurons, each of which is modeled by a set of second-order nonlinear differential
equations. Because the state variables encode the membrane potentials and currents of
each given subpopulation, tES can easily be introduced by adding an independent external
current to the internal membrane currents. This approach offers a controlled in silico
environment to model neural dynamics under the influence of tES. Closed-loop stimulation
can be implemented by observing the output of the JRNMM and providing desired external
stimulation calculated using a closed-loop feedback controller.

Closed-loop feedback controllers depend upon system identification to operate. In prac-
tice, this can be difficult to achieve due to limited access to internal model states. Some
linearization techniques to control nonlinear systems require access to model state equa-
tions [26], which may not be possible in a neuroscientific setting where changes in con-
nectivity or anatomy may alter the underlying equations that govern neural interactions.
Model-free nonlinear control approaches avoid such a pitfall. One such method uses a
time-series prediction scheme using echo-state networks (ESNs) to invert system dynamics
by predicting the system output from a given input [27]. The ESN approach can be reversed
to perform nonlinear control: the ESN is used to predict the system input that will yield a
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desired system output [28]. While the ESN model-free approach does not require rigorous
linearization techniques, it does require adequate training data for system identification.

To understand how closed-loop current stimulation can modulate neuronal dynamics,
we adapted approaches that simulate electrical current stimulation to dynamical models of
the brain; this allowed us to modulate endogenous neural oscillations [29,30]. We used a
JRNMM to simulate two interacting cortical sources driven by random noise [11,25,31,32].
The objective of our study was to develop a closed-loop controller to control the nonlinear
stochastic dynamics of the JRNMM. An echo-state network (ESN) reservoir computer was
used to invert the dynamics of the JRNMM, by training the ESN to predict the input that
gave rise to the observed dynamics of the PCs of the model. The ESN closed-loop controller
was able to suppress the output of the JRNMM even without access to the internal states
of the model or any knowledge of the state equations. The ESN controller was able to
predict and then destructively interfere with the endogenous membrane currents. These
findings demonstrate one possible mechanism for how the phase of current stimulation
can impact the modulation of neural oscillations, providing a framework for developing
robust, reliable perturbations of neural activity using closed-loop tES.

2. Methods
2.1. Jansen and Rit Neural Mass Model

The single-column JRNMM treats a column of cortex as a combination of intercon-
nected excitatory interneurons, pyramidal cells (PCs) and inhibitory interneurons [25]. Each
subpopulation has a single state parameter that models the membrane potential of a given
subpopulation. A sigmoidal function maps the membrane potential of a subpopulation
to a mean firing rate, which then serves as an input to another subpopulation through
intrinsic connections. Excitatory interneurons receive a mean firing rate input from both a
user-defined external signal g and inputs from the PC layer. Inhibitory interneurons receive
a mean firing rate input from only the PC layer. The PC layer receives inputs from both the
excitatory and inhibitory interneurons.

Table 1 and Figure 1 contain the parameters and a diagram of the single-column
JRNMM. Appendix A details the full state equations. We modified the JRNMM described
in [31] by subtracting the membrane potential p, from the first time derivative of p to
remove DC offsets that would persist after current stimulation, to allow us to only observe
perturbations around baseline. The sigmoid function S(·) converts membrane potentials
from other populations into a firing rate, which serves as an input to another population:

S(Vj) =
2e0

1 + exp(−r0Vj)
− e0 (1)

The single-column JRNMM can be easily expanded to include multiple interacting
neural mass models with extrinsic connections between populations [31]. In a two-column
model, the PCs from one column drive the subpopulations in the other column (Figure 2).
Forward connections are excitatory and represent a bottom-up influence, which adds a
firing rate input to the excitatory interneurons of the other cortical column. Backward con-
nections provide top-down inhibition that increases the firing rate input to the depolarizing
potential of the PC layer and inhibitory interneurons of the other cortical column.

Table 1. Description of model parameters.

Parameter Description Value

He, Hi Max amplitude of post-synaptic potential 3.25, 29.3 (mV)
τe, τi, τp Lumped time constants of dendritic delays 10, 15, 20 (s−1)

e0 Max firing rate of neural population 2.5 (s−1)
r0 Steepness of the sigmoid function 0.56 (mV−1)

γ1 . . . γ4 Number of synapses in neural population 50, 40, 12, 12
C Connectivity scalar for extrinsic inputs 1000
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Figure 1. Single-column Jansen and Ritt neural mass model. The state Vj describes the membrane
potential of the jth subpopulation (j = 1 excitatory interneurons membrane potential, j = 2 PC depo-
larizing membrane potential, j = 3 PC hyperpolarizing membrane potential, j = 4 inhibitory interneu-
ron membrane potential). The net PC depolarization is p. Reproduced from [11] with permission.

Figure 2. Two-column Jansen and Ritt neural mass model. The PC depolarization from each column
is converted to an extrinsic firing rate input to the other column.

The parameters AF and AB parameterize the strength of the forward and backward
connections from the other column, which has state equations of a similar form. Specifically,
these values represent the average number of synaptic connections formed between the
two columns. The PC membrane potentials of columns 1 and 2 are p1 and p2, respectively.
The PC inputs between columns contain a delay to simulate conduction delays, here set to
0.01 ms. The two-column JRNMM allows the user to explore richer dynamics, as well as
functional and effective connectivity between columns. The EEG signal is dominated by
the activity of PCs (because they generate currents orthogonal to the scalp); therefore, p1
and p2 serve as the observable outputs of the model. In our simulations, we set forward
connections from column 1 to column 2 with strength AF = 5 and backward connections
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from column 2 to column 1 with strength AB = 20. The input g was random noise
pulse density with zero mean and variance of 0.05 spikes per second. The model was
implemented in Matlab Simulink by integrating the state equations. The power spectral
densities (PSDs) of the PCs were calculated using a multi-taper FFT using the Fieldtrip
toolbox [33].

In vivo current stimulation applies an external electrical field to modulate neuronal
dynamics. The external electric field is thought to affect PCs predominantly, given that
their electric fields are oriented orthogonal to the scalp [10]. Current stimulation can be
applied to the JRNMM model by adding the external current to the endogenous current

ṗ = V̇2 − V̇3 −
1
τp

p + I (2)

where I is the current stimulation to the model, since the first time derivative of volt-
age is proportional to the membrane current and the constant of proportionality is the
membrane capacitance [13].

2.2. Echo State Networks for Nonlinear Control

Reservoir computers are a class of time-series prediction models often used in con-
junction with dynamical systems to predict the output signal given an input signal [27].
Put loosely, a reservoir can be thought of as a set of oscillators that are linearly combined
to predict the output signal. Because the reservoirs are fixed and only a single output
layer is trained, reservoir computers are less susceptible to vanishing gradients caused by
back propagation through deep networks, making them relatively stable during fitting.
Reservoir computers have also been applied in the context of nonlinear control to predict
the input signal given a future output signal [28,34]. After training the reservoir computer,
the modeler can then set a desired future output signal and predict the input that should
be applied to achieve the desired future output as a function of time. One advantage of
using reservoir computers for nonlinear control is that the user does not need access to
the internal state equations of the dynamics, but only the input and output signals. Using
an echo-state network (ESN) for the choice of reservoir, the internal dynamics x(n) are
calculated from input u(n) and output y(n):

x(n + 1) = tanh(Winu(n + 1) + Wx(n) + Wbacky(n))
y(n + 1) = Wout[u(n + 1), Wx(n + 1), Wbacky(n)]

(3)

where u(n) is the input signal, x(n) are the internal dynamics of the reservoir and y(n) is
the output signal; these are all time-series vectors. The reservoir parameters Win, Wback
and W are fixed, while the parameters Wout are calculated by concatenating

[u(n + 1), x(n + 1), y(n)] (4)

into a single vector, followed by linear regression.

2.3. Current Stimulation Input Prediction

Reservoir computers have been often used as a forward prediction method to predict
the output of a dynamical system given an input. In this study, we aimed to invert
our neural dynamical system by predicting the input for a desired future output. Then,
after training a network to invert our system, we can set the future desired output to be
zero and the network would return the input that would drive the system output state to
zero. In the context of the JRNMM, the objective is to predict the current input that gives
a desired set of PC potentials. We followed an approach similar to [28], where the ESN
predicts the current stimulation input I(n) given the current PC dynamics p(n) and the
future dynamics p(n + δ) for a time step δ (which the model has access to since the ESN is
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trained offline). We also found that including the previous current stimulation I(n−mδ)
for m number of previous time points improved training and testing accuracy.

2.4. Training Set Generation

For the rest of the paper, we use the notation X(n) to denote a vector time-series X
that ends at time n. Each signal I(n), I(n− δ), p(n), p(n + δ) has dimensions R2×60, where
2 corresponds to the number of columns (i.e., p is a concatenation of p1 and p2) and 60 is
the number of samples. Signal I(n− δ) is a delayed copy of I(n), delayed by the time step
δ, which was set to 0.01 s. The time sample size 60 (taken with a sampling period of 0.01 s)
was chosen to capture one full cycle of frequencies greater than 1.67 Hz, which we found to
be adequate to capture the model dynamics since the peak model frequency was around 5
Hz. The resulting input to the ESN u(n) was a concatenation of I(n− δ), p(n), p(n + δ) to
yield a signal with size R6×60. The output signal predicted by the ESN y(n) was set to be
I(n), the current stimulation input to be applied that led to the future dynamics p(n + δ).
A schematic describing the prediction procedure can be seen in Figure 3.

Figure 3. The current stimulation I(n) is injected into the JRNMM to yield the PC dynamics p(n).
The previous inputs I(n− δ), along with the current and future dynamics p(n) and p(n + δ) were
used to predict the input I(n) which gave rise to the future dynamics. Random noise g(n) is also
input into the excitatory interneurons. Only one cortical column is shown; however, this process is
carried out on the two-column model.

To invert the dynamics of the JRNMM, the ESN must observe a sufficient number of
I(n) current stimulations and corresponding p(n) PC dynamics. To do so, we developed the
following paradigm to generate various current stimulation inputs to the model. For each
of the two PC layers in each of the columns, the current input I(n) was white noise
with a noise power of 0.1 (height of the power spectral density). The noise was then
bandpass filtered between 0.1 and 30 Hz. To allow for the ESN to observe both onset and
offsets of current stimulation, the resulting bandpass filtered noise was multiplied by a
unit amplitude pulse function. The pulse function had a period uniformly drawn from
[0.1, 0.2, . . . , 1] seconds. The pulse had a width of [10, 20, . . . , 90] percent of the period,
also uniformly drawn. Each pulse started with a time delay of 0.5 s. The pulse was then
multiplied by a gain uniformly drawn from [1, 2, . . . , 10]. Figure 4 shows a sample current
stimulation input. The simulation was run 1000 times at a sampling period of 0.001 s
with a simulation duration of 4 s, then downsampled to a sampling period of 0.01. Each
iteration had randomized current inputs I(n) across all iterations and PC layers, as well as
randomized u(n) inputs to the excitatory interneurons.
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Figure 4. Sample current signal with units mA, proportional up to a constant C representing the ca-
pacitance of the membrane, injected into the JRNMM for both PC column 1 (blue) and column 2 (red).

2.5. Training Parameters

The resulting input data set U with dimensions (1000× 6× 400), corresponding to
1000 independent trials; the sum of the two PC potentials, two delayed PC potentials
and two delayed current stimulations (one for each PC layer); and 400 time points, respec-
tively. The output data set Y had dimensions (1000× 2× 400), corresponding to 1000 trials,
the current stimulation for each of the PC layers and the 400 time points. Each trial was
segmented into non-overlapping 60-time-point windows, to give a total of 6000 trials.
Of this total, 4800 trials were randomly selected for training, while the remaining 1200
were reserved as a test set. The ESN was trained using the parameters described in Table 2
and we briefly explored a few additional ESN parameters in Appendix B. To explore the
effect of the training set size, the amount of training data was varied while keeping the
number of testing data points fixed. We averaged five random initializations to generate
the final ESN prediction.

Table 2. Echo state network parameters. The notations nin and nout correspond to a vector with all
entries n with length equal to the number of input and output units, respectively. Scaling and shifting
correspond to element-wise multiplication or addition between the scaling/shifting vector and the
data input vector. It is often desirable for data to be centered near zero, depending on the nonlinear
activation function being used.

Parameter Value

Spectral radius 0.5
N input units 6
N internal units 10
Input scaling 1in
Input shift 0in
Teacher scaling 0.1out
Teacher shift 0out
Feedback scaling 0.1in

2.6. Closed-Loop Feedback Loop Using the ESN

The ESN predicts the current stimulation input I(n) that should be injected into the
PC layer to achieve the desired PC dynamics p(n + δ) given p(n) and the stimulation
history I(n − δ). In this study, we aimed to achieve PC layer outputs equal to zero,
corresponding to suppressing activity in a cortical region. Ideally, one could simply find
the externally applied current that drives p(n + δ) = 0. However, because the stochastic
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input u(n) is constantly driving the dynamics of the JRNMM, the PC output can never
be held at zero. Indeed, we found that setting the desired output to p(n + δ) = 0 led
to instability in the controller. To achieve better stability, we instead encouraged the
future PC output to tend towards zero, by setting p(n + δ) = kp(n), where k ∈ (0, 1)
is a hyperparameter explored in this study. A schematic of the controller can be seen
in Figure 5.

Figure 5. Closed loop feedback control schematic for the ESN. g1(n) and g2(n) are the white noise
inputs driving PC column 1 and 2, respectively. The PC outputs p1(n) and p2(n) are concatenated
along with the previous current stimulation inputs I1(n− δ) and I2(n− δ), as well as the desired
dynamics p1(n + δ) and p2(n + δ). The trained ESN then predicts the current stimulation input I1(n)
and I2(n) that should be injected into the model to achieve the desired dynamics.

2.7. ESN Performance Metrics

The mean-squared error (MSE) for the train and test sets was used to evaluate
the performance of the ESN. Only the last time point predicted by the ESN, averaged
over both PCs, was used when calculating the MSE. We used this approach because
the overlap of the input and output signal otherwise could have caused confounds in
training performance. The MSE of the PC output was measured to determine how well
the ESN closed-loop feedback controller suppressed the energy of the PC across both
columns. This MSE was compared to the model without any feedback, as well as a
random control: injecting the current stimulation I(n) selected from an iteration with
a different noise input. We also compared the power spectral density of the PC output
from these three conditions.

3. Results
3.1. Model Output

Figure 6 shows the output of a single trial of the simulation, without any feedback
control, for both of the PC columns. The time series of the membrane potential shows
stochastic activity bounded between−0.5 and 0.5 mV. The PSD shows a unimodal spectrum
for both columns with a peak at around 5–6 Hz.
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Figure 6. A single trial of the simulation without feedback control. (A) The time series output of
the PCs for two seconds of the simulation. The blue trace indicates column 1, while the red trace
indicates column 2. (B) PSD of the membrane potentials for both of the column’s PCs calculated
using a multitaper FFT.

3.2. Feedback Results

For the remainder of the results, only the output from PC column 1 is shown, as the
outputs from PC column 2 are similar, but with an overall smaller magnitude. The mean-
squared error for ESN training and testing is shown in Figure 7 for different log fractions of
the training data used while keeping the amount of testing data fixed. Interestingly, even
though the MSE became more stable as the amount of training data increased, it did not
reduce testing MSE (in Figure 7, the blue training data MSE fluctuates when the amount of
training data is small, even though the test set MSE is similar, regardless of the amount of
training data used). This point is considered in more detail below.

Figure 7. Mean-squared training and testing error (with units mA up to a constant of proportionality
related to membrane potential) calculated from the last data point predicted from the ESN output
averaged over both PC columns, plotted against different log fractions of the training data.

We explored the extent to which the ESN feedback controller could suppress the model
output (the PC column values). Figure 8 shows the mean-squared membrane potential
of PC column 1 with feedback using the input current predicted to inhibit the output, no
feedback, or mismatched feedback control taken from a different random run of the model,
each taken over 100 trials. For each of the random trials, appropriate feedback led to the
smallest PC output and random feedback produced the largest. This observation was
supported by statistical analysis using a repeated measures ANOVA test, which found a
significant effect on the type of feedback stimulation (F(2, 198) = 313.97, p < 0.001).

To explore the effect of the hyperparameter k on the energy suppression of the model,
we ran the simulation for various values of k and different log fractions of the training
data. Figure 9 shows the average percent change in energy of PC column 1 compared to
the no-feedback condition for the different values of k and log fractions of the training data
over all trials. The choice of k greatly impacted the degree to which the PC output was
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suppressed, but the output energy was less strongly affected by the amount of training
data provided to the model. Specifically, as seen in Figure 9, values of k less than about
0.9 led to increases in output energy. The output energy decreased as k increased within
each row. However, output energy was relatively similar within a given column. That
said, even though different amounts of training data led to similar suppression of the PC
output, it greatly affected the feedback current used to suppress the output, both in the
total energy and the power spectra of the control signal, as shown in Figure 10. Increasing
the amount of training data caused the ESN to learn more efficient, lower energy current
inputs to achieve the same overall suppression. A single trial of the ESN feedback control
results can be seen in Figure 11 and the PSD of the PC column 1 averaged over all trials is
shown in Figure 12.

Figure 8. Mean squared membrane potential (mV2) of PC column 1 for 100 trials. FB = Feedback
from ESN, Rand FB = Feedback from a different random seed, No FB = no ESN feedback. The results
above are shown for the ESN network trained on all of the data (log fraction of the data = 1) and with
a value of k = 1.

Figure 9. Percentchange in PC output energy relative to the no-feedback condition: 100× (energy
with feedback − energy without feedback) / energy without feedback. Data are shown for different
values of k and log fractions of the training data. Positive values correspond to increases in the
PC output energy and negative values to (desired) decreases with injected current feedback. More
training data did not impact the amount of energy reduction as much as the desired-dynamics
parameter k. Setting k to be less than about 0.9 caused the model to increase overall PC energy output
rather than suppressing PC energy output.
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To shed light on the mechanisms by which the ESN controller may be suppressing the
energy of the PC layer, we calculated the amount of destructive/constructive interference
with the endogenous membrane currents (V̇1,2 − V̇1,3) and the injected current stimulation
I1. Indeed, Figure 13. shows that the injected current destructively interferes with the
endogenous membrane currents. A paired t-test found that the endogenous membrane
current plus the ESN feedback was lower than the endogenous current by itself (t = 8.033,
p < 0.001).

Figure 10. (A) Mean energy of the current stimulation learned by the ESN for different amounts of
training data. (B) Mean PSD of the current stimulation for different log fractions of training data. More
training data resulted in the feedback controller to learn more efficient current stimulation inputs.

Figure 11. Single trial of the ESN feedback controller. Each of the plots correspond to the PC column
1 output. (A) PC column 1 membrane potential with feedback, feedback from a different random
seed and no feedback. The controller feedback begins at two seconds. (B) PSD of the three conditions
of PC column 1. (C) Current stimulation predicted output from the ESN controller. (D) PSD of
the current stimulation output. The PSD is proportional up to a constant C, the capacitance of the
membrane. The results above are shown for the ESN network trained on all of the data (log fraction
of the data = 1) and with a value of k = 1.
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Figure 12. PSD of PC column 1 averaged over 100 trials. Shaded regions denote ±1 standard error of
the mean. The results above are shown for the ESN network trained on all of the data (log fraction of
the data = 1) and with a value of k = 1.

Figure 13. (A) Single trial showing the endogenous membrane current (red) and the endogenous
membrane current + the ESN current feedback (blue). Adding the ESN current feedback destructively
interfered with the ongoing currents. (B) The mean squared membrane current without the feedback
and with the feedback for all 100 trials. The results above are shown for the ESN network trained on
all of the data (log fraction of the data = 1) and with a value of k = 1.

4. Discussion

Interest in tES as a neuromodulatory technique is growing in medical and experimental
settings, even though the mechanisms through which tES operates continue to be debated.
Most published tES studies stimulate on a timescale of tens of minutes, using narrowband
inputs whose stimulation frequency matches the resonant frequency of the targeted neural
network [3]. However, there are other important considerations in tES experimental design
beyond matching a brain region’s resonant frequency. Carefully timing the phase onset
of tES to align with ongoing neural oscillations has measurable perceptual effects [35].
Such results support the notion that closed-loop tES protocols guided by real-time neural
signature recordings could achieve more robust and predictable outcomes [18]. This line of
work is still in the early stages of development due to challenges in tES artifact removal in
neural recordings to validate successful neuromodulation [21], subject variability (which
can alter tES effects) [17] and challenges in designing a stable closed-loop controller [23].

To address these issues, we first developed a computational platform to study oscil-
latory dynamics of a neural system by instantiating a two-column JRNMM [25,31]. This
model simulated two connected cortical sources through a set of nonlinear second-order
differential equations with membrane potentials as the state variables. tES was simulated
by injecting external current into the membrane currents of the PC layer of the model. This
provided us with a closed-loop framework: simulated EEG recordings could be “recorded”
from the PC layer of the model while also being stimulated by exogenous electrical current.
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Because latent variables and state equations cannot be observed in most neuroscientific
settings, we adapted a model-free method to design a feedback controller for this nonlinear
stochastic dynamical system. Specifically, we used an ESN reservoir computer as a time-
series prediction model. We then inverted the dynamics of the model by predicting the
appropriate current stimulation input to achieve a desired output of the model based on
observing the previous outputs of the PC layer [27,28]. In this work, we only explored one
set of parameters for the JRNMM. A potential future development would be to test the
effectiveness of the ESN across multiple different parameters to yield different neural mass
dynamics and different neural mass models [36].

Upon being driven by random noise, the baseline JRNMM PCs generate an output
with a broad-band spectra with a unimodal peak around 5 Hz (the resonant frequency of
our model, given our parameter choices). Both columns 1 and 2 showed similar spectra;
however, column 1 (whose PCs fed back to the excitatory interneurons in column 2; see
Figure 2) always had greater power than column 2 (whose PCs fed back to column 1’s PCs
and inhibitory neurons). The ESN was trained by injecting randomized current into the
model and using the subsequent PC output as the input to the ESN. The current injection
was used as the output of the ESN, which caused the ESN to predict the current input that
gave rise to the observed PC output. We varied the amount of training data used in order
to assess how ESN performance would be affected in real-world settings where data are
likely limited. We found that even with very limited training data (the lowest amount
being 132 trials, which corresponded to around 80 s of stimulation data), the total output
was reduced by about the same amount as when we used the full training data set (1 h of
stimulation data). Given that some tES protocols are on the order of tens of minutes [5],
acquisition of adequate amounts of data should be possible in practice, though the noise
acquired in realistic settings may impede ESN training. The fact that the ESN dynamics
could be learned with a small amount of training data may indicate that the state equations
behave in a nearly linear fashion. Since the only nonlinearity in the model was from the
sigmoidal function that converts membrane potentials into firing rates, it could mean that
the model was operating near the linear part of the sigmoid function.

The closed-loop controller was implemented after the ESN network was trained.
During the training period, the ESN was fed the current PC output and the future PC
output to predict the stimulation current to deliver in order to reduce future PC output.
In the closed-loop feedback setting, the ESN was also fed the current PC output, but the
future PC output had to be manually set based on the desired dynamics at the next time
step. We found that setting the future PC output to be a scaled down version of the
current PC output resulted in a closed-loop controller that stably suppressed the energy
output of the PCs. In a perfect setting, the future PC output would be equated to zero to
drive the dynamics to zero energy. However, this caused the model to become unstable.
This was most likely due to the stochastic noise constantly input into the model, which
prevented the model from being held at zero energy. We explored the effect of different
values of the scaling parameter k on the amount of energy suppression in the PC layer and
found that scaling parameters in the range of 0.9 to 1 resulted in the greatest amount of
energy suppression, while lower values of 0.7 to 0.8 increased the energy of the PC layer.
The optimal choices of scaling parameter k and training set size reduced the energy output
of PC layer 1 by around 30%. Varying the amount of training data while keeping the scaling
parameter fixed did not significantly impact the amount of energy reduction, but strongly
impacted characteristics of the current stimulation. Specifically, the ESN controller learned
more efficient, lower energy current stimulation feedback with more training data.

The ESN controller suppressed PC energy by predicting and subsequently destruc-
tively interfering with endogenous membrane currents, demonstrating that the feedback
controller successfully estimated internal states of the model from the observable PC output.
It may have been the case that the ESN learned an internal representation of phase space of
the endogenous currents, similar to the models in [37,38]. Providing additional features of
the data (e.g., instantaneous phase or wavelet coefficients) could assist the ESN in learning
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this phasic representation. Because the controller successfully estimated the internal mem-
brane currents, simply switching the sign of the injected current would positively reinforce
ongoing dynamics. This approach could potentially be applied in both human or animal
models by first identifying a target dipole source using source localization techniques,
then modeling current flow using forward models [39]. Current source density methods
could also be used to estimate the radial current flow at the scalp [40]. After estimating the
current over the entire scalp, tES could be applied in an open-loop setting to destructively
interfere with the estimated current. The closed-loop method proposed in this paper could
be performed on real-time EEG data, given a successful tES removal artifact algorithm
that could operate in real time. Alternatively, if one relaxed the requirement of performing
ongoing current stimulation, EEG could be recorded in short windows without stimulation,
alternating with intermittent tES, to avoid artifacts [41].

5. Summary

A Jansen and Rit neural mass model was used to simulate closed-loop current stimula-
tion. An echo-state network, used to invert the dynamics of the stochastic nonlinear neural
mass model, successfully predicted current stimulation inputs to modulate the dynamics
of the model. The controller implicitly estimated the endogenous membrane currents of
the model and subsequently could be used to successfully modulate output currents. This
approach provides a potential framework for delivering closed-loop current stimulation to
the brain.
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Appendix A. State Equations for the Two-Column Neural Mass Model
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Appendix B. Exploring ESN Parameters

Figure A1. Compare with Figure 9, but with 100 internal units in the ESN (see Table 2).

Figure A2. Compare with Figure 9, but with a spectral radius of 0.9 for the ESN (see Table 2).
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