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Temporal coherence of sound fluctuations across spectral channels is thought to aid auditory grouping and scene segregation.
Although prior studies on the neural bases of temporal-coherence processing focused mostly on cortical contributions, neuro-
physiological evidence suggests that temporal-coherence-based scene analysis may start as early as the cochlear nucleus (i.e.,
the first auditory region supporting cross-channel processing over a wide frequency range). Accordingly, we hypothesized
that aspects of temporal-coherence processing that could be realized in early auditory areas may shape speech understanding
in noise. We then explored whether physiologically plausible computational models could account for results from a behav-
ioral experiment that measured consonant categorization in different masking conditions. We tested whether within-channel
masking of target-speech modulations predicted consonant confusions across the different conditions and whether predictions
were improved by adding across-channel temporal-coherence processing mirroring the computations known to exist in the
cochlear nucleus. Consonant confusions provide a rich characterization of error patterns in speech categorization, and are
thus crucial for rigorously testing models of speech perception; however, to the best of our knowledge, they have not been
used in prior studies of scene analysis. We find that within-channel modulation masking can reasonably account for category
confusions, but that it fails when temporal fine structure cues are unavailable. However, the addition of across-channel tem-
poral-coherence processing significantly improves confusion predictions across all tested conditions. Our results suggest that
temporal-coherence processing strongly shapes speech understanding in noise and that physiological computations that exist
early along the auditory pathway may contribute to this process.
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Significance Statement

Temporal coherence of sound fluctuations across distinct frequency channels is thought to be important for auditory scene
analysis. Prior studies on the neural bases of temporal-coherence processing focused mostly on cortical contributions, and it
was unknown whether speech understanding in noise may be shaped by across-channel processing that exists in earlier audi-
tory areas. Using physiologically plausible computational modeling to predict consonant confusions across different listening
conditions, we find that across-channel temporal coherence contributes significantly to scene analysis and speech perception
and that such processing may arise in the auditory pathway as early as the brainstem. By virtue of providing a richer charac-
terization of error patterns not obtainable with just intelligibility scores, consonant confusions yield unique insight into scene
analysis mechanisms.

Introduction
An accumulating body of evidence suggests that temporal-co-
herence processing is important for auditory scene analysis
(Elhilali et al., 2009). Indeed, a rich psychophysical literature
on grouping (Darwin, 1997), comodulation masking release
(CMR; Schooneveldt and Moore, 1987), cross-channel modu-
lation interference (Apoux and Bacon, 2008), and pitch-based
masking release (Oxenham and Simonson, 2009) supports
the theory that temporally coherent sound modulations can
bind together sound elements across distinct spectral channels
to form a perceptual object, which can help perceptually
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segregate different sources in an acoustic mixture. This theory
may help explain how we perform speech separation in a mul-
tisource environment (Krishnan et al., 2014), as speech natu-
rally has common temporal fluctuations across channels,
particularly in the syllabic (0–5Hz), phonemic (5–64Hz), and
pitch (64–300Hz) ranges (Crouzet and Ainsworth, 2001;
Swaminathan and Heinz, 2011).

Object binding and scene segregation are perceptually defined
phenomena, whose neural correlates are yet to be definitively
established. These phenomena may in general be supported by
a cascade of mechanisms throughout the auditory pathway
(Pressnitzer et al., 2008; Shinn-Cunningham, 2020; Mishra et al.,
2021). Prior studies on the neural bases of temporal-coherence
processing mostly focused on cortical contributions (Elhilali et
al., 2009; Teki et al., 2013; O’Sullivan et al., 2015). However, sin-
gle-unit measurements and computational modeling of across-
channel CMR effects suggest that temporal-coherence-based
scene analysis may start early in the auditory pathway; for
instance, the cochlear nucleus has the physiological mechanisms
(e.g., wideband inhibition) needed to support such analysis
(Pressnitzer et al., 2001; Meddis et al., 2002). Moreover, atten-
tion, which operates on segregated auditory objects (Shinn-
Cunningham, 2008), affects responses in the early auditory cor-
tex (Hillyard et al., 1973). Given this, binding and scene segrega-
tion likely start even earlier, such as brainstem, and accumulate
along the auditory pathway. However, no prior studies have
directly tested the hypothesis that speech understanding in noise
may be shaped by aspects of temporal-coherence processing that
exist in early auditory areas.

Previous studies of temporal-coherence processing mostly
used nonspeech stimuli (Elhilali et al., 2009; Teki et al., 2013;
O’Sullivan et al., 2015). Moreover, a parallel literature on model-
ing speech-intelligibility mechanisms typically focused on overall
intelligibility to test predictions of performance (Jørgensen et al.,
2013; Relaño-Iborra et al., 2016). A detailed characterization of
error patterns in speech categorization—crucial to rigorously
examine any theory of speech perception—has not been previ-
ously used in studies of scene analysis. In contrast, confusion pat-
terns in speech categorization, such as consonant confusion
matrices (Miller and Nicely, 1955), have been widely used in the
speech acoustics and cue-weighting literatures and can provide
deeper insight into underlying mechanisms if used to test theo-
ries of scene analysis.

To address these gaps, we used a combination of online con-
sonant identification experiments and computational modeling
of temporal-coherence processing that is physiologically plausi-
ble in the cochlear nucleus (Pressnitzer et al., 2001), the first
auditory area where cross-channel processing over a wide fre-
quency range is supported. We asked whether the masking of

target-speech envelopes by distracting masker modulations (i.e.,
modulation masking; Bacon and Grantham, 1989; Stone and
Moore, 2014) within individual frequency channels (as imple-
mented in current speech-intelligibility models; Jørgensen et al.,
2013; Relaño-Iborra et al., 2016) is sufficient to predict conso-
nant categorization, or if across-channel temporal-coherence
processing improves predictions by accounting for interference
from masker elements that are temporally coherent with target
elements but in different frequency channels. Crucially, instead
of just trying to predict perceptual intelligibility measurements
from model outputs, we predicted consonant confusion patterns
in various listening conditions. Considering the error patterns in
consonant categorization provided a richer characterization of
the processes engaged during speech perception compared to
looking only at percent correct scores. Our combined use of con-
sonant confusions and physiologically plausible computational
modeling provides independent evidence for the role of tempo-
ral-coherence processing in scene analysis and speech percep-
tion. Moreover, it suggests that this processing may start earlier
in the auditory pathway than previously thought.

Materials and Methods
Stimulus generation. The stimuli used in the present study draw

from and expand on the materials and methods previously described in
Viswanathan et al. (2021b). Twenty consonants from the Speech Test
Video (STeVi) corpus (Sensimetrics) were used. The consonants were

Table 1. Rationale for the different stimulus conditions included in this study

No. Stimulus condition Rationale for inclusion in study

1 SiQuiet Used as a control condition
2 SiSSN at �8 dB SNR Widely used in the literature; used for calibration of prediction model
3 SiB at �8 dB SNR Simulates ecologically relevant cocktail-party listening
4 SiDCmod at �18 dB SNR To obtain a different modulation masking profile from stationary noise (which contains relatively more high-frequency modulation

energy) and babble (which contains relatively more low-frequency modulation power; Viswanathan et al., 2021a)
5 SiB at 0 dB SNR subjected to 64-channel

envelope vocoding (Vocoded SiB)
Used to compare performance across models that consider TFS and those that do not (as TFS can influence scene analysis and can
convey consonant voicing information in noise; Viswanathan et al., 2021a,b)

The different listening conditions were chosen to span a range of modulation masking spectral profiles and TFS information, which allows for theories of scene analysis based on within-channel modulation masking and
across-channel temporal coherence to be tested in a rigorous manner. Collectively, these conditions represent a diversity of scene acoustics, including important examples in our environment and clinical applications. The SNR
levels were chosen to give approximately equal overall intelligibility across SiSSN, SiB, SiDCmod, and Vocoded SiB using a behavioral pilot study with three subjects who did not participate in the online consonant identifica-
tion experiment. This was done to obtain roughly equal variance in the consonant confusion estimates for these conditions, which allows us to fairly compare confusion patterns across them. Equalizing intelligibility also max-
imizes the statistical power for detecting differences in the pattern of confusions. The overall intelligibility in each of these conditions was ;60%, which yielded a sufficient number of confusions for analysis.

Table 2. Phonetic features of the 20 English consonants used in this study

Consonant Voicing MOA POA

/b/ Voiced Stop Bilabial
/t$/ Unvoiced Affricative Palatal
/d/ Voiced Stop Alveolar
/ð/ Voiced Fricative Dental
/f/ Unvoiced Fricative Labiodental
/g/ Voiced Stop Velar
/dʒ/ Voiced Affricative Palatal
/k/ Unvoiced Stop Velar
/l/ Voiced Liquid Alveolar
/m/ Voiced Nasal Bilabial
/n/ Voiced Nasal Alveolar
/p/ Unvoiced Stop Bilabial
/r/ Voiced Liquid Palatal
/s/ Unvoiced Fricative Alveolar
/$/ Unvoiced Fricative Palatal
/t/ Unvoiced Stop Alveolar
/u / Unvoiced Fricative Dental
/v/ Voiced Fricative Labiodental
/z/ Voiced Fricative Alveolar
/ʒ/ Voiced Fricative Palatal
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/b/, /t$/, /d/, /ð/, /f/, /g/, /dʒ/, /k/, /l/, /m/, /n/, /p/, /r/, /s/, /$/, /t/, /u /, /v/,
/z/, and /ʒ/. The consonants were presented in consonant-vowel (CV)
context, where the vowel was always /a/. Each consonant was spoken by
two female and two male talkers (to reflect real-life talker variability).
The CV utterances were embedded in the following carrier phrase: “You
will mark /CV/ please” (i.e., in natural running speech).

Stimuli were created for five experimental conditions: (1) Speech in
quiet (SiQuiet): Speech in quiet was used as a control condition. (2)
Speech in speech-shaped stationary noise (SiSSN): Speech was added to
stationary Gaussian noise at �8 dB signal-to-noise ratio (SNR). The
long-term spectra of the target speech (including the carrier phrase) and
that of stationary noise were adjusted to match the average (across
instances) long-term spectrum of the four-talker babble. A different real-
ization of stationary noise was used for each SiSSN stimulus. (3) Speech
in babble (SiB): Speech was added to four-talker babble at �8 dB SNR.
The long-term spectrum of the target speech (including the carrier
phrase) was adjusted to match the average (across instances) long-term
spectrum of the four-talker babble. Each SiB stimulus was created by
randomly selecting a babble sample from a list of 72 different four-talker
babble maskers obtained from the QuickSIN corpus (Killion et al.,
2004). (4) Speech in a masker with only DC modulations (SiDCmod)
(Stone et al., 2012): In line with the procedure described in Stone et al.
(2012), the target speech was filtered into 28 channels between 100 and
7800 Hz, and a sinusoidal masker centered on each channel was added
to the channel signal at �18 dB SNR. To minimize peripheral interac-
tions between maskers, odd-numbered channels were presented to one
ear and even to the other; this procedure effectively yields an unmodu-
lated masker (i.e., a masker with a modulation spectrum containing only
a DC component). Thus, the SiDCmod condition presented stimuli that
were dichotic, unlike the other conditions, which presented diotic stim-
uli. The long-term spectra of the target speech (including the carrier
phrase) and that of the masker were adjusted to match the average
(across instances) long-term spectrum of the four-talker babble. (5)
Vocoded speech in babble (Vocoded SiB): SiB at 0 dB SNR was subjected
to 64-channel envelope vocoding. A randomly selected babble sample
was used for each Vocoded SiB stimulus, similar to what was done for
SiB. In accordance with prior work (Qin and Oxenham, 2003;
Viswanathan et al., 2021b), our vocoding procedure retained the coch-
lear-level envelope in each of 64 contiguous frequency channels with
center frequencies equally spaced on an equivalent rectangular band-
width (ERB)-number scale (Glasberg and Moore, 1990) between 80 and
6000 Hz; however, the stimulus temporal fine structure (TFS) in each
channel was replaced with a noise carrier. The envelope in each channel

was extracted by half-wave rectification of the frequency content in that
channel followed by low-pass filtering with a cutoff frequency of 300 Hz,
or half of the channel bandwidth, whichever was lower. The envelope in
each channel was then used to modulate a random Gaussian white noise
carrier; the result was band-pass filtered within the channel bandwidth
and scaled to match the level of the original signal. We verified that the
vocoding procedure did not significantly change envelopes at the coch-
lear level, as described in Viswanathan et al. (2021b). Table 1 describes
the rationale behind including these different stimulus conditions in our
study.

The stimulus used for online volume adjustment was running speech
mixed with four-talker babble. The speech and babble samples were
obtained from the QuickSIN corpus (Killion et al., 2004); these were
repeated over time to obtain a;20 s total stimulus duration to give sub-
jects sufficient time to adjust their computer volume with the instruc-
tions described in Experimental design. The root mean square value of
this stimulus corresponded to 75% of the dB difference between the soft-
est and loudest stimuli in the consonant identification experiment,
which ensured that no stimulus was too loud for subjects once they had
adjusted their computer volume to a comfortable level.

Participants. Full details of participant recruitment and screening are
provided in Viswanathan et al. (2021b) and are only briefly reviewed
here. Anonymous subjects were recruited for online data collection using
Prolific.co. A three-part subject-screening protocol developed and vali-
dated by Mok et al. (2021) was used to restrict the subject pool. This pro-
tocol included a survey on age, native-speaker status, presence of
persistent tinnitus, and history of hearing and neurologic diagnoses, fol-
lowed by headphone/earphone checks and a speech-in-babble-based
hearing screening. Subjects who passed this screening protocol were
invited to participate in the consonant identification study, and when
they returned, headphone/earphone checks were performed again. Only
subjects who satisfied the following criteria passed the screening proto-
col: (1) 18–55 years old; (2) self-reported no hearing loss, neurologic dis-
orders, or persistent tinnitus; (3) born and residing in the United States/
Canada and a native speaker of North American English; (4) experi-
enced Prolific subject; and (5) passed the headphone/earphone checks
and speech-in-babble-based hearing screening (Mok et al., 2021).
Subjects provided informed consent in accordance with remote testing
protocols approved by the Purdue University Institutional Review Board
(IRB).

Experimental design. The online consonant identification experi-
ment was previously described in Viswanathan et al. (2021b).
Subjects performed the experiment using their personal computers

Figure 1. CMR circuit based on wideband inhibition in the cochlear nucleus. This physiologically plausible circuit was proposed by Pressnitzer et al. (2001) to model CMR effects seen in the
cochlear nucleus (CN). CN units at different CFs form the building blocks of this circuit. Each CN unit consists of a narrowband cell (NB) that receives narrow on-CF excitatory input from the au-
ditory nerve (AN) and inhibitory input from a wideband inhibitor (WBI). The WBI in turn receives excitatory inputs from AN fibers tuned to CFs spanning 2 octaves below to 1 octave above the
CF of the NB that it inhibits. The time constants for the excitatory and inhibitory synapses are 5 ms and 1 ms, respectively. The WBI input to the NB is delayed with respect to the AN input by
2 ms. Note that our model simulations were rate based; that is, they used AN PSTHs rather than spikes. Thus, all outputs were half-wave rectified (i.e., firing rates were positive at every stage).
All synaptic filters were initially normalized to have unit gain, then the gain of the inhibitory input was allowed to vary parametrically to implement different excitation-to-inhibition (EI) ratios
between 3:1 and 1:1. The EI ratio was adjusted to obtain the best consonant confusion prediction accuracy for SiSSN (i.e., the calibration condition), and the optimal ratio for the calibration
condition was found to be 1.75:1.
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and headphones/earphones. Our online infrastructure included
checks to prevent the use of mobile devices. The experiment con-
sisted of the following parts: (1) headphone/earphone checks, (2)
demonstration (Demo), and (3) Test. Each of these three parts had a
volume-adjustment task at the beginning. In this task, subjects were asked
to make sure that they were in a quiet room and wearing wired (not wire-
less) headphones or earphones. They were instructed not to use desktop/
laptop speakers. Headphone/earphone use was checked using the proce-
dures in Mok et al. (2021). They were then asked to set their computer
volume to 10–20% of the full volume, after which they were played a
speech-in-babble stimulus and asked to adjust their volume up to a com-
fortable but not too loud level. Once subjects had adjusted their computer
volume, they were instructed not to adjust the volume during the experi-
ment, as that could lead to sounds being too loud or soft.

The Demo stage consisted of a short training task designed to famil-
iarize subjects with how each consonant sounds and with the consonant
identification paradigm. Subjects were instructed that in each trial they
would hear a voice say, “You will mark *something* please.” They were
told that they would be given a set of options for *something* at the end
of the trial, and that they should click on the corresponding option.
After subjects had heard all consonants sequentially (i.e., the same order
as the response choices) in quiet, they were tasked with identifying con-
sonants presented in random order and spanning the same set of listen-
ing conditions as the Test stage. Subjects were instructed to ignore any
background noise and only listen to the particular voice saying, “You
will mark *something* please.” To ensure that all subjects understood
and were able to perform the task, only those subjects who scored�85%
in the Demo’s SiQuiet control condition were selected for the Test stage.

Subjects were given instructions in the Test stage similar to those in
the Demo but told to expect trials with background noise from the begin-
ning. The Test stage presented, in random order, the 20 consonants (with
one stimulus repetition per consonant) across all four talkers and all five
experimental conditions. In both Demo and Test, the masking noise,
when present, started 1 s before the target speech and continued for the
entire duration of the trial. This was done to cue the subjects’ attention to
the stimulus before the target sentence was played. In both the Demo and
Test parts, subjects received feedback after every trial on whether their
response was correct to promote engagement with the task. However,
subjects were not told what consonant was presented to avoid overtrain-
ing to the acoustics of how each consonant sounded across the different
conditions; the only exception to this rule was in the first subpart of the
Demo, where subjects heard all consonants in quiet in sequential order.

Separate studies were posted on Prolific.co for the different
talkers. When a subject performed a particular study, they would
be presented with the speech stimuli for one specific talker consis-
tently over all trials. Thus, each subject was not just trained with
one talker but also tested with that same talker to avoid training-
testing disparities. To obtain results that are generalizable, we used
50 subjects per talker (subject overlap between talkers was not
controlled); with four talkers, this yielded 200 subject-talker pairs
or data samples. Within each talker and condition, all subjects per-
formed the task with the same stimuli. Moreover, all condition
effect contrasts were computed on a within-subject basis and aver-
aged across subjects.

Data preprocessing. Only samples with intelligibility scores�85% for
the SiQuiet control condition in the Test stage were included in results
reported here. All conditions for the remaining samples were excluded
from further analyses as a data quality control measure. This yielded a
final N = 191 samples.

Quantifying confusion matrices from perceptual measurements. The
20 English consonants used in this study were assigned the phonetic fea-
tures described in Table 2. The identification data collected in the Test
stage were used to construct consonant confusion matrices (pooled over
samples) for the different conditions; these matrices in turn were used to
construct voicing, place of articulation (POA), and manner of articula-
tion (MOA) confusion matrices by pooling over all consonants.

Given that all psychophysical data were collected online, we per-
formed data quality checks; the analyses performed and the results are
described in detail in Mok et al. (2021) and Viswanathan et al. (2021b),

and are only briefly presented here. We compared consonant confusions
for SiSSN, a commonly used condition in the literature, with previous
lab-based findings. Phatak and Allen (2007) found that for a given over-
all intelligibility, recognition scores vary across consonants. They identi-
fied three groups of consonants, C1, C2, and C3 with low, high, and
intermediate recognition scores, respectively, in speech-shaped noise.
The SiSSN data that we collected online closely replicated that key trend
for the groups they identified. Moreover, based on a graphical analysis of
confusion patterns in speech-shaped noise, Phatak and Allen (2007)
identified perceptual clusters (i.e., sets where one consonant is confused
most with another in the same set). In the current study too, we identi-
fied perceptual clusters for SiSSN by subjecting the consonant confusion
matrix to a hierarchical clustering analysis (Ward, 1963); our results
closely replicated the lab-based clustering results of Phatak and Allen
(2007). As previous lab-based results were not readily available for the

Figure 2. Schematic of the within- and across-channel scene analysis models. The speech
stimuli were input into the Bruce et al. (2018) model, which simulated a normal auditory pe-
riphery with 30 cochlear filters having CFs equally spaced on an ERB-number scale (Glasberg
and Moore, 1990) between 125 Hz and 8 kHz. PSTHs from the periphery model were proc-
essed to retain only the time segments when the target consonants were presented. For the
within-channel model, these results were filtered within a 1 ERB bandwidth (Glasberg and
Moore, 1990) to extract band-specific envelopes; however, for the across-channel model, the
results were instead input into the CMR circuit model (Fig. 1). Pairwise dynamic time warp-
ing was performed to align the outputs from the previous step across time for each pair of
consonants. A modulation filterbank (Ewert and Dau, 2000; Jørgensen et al., 2013) was then
used to decompose the results at each CF into different MF bands. This filterbank consists of
a low-pass filter with a 1 Hz cutoff in parallel with eight bandpass filters with octave spacing,
a quality factor of 1, and center frequencies between 2 and 256 Hz. For each condition,
talker, CF, MF, and consonant, Pearson correlation coefficients were computed between the
filterbank output for that consonant in that particular condition and the output for each of
all 20 consonants in quiet. Each of the individual correlations was squared to obtain the var-
iance explained; the results were averaged across talkers, CFs, and MFs to obtain a raw neu-
ral metric c for each experimental condition. A separate c value was obtained for each
condition, and every pair of consonant presented and option for consonant reported. The c
values were normalized such that their sum across all options for consonants reported for a
particular consonant presented was equal to one, which yielded a condition-specific neural
consonant confusion matrix.
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remaining masking conditions in our study, we instead examined
whether subjects randomly chose a different consonant from what was
presented when they made an error, or if there was more structure in the
data. The percent errors in our data fell outside the distributions
expected from random confusions, suggesting that the error patterns
have a nonrandom structure. Together, these results support the validity
of our online-collected data.

We wished to test whether there are any significant differences in
consonant confusion patterns across the different masking conditions,
namely, SiSSN, SiB, SiDCmod, and Vocoded SiB. If so, these differences
could then be predicted by computational modeling to test our hypothe-
sis about the role of temporal-coherence-based across-channel masking
of target speech by noise fluctuations. As the SiQuiet condition was
intended to primarily be used as a control condition to ensure data qual-
ity (see Data preprocessing), SiQuiet data were not subjected to this anal-
ysis. To test whether confusion patterns differed across the masking
conditions, we first normalized the overall intelligibility for these condi-
tions to 60% by scaling the consonant confusion matrices such that the
sum of the diagonal entries was the desired intelligibility (note that over-
all intelligibility was not normalized for the main modeling analyses of
this study). By matching intelligibility in this manner, differences in con-
fusion matrices across conditions could be attributed to changes in con-
sonant categorization and category errors rather than differences in
overall error counts because of one condition being inherently easier at a
particular SNR. Because overall intelligibility was similar across the mask-
ing conditions to start with (see Fig. 5), small condition differences in
intelligibility could be normalized without loss of statistical power.
Confusion-matrix differences between the intelligibility-matched condi-
tions were then compared with appropriate null distributions of zero dif-
ferences (see Statistical analysis) to extract statistically significant
differences (see Fig. 6).

Auditory periphery modeling. The auditory-nerve model of Bruce et
al. (2018) was used to simulate processing by the auditory periphery.
The parameters of this model were set as follows. Thirty cochlear filters
with characteristic frequencies (CFs) equally spaced on an ERB-number
scale (Glasberg and Moore, 1990) between 125 and 8000 Hz were used.
Normal function was chosen for the outer and inner hair cells. The spe-
cies was chosen to be human with the Shera et al. (2002) cochlear tuning
at low sound levels; however, with suppression, the Glasberg and Moore
(1990) tuning is effectively obtained for our broadband, moderate-level
stimuli (Heinz et al., 2002; Oxenham and Shera, 2003). The noise type
parameter for the inner-hair-cell synapse model was set to fixed frac-
tional Gaussian noise to yield a constant spontaneous auditory-nerve fir-
ing rate. To avoid single-fiber saturation effects, the spontaneous rate of

the auditory-nerve fiber was set to 10, corresponding to that of a me-
dium-spontaneous-rate fiber. An approximate implementation of the
power-law adaptation dynamics in the synapse was used. The absolute
and relative refractory periods were set to 0.6ms.

The periphery model was simulated with the same speech stimuli
used in our psychophysical experiment (i.e., CV utterances that spanned
20 consonants, four talkers, and five conditions, and were embedded in
a carrier phrase) as input. The level for the target speech was set to 60dB
SPL across all stimuli, as this produced sufficient (i.e., firing rate greater
than spontaneous rate) model auditory-nerve responses for consonants
in quiet and also did not saturate the response to the loudest stimulus.
The periphery model was provided with just one audio channel input
for all conditions except SiDCmod, as that was the only condition that
was dichotic rather than diotic. Instead, for SiDCmod, the model was
separately simulated for each of the two audio channels. Two hundred
stimulus repetitions were used to derive peristimulus time histograms
(PSTHs) from model auditory-nerve outputs. The model was simulated
for the full duration of each stimulus, as opposed to just the time period
when the target consonant was presented. A PSTH bin width of 1ms
(i.e., a sampling rate of 1 kHz) was used. This was done to capture fine-
structure phase locking up to and including the typical frequency range
of human pitch for voiced sounds. In the case of the SiDCmod condi-
tion, a separate PSTH was computed for each of the two dichotic audio
channels.

Although the full speech stimuli (including the carrier phrase and
CV utterances) were used as inputs to the periphery model, the
responses to the target consonants were segmented out from the model
PSTHs before being input into the scene analysis models. This segmen-
tation had to be performed manually because the duration of the carrier
phrase varied across consonants and talkers, and the start and end times
corresponding to any given target consonant were unknown a priori.
The time segment corresponding to when the target consonant was pre-
sented was calculated for each speech-in-quiet stimulus by visualizing
speech spectrograms computed by gammatone filtering (Patterson et al.,
1987) followed by Hilbert-envelope extraction (Hilbert, 1906). One hun-
dred twenty-eight gammatone filters were used for this purpose, with
center frequencies between 100 and 8000Hz and equally spaced on an ERB-
number scale (Glasberg and Moore, 1990). A fixed duration of 104.2ms
was used for each consonant segment. Segmentation accuracy was
verified by listening to the segmented consonant utterances. The time
segments thus derived were used to extract model auditory-nerve
responses to the different target consonants across the different con-
ditions and talkers. These responses were then used as inputs to the
scene analysis models described below.

Figure 3. Stimuli used to validate the CMR circuit model. The stimuli used were from Pressnitzer et al. (2001), and consisted of a target signal in a 10 Hz 100% SAM tonal complex masker.
The masker differed depending on the experimental condition. In the Reference condition, the masker was a 1.1-kHz-carrier SAM tone (referred to as the OFC). In the Comodulated and
Codeviant conditions, six flanking components were presented in addition to the OFC. The flanking components were SAM tones at the same level as the OFC. The flanking components were
separated from the OFC by �800, �600, �400, 400, 600, and 800 Hz, respectively. The modulation of each flanking component was in phase with the OFC modulation in the Comodulated
condition, but 180° out of phase with the OFC modulation in the Codeviant condition. The target signal was a 50-ms-long 1.1 kHz tone pip that was presented in the dips of the OFC modula-
tion during the last 0.3 s of the stimulus period (i.e., in the last 3 dips) at different values of SCR (defined as the signal maximum amplitude over the amplitude of the OFC before modulation).

244 • J. Neurosci., January 12, 2022 • 42(2):240–254 Viswanathan et al. · Consonant Confusions and Temporal Coherence



Scene analysis modeling to predict consonant confusions. To study
the contribution of across-channel temporal-coherence processing to
consonant categorization, we constructed two different scene analysis
models. The first is a within-channel modulation-masking-based scene
analysis model inspired by Relaño-Iborra et al. (2016), and the second is
a simple across-channel temporal coherence model mirroring the physi-
ological computations that are known to exist in the cochlear nucleus
(Pressnitzer et al., 2001).

In the within-channel modulation-masking-based model, the audi-
tory-nerve PSTHs (i.e., the outputs from the periphery model; see
Auditory periphery modeling) corresponding to the different conso-
nants, conditions, and talkers were filtered within a 1 ERB bandwidth
(Glasberg and Moore, 1990) to extract band-specific envelopes. Note
that the envelopes extracted from auditory-nerve outputs may contain
some TFS converted to envelopes via inner-hair-cell rectification

(assuming envelope and TFS are defined at the output of the cochlea),
but that is the processing that is naturally performed by the auditory sys-
tem as well. Pairwise dynamic time warping (Rabiner, 1993) was per-
formed to align the results for each pair of consonants across time.
Dynamic time warping can help compensate for variations in speaking
rate across consonants. A modulation filterbank (Ewert and Dau, 2000;
Jørgensen et al., 2013) was then used to decompose the results at each
CF into different modulation frequency (MF) bands. This filterbank
consists of a low-pass filter with a cutoff frequency of 1Hz in parallel
with eight bandpass filters with octave spacing, a quality factor of 1, and
center frequencies ranging from 2 to 256Hz. For each condition, talker,
CF, MF, and consonant, Pearson correlation coefficients were computed
between the filterbank output for that consonant in that particular con-
dition and the output for each of all 20 consonants in quiet. Each of the
individual correlations was squared to obtain the variance explained; the

Figure 4. CMR circuit model validation. A, PSTH outputs from the CMR circuit model at 1.1 kHz CF for the stimuli in Figure 3. Results are shown separately for the Comodulated and
Codeviant conditions and at different SCRs. The black horizontal bars indicate the time points corresponding to when the target signal was presented. B, Summary of the results from A show-
ing the neurometric sensitivity, d9, as a function of SCR for the auditory-nerve and CMR circuit model outputs (both at 1.1 kHz CF). The CMR circuit model shows a clear separation between the
Comodulated and Codeviant conditions, that is, a CMR effect. This is not seen at the level of the auditory nerve. C, The variation in the CMR obtained from the circuit model as a function of
modulation rate. D, The pure-tone rate-level function (i.e., mean steady-state firing rate versus input tone level) for the CMR circuit model.
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results were averaged across talkers, CFs, and MFs to obtain a raw neural
metric c for each experimental condition. A separate c value was
obtained for each condition, and every pair of consonant presented and
option for consonant reported. For the dichotic SiDCmod condition, the
variance explained was separately computed for the left and right ears at
each CF, then the maximum across the two ears (i.e., the better-ear con-
tribution) was used for that CF (Zurek, 1993). Finally, for each condi-
tion, the c values were normalized such that their sum across all
options for consonants reported for a particular consonant presented
was equal to one; this procedure yielded a condition-specific neural con-
sonant confusion matrix.

We wanted to test whether across-channel temporal-coherence proc-
essing of input fluctuations could better predict consonant categoriza-
tion than a purely within-channel modulation masking model. To
simulate across-channel temporal-coherence processing, we modeled a
physiologically plausible wideband-inhibition-based temporal-coherence
processing circuit proposed by Pressnitzer et al. (2001) to account for
physiological correlates of CMR in the cochlear nucleus. A schematic of
this circuit is provided in Figure 1. Note that the circuit model parameter
corresponding to the excitation-to-inhibition ratio cannot be readily
compared to its physiological correlate because the model is rate based
and lacks important membrane conductance properties that spiking
models can be endowed with. The overall across-channel scene analysis
model is similar to the within-channel model, except that the envelope
extraction stage of the within-channel model is replaced with the CMR
circuit model in the across-channel model. Thus, the across-channel
model can account for both within-channel modulation masking effects
as well as across-channel temporal-coherence processing. Figure 2 shows
schematics of both the within- and across-channel models.

To verify that the CMR circuit model (Fig. 1) produced physiological
correlates of CMR similar to those reported by Pressnitzer et al. (2001),
we used the same complex stimuli that they used (Fig. 3). The stimuli
consisted of a target signal in a 100% sinusoidally amplitude-modulated
(SAM) tonal complex masker. There were three experimental condi-
tions: Reference, Comodulated, and Codeviant. In the Reference con-
dition, the masker had just one component, a SAM tone with a
carrier frequency of 1.1 kHz (to allow comparison to data from
Pressnitzer et al., 2001); this masking component is also referred to as
the on-frequency component (OFC). The Comodulated and
Codeviant conditions presented the OFC along with six flanking

components that were SAM tones at the same level as the OFC. The
carrier frequency separation between the different flanking compo-
nents and the OFC were �800, �600, �400, 400, 600, and 800Hz,
respectively. The flanking components were modulated in phase with
the OFC in the Comodulated condition, and 180° out of phase with
the OFC in the Codeviant condition. A 10Hz modulation rate was
used for all SAM tones. The target signal consisted of a 50-ms-long (i.
e., half of the modulation time period) tone pip at 1.1 kHz that was
presented in the dips of the OFC modulation during the last 0.3 s of
the stimulus period (i.e., in the last three dips) at different values of
signal-to-component ratio (SCR; defined as the signal maximum am-
plitude over the amplitude of the OFC before modulation). These
stimuli were presented to the periphery model, and the corresponding
model outputs were passed into the CMR circuit model.

The rate-level function at the output of the CMR circuit model (Fig.
4D) closely matches physiological data for chopper units in the ventral
cochlear nucleus (Winter and Palmer, 1990) and was used to set the
masker level for the CMR stimuli. The firing-rate threshold was 0 dB
SPL for pure-tone inputs at CF; thus, a fixed level of 40 dB SPL (i.e.,
40 dB SL) was used for the OFC. The PSTH outputs from the CMR cir-
cuit model (at 1.1 kHz CF) are shown in Figure 4A. The time-averaged
statistics of the firing rate during the last 0.3 s of the stimulus period and
in the absence of the target signal were used as the null distribution
against which the neurometric sensitivity, d9, was calculated; a separate
null distribution was derived for each condition. The average firing rate
during the target signal periods was compared with the corresponding
null distribution to estimate a separate d9 for each SCR and condition
(Fig. 4B). The d9 of 0.4 was used to calculate SCR thresholds and the cor-
responding CMR (threshold difference between the Codeviant and
Comodulated conditions). Note that the absolute d9 values cannot be
interpreted in a conventional manner given that the choice of window
used to estimate the null-distribution parameters introduces an arbitrary
scaling; thus, our choice of the d9 criterion to calculate CMR was instead
based on avoiding floor and ceiling effects. Results indicate that the
CMR circuit model shows a CMR effect consistent with actual cochlear
nucleus data in that signal detectability is best in the Comodulated con-
dition, followed by the Reference and Codeviant conditions (compare
Figs. 4A and B with Figs. 2 and 6A from Pressnitzer et al., 2001). The
size of the predicted CMR effect is also consistent with perceptual meas-
urements (Mok et al., 2021). As expected, no CMR effect is seen at the
level of the auditory nerve. Thus, the CMR circuit model accounts
for the improved signal representation in the Comodulated condition
where the masker is more easily segregable from the target signal, an
advantage that derives from the fact that the different masking compo-
nents are temporally coherent with one another. In addition, it also
accounts for the greater cross-channel interference in the Codeviant con-
dition, where the flanking components are temporally coherent with the
target signal that is presented in the dips of the OFC. Finally, when the
modulation rate of the input SAM tones was varied, CMR effects were
still seen (Fig. 4C) and followed the same low-pass trend as human per-
ceptual data (Carlyon et al., 1989).

Each scene analysis model was separately calibrated by fitting a logis-
tic/sigmoid function mapping the neural consonant confusion matrix
entries from that model for the SiSSN condition to corresponding per-
ceptual measurements. The mapping derived from this calibration was
used to predict perceptual consonant confusion matrices from the corre-
sponding neural confusion matrices for unseen conditions. Voicing,
POA, and MOA confusion matrices were then derived by pooling over
all consonants. Finally, the Pearson correlation coefficient was used to
compare model predictions to perceptual measurements across the voic-
ing, POA, and MOA categories. The prediction accuracy for the different
models is reported in Results.

Statistical analysis. Permutation testing (Nichols and Holmes, 2002)
with multiple-comparisons correction at 5% false discovery rate (FDR;
Benjamini and Hochberg, 1995) was used to extract significant differen-
ces in the SiSSN, SiB, SiDCmod, and Vocoded SiB consonant confusion
matrices quantified earlier (see Quantifying confusion matrices from
perceptual measurements). The null distributions for permutation test-
ing were obtained using a nonparametric shuffling procedure, which

Table 3. Pearson correlation coefficients between within-channel model predic-
tions and perceptual measurements

Condition
Diagonal entries Off-diagonal entries All entries

Correlation p-value Correlation p-value Correlation p-value

SiSSN 83% 0.0002*** 67% 10–8*** 87% 10–21***
SiB 72% 0.0026** 64% 10–7*** 87% 10–21***
SiDCmod 66% 0.0072** 64% 10–7*** 83% 10–17***
Vocoded SiB 4% 0.4445 40% 0.0019** 75% 10–13***

Results are listed separately for the diagonal entries of the confusion matrix (i.e., proportion correct for the
different consonant phonetic categories), off-diagonal entries (i.e., true confusions), and across all entries.
Note that p-value ranges are mapped to symbols as follows: *** indicates 0 � p , 0.001, ** indicates
0.001 � p , 0.01, and * indicates 0.01 � p , 0.05.

Table 4. Pearson correlation coefficients between across-channel model predic-
tions and perceptual measurements

Condition
Diagonal entries Off-diagonal entries All entries

Correlation p-value Correlation p-value Correlation p-value

SiSSN 89% 10–5*** 81% 10–13*** 92% 10–27***
SiB 85% 0.0001*** 73% 10–10*** 90% 10–24***
SiDCmod 88% 10–5*** 72% 10–9*** 86% 10–20***
Vocoded SiB 63% 0.0103* 70% 10–9*** 86% 10–20***

Results are listed separately for the diagonal entries of the confusion matrix (i.e., proportion correct for the
different consonant phonetic categories), off-diagonal entries (i.e., true confusions), and across all entries.
Note that p-value ranges are mapped to symbols as follows: *** indicates 0 � p , 0.001, ** indicates
0.001 � p , 0.01, and * indicates 0.01 � p , 0.05.
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ensured that the data used in the computation of the null distributions
had the same statistical properties as the measured confusion data. A
separate null distribution was generated for each consonant. Each real-
ization from each null distribution was obtained by following the same
computations used to obtain the actual differences in the confusion mat-
rices across conditions but with random shuffling of condition labels
corresponding to the measurements. This procedure was independently
repeated with 10,000 distinct randomizations for each null distribution.

The p-values for the Pearson correlation coefficients between model
predictions and perceptual measurements (Tables 3, 4) were derived
using Fisher’s approximation (Fisher, 1921).

To test whether the improvements in prediction accuracy (i.e., the
correlation between model predictions and perceptual measurements)
offered by the across-channel model compared to the within-channel
model are statistically significant, a permutation procedure was used
once again. Under the null hypothesis that the within- and across-chan-
nel models are equivalent in their predictive power, the individual
entries of the confusion matrices predicted by the two models can be
swapped without effect on the results. Thus, to generate each realization
of the null distribution of the correlation improvement, a randomly cho-
sen half of the confusion matrix entries were swapped; this permutation
procedure was independently repeated 100,000 times. A separate null
distribution was generated in this manner for each condition. The actual
improvements in correlation were compared with the corresponding
null distributions to estimate (uncorrected) p-values. To adjust for multi-
ple testing, an FDR procedure (Benjamini and Hochberg, 1995) was
used. Table 5 indicates whether each test met criteria for statistical signif-
icance under an FDR threshold of 5%.

Code Accessibility. Subjects were directed from Prolific.co to the
SNAPlabonline psychoacoustics infrastructure (Bharadwaj, 2021;
Mok et al., 2021) to perform the study. Offline data analyses were per-
formed using custom software in Python (https://www.python.org)
and MATLAB (MathWorks). The code for our computational models
is publicly available on GitHub at https://github.com/vibhaviswana/
modeling-consonant-confusions.

Results
Our aim was to test the hypothesis that speech understanding
in noise is shaped by aspects of temporal-coherence process-
ing that exist in early auditory areas. For this, we used a com-
bination of online consonant identification experiments and
computational modeling. In particular, we compared conso-
nant confusion predictions from a model of across-channel
temporal-coherence processing that is physiologically plausi-
ble in the cochlear nucleus with predictions from a purely
within-channel model inspired by current speech-intelligibility
models (see Scene analysis modeling to predict consonant
confusions).

Figure 5 shows speech intelligibility measurements from the
online consonant identification study. Approximately equal
overall intelligibility was achieved for SiSSN, SiDCmod, SiB, and
Vocoded SiB because of our careful choice of SNRs for these
conditions based on piloting (Table 1). This was done to obtain
roughly equal variance in the consonant confusion estimates for
these conditions, which allows us to fairly compare confusion
patterns across them. Equalizing intelligibility also maximizes
the statistical power for detecting differences in the pattern of
confusions. ;60% overall intelligibility was obtained in each
condition, which yielded a sufficient number of confusions for
analysis.

The identification data collected in the online experiment
were used to construct a consonant confusion matrix for
each condition, then statistically significant differences in
these matrices across conditions were extracted (see
Quantifying confusion matrices from perceptual measure-
ments and Statistical analysis). Results (Fig. 6) show signifi-
cant differences in the confusion patterns across (1)
conditions with different masker modulation statistics, and
(2) stimuli with intact versus degraded TFS information.
Computational modeling was then used to predict these dif-
ferences across conditions to test our hypothesis about the
role of temporal-coherence processing in scene analysis.

We constructed the following different models of scene analy-
sis: (1) a within-channel model, which simulates masking of tar-
get-speech envelopes by distracting masker modulations within
individual frequency channels, and (2) an across-channel model,
which simulates across-channel temporal-coherence processing
to account for interference from masker elements that are tem-
porally coherent with target elements but in different frequency
channels (see Scene analysis modeling to predict consonant con-
fusions). We derived a separate neural confusion matrix for each
model and listening condition. Then, each scene analysis model
was separately calibrated by fitting a nonlinear mapping relating
the neural consonant confusion matrix entries derived from that
model for the SiSSN condition to corresponding perceptual
measurements. Once fit, this mapping was used to quantitatively
predict perceptual consonant confusions for novel conditions not
used in calibration. Figure 7 shows results from the calibration
step. In this figure, the different entries of the measured

Table 5. Improvement in prediction accuracy offered by the across-channel model compared to the within-channel model

Condition
Diagonal entries Off-diagonal entries

Improvement Uncorrected p-value Significant under 5% FDR threshold? Improvement Uncorrected p-value Significant under 5% FDR threshold?

SiB 12% 0.0225 Yes 8% 0.0406 Yes
SiDCmod 22% ,10– 5 Yes 8% 0.1006 No
Vocoded SiB 59% ,10– 5 Yes 30% ,10– 5 Yes

The across-channel model showed improved correlations between model predictions and perceptual measurements for all the unseen conditions, with the largest improvement apparent for Vocoded SiB.

Figure 5. Overall intelligibility measured in the online consonant identification study for
different conditions and talkers. Approximately equal overall intelligibility was achieved for
SiSSN, SiDCmod, SiB, and Vocoded SiB (N = 191).
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perceptual confusionmatrix for SiSSN are plotted against the cor-
responding entries of the neural confusion matrix from each
model for SiSSN. From this figure, it can be seen that the data
show floor and ceiling effects, that is, as the neural metric
increases (or decreases), the perceptual metric concomitantly
increases (or decreases) but only up to a point, after which it satu-
rates. This phenomenon is common to psychometric measure-
ments. We fit this nonlinear relationship between the neural and
perceptual data for SiSSN using a sigmoid/logistic function (Fig.
7; commonly used in the literature to obtain psychometric curves)
separately for eachmodel.

The model-specific mapping derived in the calibration step was
used to predict perceptual consonant confusion matrices for each
of the scene analysis models from the neural confusion matrices
for unseen conditions (not used in calibration). Then, voicing,
POA, and MOA confusion matrices were derived by pooling over
all consonants (see Figs. 9, 10, 11). Finally, model predictions were
compared with perceptual measurements for the different confu-
sion matrix entries across the voicing, POA, and MOA categories.

The results are shown in Figure 8 for SiB, SiDCmod, and Vocoded
SiB. Visual comparison of the plotted data against the line of
equality in Figure 8 suggests that there is a prediction bias for
the SiDCmod and Vocoded SiB conditions for both the within-
and across-channel models. This bias likely arises from our
choice of calibration function (i.e., the sigmoid function) and
the fact that calibration parameters were fitted to SiSSN, which
may be suboptimal for the other conditions. Nonetheless, it
can be seen that the cluster of points is less dispersed for the
across-channel model compared to the within-channel model,
indicating greater predictive accuracy for the across-channel
model. The SiQuiet condition is not visualized, as there were
ceiling effects in the intelligibility measurements (i.e., the diag-
onal entries of the confusion matrix were dominant) and very
few confusions (i.e., off-diagonal entries were rare), which
made it infeasible to meaningfully evaluate the quality of pre-
dictions for this condition (as there was no variance across ei-
ther the on- or off-diagonal entries). But overall, across all
entries for SiQuiet, both models predicted diagonal entries

Figure 6. Measured consonant confusion-matrix differences across conditions (pooled over samples; N = 191). The first two plots represent differences across maskers with different modula-
tion spectra, whereas the third plot shows the difference across stimuli with intact versus degraded TFS information. Only significant differences are shown, after permutation testing with mul-
tiple-comparisons correction (5% FDR). As the modulation statistics of the masker or the TFS content were varied, statistically significant differences emerged in the confusion patterns across
conditions. Overall intelligibility was normalized to 60% for this analysis (see Quantifying confusion matrices from perceptual measurements) so that differences in confusion matrices across
conditions could be attributed to changes in consonant categorization and category errors rather than differences in overall error counts because of one condition being inherently easier at a
particular SNR.

Figure 7. Calibration result for the within- and across-channel models of scene analysis. The different entries of the measured perceptual confusion matrix for the SiSSN condition are plotted
(open circles) against the corresponding entries of the neural confusion matrix for SiSSN derived from the within-channel model (left) and across-channel model (right). The nonlinear relation-
ship between these neural and perceptual data was fit using a sigmoid/logistic function (thick curve) separately for each model.
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close to one and off-diagonal entries close to zero, in line with
perceptual measurements.

Pearson correlation coefficients were computed between the
model predictions and perceptual measurements for the unseen
conditions (Fig. 8) as well as for SiSSN (i.e., the calibration condi-
tion); the results are given in Tables 3 and 4 for the within- and

across-channel models, respectively. Because the range of confu-
sion matrix entries spanned three orders of magnitude, all com-
parisons were performed with log-transformed values. The
correlations were statistically significant across all nonvocoded
conditions for the within-channel model and across all condi-
tions for the across-channel model (see Statistical analysis). The

Figure 8. Within- and across-channel model predictions versus measured confusion matrix entries for the unseen conditions. Diagonal entries correspond to proportion correct scores for the
different consonant phonetic categories (voicing, POA, and MOA), and off-diagonal entries correspond to true confusions. The line of equality is shown as a dashed gray line. Pearson correlation
coefficients between model predictions and perceptual measurements are quantified in Tables 3 and 4.
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strong correlation of the within-channel model predictions with
perceptual data in the nonvocoded conditions (where TFS cues
are preserved) provides independent evidence that speech under-
standing is strongly influenced by modulation masking when TFS
cues are available (Viswanathan et al., 2021a); moreover, this result
also suggests that modulations are used differently by the brain in
the absence of natural TFS.

The across-channel model produced stronger correlation
values compared to the within-channel model for all condi-
tions, and the improvements were statistically significant
across all conditions even after correcting for multiple com-
parisons (Table 5; see Statistical analysis). Thus, a simple
physiologically plausible model of across-channel cochlear nu-
cleus processing that shows CMR (Fig. 4) also yields category
confusion predictions that match behavioral data and more
specifically improves predictions compared to a within-chan-
nel model. Note that our within-channel model assumes per-
fect segregability of target-masker components that are
separated in CF and MF (in line with current speech-intelligi-
bility models; Jørgensen et al., 2013; Relaño-Iborra et al.,
2016), and only models within-channel modulation masking.
Specifically, within a particular channel (i.e., CF) and MF,
masker modulations that are not in phase with the target are
the only components that mask the target. However, our
across-channel model simulates both within-channel modula-
tion masking and cross-channel temporal-coherence-based interfer-
ence. Specifically, masker components that are in a different channel
from the target but that are temporally coherent with the target can
interfere with target coding and perception.We implemented this in-
terference via the CMR circuit model (Fig. 1), where temporally
coherent pieces of the target and masker, even across distinct coch-
lear channels, coherently drive the wideband inhibitor, thereby

enhancing outputs of the narrowband cell (which is inhibited by the
wideband inhibitor) that are incoherent with the masker. Thus,
our finding that model predictions are improved when cross-
channel processing is added is consistent with the theory that
across-channel temporal coherence shapes scene analysis (Elhilali et
al., 2009). Moreover, this result also suggests that physiological com-
putations that exist as early as the cochlear nucleus can contribute
significantly to temporal-coherence-based scene analysis. Note that
improvements to confusion predictions are apparent with the
across-channel model for the same range of model parameters for
which the CMR effect is also apparent.

Another key result from Table 5 is that the condition
that showed the greatest improvement in confusion matrix pre-
dictions between the within- and across-channel models is
Vocoded SiB. The masker in Vocoded SiB produces both within-
channel modulation masking and cross-channel interference (as
described above). These masking and interference effects are par-
tially mitigated in SiB (and other nonvocoded conditions) com-
pared to Vocoded SiB because the brain can use the pitch cue
supplied by natural TFS to better separate the target and masker
(Darwin, 1997; Oxenham and Simonson, 2009). The across-
channel model is a better fit to perceptual data for all conditions,
which suggests that cross-channel interference affects perceptual
data. Thus, the improvement offered by this model is likely most
apparent for Vocoded SiB because cross-channel interference
effects contribute most to perception in this condition.

Note that while the main difference between the two scene
analysis models tested in the current study is the exclusion/inclu-
sion of cross-channel processing, another difference is that the
within-channel model discards TFS, whereas the across-channel
model uses the full simulated auditory-nerve output to drive the
CMR circuit model. This raises the possibility that part of the

Figure 9. Full set of measured (top row) and model-predicted (middle, bottom rows) voicing confusion matrices.
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Figure 10. Full set of measured (top row) and model-predicted (middle, bottom rows) POA confusion matrices.

Figure 11. Full set of measured (top row) and model-predicted (middle, bottom rows) MOA confusion matrices.
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improvement offered by the across-channel model could come
simply from the inclusion of TFS information within each chan-
nel independently. To investigate whether the poorer perform-
ance of the within-channel model was partly because of
discarding TFS, we reran the within-channel model by retaining
the full auditory-nerve output (data not shown). We found that
the predictions from the modified within-channel model were
not significantly better than those of the original within-channel
model. This confirms that the improvement in predictions given
by the across-channel model comes largely from across-channel
CMR effects, suggesting that categorical perception is sensitive to
the temporal coherence across channels. Moreover, these CMR
effects were restricted to low rates (,80Hz or so; Fig. 4C), con-
sistent with perceptual data (Carlyon et al., 1989). This suggests
that the cross-channel processing did not benefit much from the
TFS information included in driving the CMR circuit model.

For completeness, the full set of model-predicted and meas-
ured perceptual confusion matrices are shown for the voicing,
POA, and MOA categories (Figs. 9, 10, 11); results are shown
only for the SiB, SiDCmod, and Vocoded SiB conditions (i.e., the
conditions unseen by the calibration step and having a sufficient
number of confusions for prediction). In addition, the raw con-
sonant confusion matrix measurements for all conditions are
shown in Figure 12.

Discussion
To probe the contribution of temporal-coherence processing to
speech understanding in noise, the present study used a behav-
ioral experiment to measure consonant identification in different
masking conditions in conjunction with physiologically plausible
computational modeling. To the best of our knowledge, this is
the first study to use confusion patterns in speech categorization
to test theories of auditory scene analysis. The use of confusion
data provides independent constraints on our understanding of

scene analysis mechanisms beyond what overall intelligibility
can provide. This is because percent correct data only convey
binary information about whether target coding was intact,
whereas consonant categorization and confusion data provide
richer information about what sound elements received per-
ceptual weighting.

We constructed computational models simulating (1) purely
within-channel modulationmasking (in line with current speech-
intelligibility models; Relaño-Iborra et al., 2016), and (2) a combi-
nation of within-channel modulation masking and across-chan-
nel temporal-coherence processing mirroring physiological
computations that are known to exist in the cochlear nucleus
(Pressnitzer et al., 2001). Our across-channel temporal-coherence
circuit produced a CMR effect (Fig. 4) that is consistent with
actual cochlear nucleus data (Pressnitzer et al., 2001) and percep-
tual measurements (Mok et al., 2021). Moreover, consonant con-
fusion pattern predictions were significantly improved for all
tested conditions with the addition of this cross-channel process-
ing (Table 5), which suggests that temporal-coherence processing
strongly shapes speech categorization when listening in noise.
This result is consistent with the theory that comodulated features
of a sound source are perceptually grouped together and that
masker elements that are temporally coherent with target speech
but in a different channel from the target perceptually interfere
(Schooneveldt and Moore, 1987; Darwin, 1997; Apoux and
Bacon, 2008). The only case where the within- and across-chan-
nel models were statistically equivalent was in predicting the off-
diagonal entries (i.e., true confusions) for the SiDCmod condi-
tion; this may be because this condition has little coherent cross-
channel interference from the masker since the masker is
unmodulated (Stone et al., 2012).

An important difference between the cross- and within-chan-
nel masking simulated in our models is that while the cross-
channel interference was produced by masker fluctuations that

Figure 12. Raw consonant confusion matrix measurements for all conditions (pooled over samples). Overall intelligibility was ;90% for the SiQuiet condition and ;60% for the SiSSN,
SiB, SiDCmod, and Vocoded SiB conditions (Fig. 5).
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were temporally coherent with the target, the within-channel
masking was produced by masker components that were
matched in both CF and MF with target components. While
current speech-intelligibility models simulate the latter type of
masking (Jørgensen et al., 2013; Relaño-Iborra et al., 2016), they
do not account for cross-channel temporal-coherence-based
masking as we have done here. This may explain why these mod-
els fail in certain conditions, including for vocoded stimuli
(Steinmetzger et al., 2019). Indeed, even in the present study,
although our within-channel modulation masking model reason-
ably accounted for category confusions, it failed when TFS cues
were unavailable (Table 3). One explanation for this is that
because pitch-based masking release is poorer in the vocoded
condition due to degraded TFS information (Oxenham and
Simonson, 2009), the effects of cross-channel interference are
more salient. This may also be the reason why the Vocoded SiB
condition showed the greatest improvement in confusion pattern
predictions after adding cross-channel processing (Table 5),
which models these interference effects.

Although the lateral inhibition network used in Elhilali et al.
(2003) bears some similarities to the across-channel CMR cir-
cuit model used in the current study, the CMR circuit model
was explicitly based on physiological computations present in
the cochlear nucleus and their CMR properties. Thus, another
implication of the results of the present study is that physiologi-
cal computations that exist as early as the cochlear nucleus can
contribute significantly to temporal-coherence-based scene
analysis. Such effects likely accumulate as we ascend along
the auditory pathway (Elhilali et al., 2009; Teki et al., 2013;
O’Sullivan et al., 2015). Indeed, scene analysis may in general
be supported by a cascade of mechanisms throughout the au-
ditory pathway, including both early-stage processing as well
as cortical mechanisms. For example, there are circuits in the
brainstem, midbrain, and cortex that exhibit sensitivity and se-
lectivity to different spectrotemporal regularities in the input
(Nelken et al., 1999; Pressnitzer et al., 2008; Kondo and
Kashino, 2009; Diepenbrock et al., 2017; Mishra et al., 2021);
these properties may in turn support auditory-object formation
and scene segregation. Moreover, top-down cognitive processes
such as attention can also contribute to scene analysis, espe-
cially when sound elements are otherwise perceptually similar
(Shinn-Cunningham, 2020). Thus, future studies should explore
the contributions of scene analysis mechanisms at different levels of
the hierarchy of auditory processing.

The CMR circuit model used in the current study does not
perform pitch-range temporal-coherence processing, and no
CMR effect was seen at high modulation rates (Fig. 4C), consist-
ent with perceptual data in the literature (Carlyon et al., 1989).
Despite this, our across-channel model significantly improved
predictions of category confusions compared to the within-chan-
nel model, which suggests that temporal-coherence processing at
lower modulation rates is perceptually important. A future
research direction is to extend the modeling framework pro-
posed here to study the contributions of scene analysis mech-
anisms beyond the specific aspects of temporal-coherence
processing studied here. One such extension could be to
account for pitch-based source segregation (Bregman, 1990),
perhaps by modeling a combined temporal-place code for
pitch processing (Shamma and Klein, 2000; Oxenham et al.,
2004; Oxenham and Simonson, 2009).

One limitation of the periphery model that we used (Bruce et
al., 2018) is that it was developed to match nerve responses to
simple stimuli. However, this family of periphery models has

been successfully used to account for complex phenomena such
as synchrony capture (Delgutte and Kiang, 1984), formant cod-
ing in the midbrain (Carney et al., 2015), and qualitative aspects
of evoked potentials such as auditory brainstem responses and
frequency-following responses (Shinn-Cunningham et al., 2013).
Although a debate exists regarding the spatiotemporal properties
of different periphery models in cochlear responses (Verhulst et
al., 2015; Vecchi et al., 2021), those differences are subtle com-
pared to the slower CMR effects that are important for the pres-
ent study. A more general limitation of the models used in this
study is that they are simple and do not incorporate many
aspects of speech perception (e.g., context effects; Dubno and
Levitt, 1981) because the goal here is to test specific theories of
scene analysis. Nevertheless, the contrast between the models
would be unaffected by these higher-order effects.
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