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Abstract— Brain-computer interface (BCI) systems allow
users to communicate directly with a device using their brain.
BCI devices leveraging electroencephalography (EEG) signals
as a means of communication typically use manual feature
engineering on the data to perform decoding. This approach
is time intensive, requires substantial domain knowledge, and
does not translate well, even to similar tasks. To combat this
issue, we designed a convolutional neural network (CNN) model
to perform decoding on EEG data collected from an auditory
attention paradigm. Our CNN model not only bypasses the
need for manual feature engineering, but additionally improves
decoding accuracy (∼77%) and efficiency (∼11 bits/min) com-
pared to a support vector machine (SVM) baseline. The results
demonstrate the potential for the use of CNN in auditory BCI
designs.

I. INTRODUCTION

Electroencephalography (EEG), a noninvasive, mobile,
and low cost neuroimaging technique, has become a popular
method for developing brain-computer interfaces (BCIs) [1].
Many successful BCI systems have been built around visual
attention: when users are asked to focus on a particular visual
object, their attentional state can be decoded from EEG
signatures such as evoked responses and oscillations. Due
to the strength and robustness of visual responses in EEG,
these visual paradigms can achieve high decoding accuracy
and transmission efficiency. For example, Lin et al. reported
an average information transfer rate (ITR) of 20.26 bits/min
in their BCI system built on visual event-related potentials
(ERPs, [2]).

Visual BCIs require the deployment of visual attention,
which is not always feasible in real-life scenarios like while
walking or driving, or for users with visual impairment.
An alternative solution using a different sensory modality
is therefore desirable. Previous BCI studies have attempted
to decode auditory attention from EEG signals. Kim et
al. [3] used two streams of modulated signal with a constant-
frequency carrier as the stimuli and decoded users’ attention
from their auditory steady-state response (ASSR). Kaongoen
and Jo [4] developed a hybrid auditory BCI paradigm com-
bining ASSR and ERP. Considering that these modulated
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signals are not particularly pleasant and can cause user
fatigue, researchers have also explored using more user-
friendly stimuli, such as drip-drop sounds [5], sequences of
tones [6], and music [7], in their BCI design. However, the
improved user-friendliness was achieved at the cost of system
efficiency — none of these studies yielded an ITR over 3
bit/min. We recently reached a balance between these two
goals [8]. We directed users’ attention to spatialized human-
voiced syllables, trained a support vector machine (SVM)
with time-frequency measures of EEG, and achieved high
decoding throughput (∼10 bits/min).

One possible way to improve the results in [8] is to
adopt a deep learning approach, such as a convolutional
neural network (CNN). As opposed to conventional machine
learning algorithms like SVM, CNNs do not depend on hand-
crafted features for classification. Instead, it automatically
learns kernel functions through training, which can help
extract features that differentiate multiple classes. CNNs have
been widely used in computer vision and more recently in
general EEG studies [9], but have not been popularly used
in auditory BCIs. In this study, we explored the efficacy of
CNNs in decoding auditory attention by comparing with a
SVM baseline. We also examined the correlation between
CNN decoding and behavioral performance to find a possible
cause of the observed individual differences in decoding
results.

II. METHODS

A. Participants

Thirty adults with normal hearing (21.95±4.95 years old,
15 female) were recruited for this study. The Institutional
Review Board of Boston University approved this study.
Participants were briefed and consented before partaking in
this study, and were compensated for their time.

B. Experiment

Subjects sat in a soundproof booth while wearing a pair
of insert earphones (ER1, Etymotic Research). The sound
stimuli consisted of syllables /ba/, /da/ and /ga/ spoken by
native English speakers with varying pitch. To spatialize the
sound stimuli, the audio waveforms were convolved with
head-related transfer functions provided by the Media Lab,
MIT [10]. The simulated locations were center, 30◦ from the
left (L30) or right (R30), or 90◦ from the left (L90) or right
(R90, Fig. 1a), in the horizontal plane.

The trial began with a one-second visual cue (VC). The
VC “Space” indicated that the subject should perform spatial
attention, while the VC “Relax” required no attention from



Fig. 1. (a) (Adapted from [8] with the authors’ permission) Spoken
syllables were spatialized to center, 30◦ left (L30), or right (R30), and
90◦ left (L90), or right (R90), always in the horizontal plane. This figure
shows one possible scenario where sounds come from L90, R90 and center.
(b) Illustration of the events within a trial. A visual cue (VC) was followed
by an auditory cue (AC). A 4-syllable mixture was played 1 second after
the AC. Participants were asked to respond when the fixation dot turned
blue. A green or red dot at the end of the trial provided feedback.

the subject (a third condition, “Talker”, is not reported here.)
After the VC ended, a 500 ms auditory cue (AC) was played.
For “Space” attention trials, the AC was a spatialized /a/
syllable, coming from either L90 or R90. In the “Relax”
trials, the /a/ syllable came from the midline. 1000 ms after
the AC, a 4-syllable mixture consisting of permuted syllables
/ba/, /da/, and /ga/ was played. Each syllable was 600 ms in
duration and had 300 ms delays between each subsequent
syllable onset. The first and last syllables were distractors
(D1), which came from the center. The second and third
syllables were either another distractor (D2) or the target
syllable (T). The target came from the same location as the
AC, while D2 came from a location different than the target.
For the “Space” trials, subjects were required to report the
target using a key press (“1” for /ba/, “2” for /da/, and “3” for
/ga/). During “Relax” trials, subjects were asked to passively
listen and report a random syllable. Visual feedback was
provided indicating correct responses.

In total, subjects completed 756 trials for the entire experi-
ment, which lasted for approximately 2 hours. Each trial had
variations in location and pitch of the talkers, ordering of the
syllables, and attention type; only a subset of the overall data
(i.e., trials that required spatial or no attention) was used in
this study. We collapsed all spatial attention trials into one
condition (288 trials), and all no-attention trials into another
condition (252 trials) to perform binary classification. In both
conditions, the exact same stimuli were presented; the only

difference between the conditions was the instruction for the
task.

C. EEG processing

EEG was collected using a 64-channel Biosemi system
sampled at 2048 Hz. Raw EEG data were bandpass filtered
(0.1 – 50 Hz), and were then downsampled to 256 Hz.
As opposed to the previous study, which used independent
component analysis (ICA) for artifact removal, we used
artifact subspace removal (ASR) to remove artifacts because
ASR is more feasible during real-time BCI decoding [11].

D. Feature extraction for support vector machine

Based on prior knowledge about the neural signatures
of spatial attention [12], we used both time and frequency
representations of the EEG data for decoding. The data for
each trial were cropped to contain only the time window
from 1.5 to 2.7 seconds after the AC, which we expected
to contain the critical neural signatures of interest while the
subject is actively performing attention. Continuous wavelet
transforms (CWT) were used to generate a spectro-temporal
representation of the time-series data. A Morlet wavelet with
ω0 = 6 was used as the wavelet base. Normalization was
done to have unit total energy at all scales [13]. The CWT
coefficients were then collapsed into five distinct frequency
bands that are known to contain signatures of cognitive
processes: delta (2 – 4 Hz), theta (4 – 8 Hz), alpha (8
– 14 Hz), beta (14 – 30 Hz) and gamma (30 – 50 Hz).
This process yielded a multidimensional time-series for each
channel consisting of the channel voltage and the magnitude
of the wavelet coefficients in each frequency band. To reduce
the data dimensionality and computational demands, data
were binned into 100 ms windows. The resulting time-
series matrix across channels and features was flattened to
produce a single vector. A support vector machine (SVM)
with a linear kernel was used to decode this data vector for
spatial attention conditions vs. no attention conditions. We
performed 10-fold cross-validation to generate training and
test sets. The decoding accuracy was averaged across the
10 folds. This process was repeated 20 times, for a total
of 200 trained models. Each subject was trained and tested
independently from other subjects.

E. Convolutional neural network

Instead of manual feature engineering, the preprocessed
EEG time-series in the same 1.5 – 2.7 second time-window
was input into a CNN. Our architecture consisted of only
three convolutional layers to avoid overfitting, given that
our data set is relatively small. Average pooling layers were
interwoven between convolutional layers to further reduce
the dimensionality of the input. The resulting output of
the convolutional layers was flattened and fed through fully
connected layers followed by rectified linear unit (ReLU)
layers to get a single prediction of the binary class. We
additionally used dropout layers to assist with overfitting.
Details about the layers can be seen in Fig. 2.



Fig. 2. The CNN architecture used in this study.
Conv – convolutional layer; H – height of kernal; W – width of kernal;
ReLU – rectified linear unit; AvgP – average pooling layer; BN – batch
normalization layer; FC – fully connected layer; DO – dropout layer

The training schemes for the CNN differed slightly from
that used for the SVM to avoid overfitting due to overtrain-
ing. 10-fold cross validation was performed with 20 samples
from each condition (40 samples in total) being held out as
the validation set in each fold. The CNN was then trained
for 40 epochs, and the model with the lowest validation
loss across the 40 epochs was used as the final model to
classify the testing set. The rationale is that if a model
is overtrained in late epochs, the overfitting would lead to
an increase in validation loss. By choosing the model with
the lowest validation loss, we are technically stopping the
training process before the model becomes too complicated
to generalize properly, and thus avoiding overfitting. 20 itera-
tions of random initialization were performed for this 10-fold
cross validation. The testing accuracy was averaged across
these iterations to estimate the classification performance of
the model. We used a cross-entropy loss function, Adam
optimizer with a learning rate of 0.0001, a lambda weight
decay of 0.01, and a batch size of 50.

III. RESULTS AND DISCUSSION

A. Classification accuracy

The average classification accuracy of the SVM approach
was 72.10% (Tab. I), a slight drop from the result (∼75%)
in [8], where ICA was adopted for artifact removal. Because
ASR requires much less time to process than ICA and
can be used in a real-time manner, it seems reasonable to
replace ICA with ASR in a BCI system design for real-life
applications.

The CNN method proposed in this study significantly
improved the classification performance compared to the
SVM approach (paired t-test, p<0.001, Fig. 3). It achieved
a 77.01% decoding accuracy; moreover, each individual
subject showed a performance gain over SVM. Given that
attention was decoded from only 1.2 seconds of data, the
proposed BCI system is highly efficient. The average equiv-
alent ITR [14] is 11.11 bits/min, and the best ITR among all
participants is 32.03 bits/min, on par with some visual BCI
paradigms. In the future, we will attempt other advanced
machine learning methods, such as convolutional long short-
term memory (ConvLSTM) and adaptive learning [15] to
seek for even better classification performance.

Fig. 3. SVM and CNN classification results. Each gray line represents data
from one subject. CNN yielded a significantly higher average classification
accuracy than SVM. *p<0.001

TABLE I
CLASSIFICATION ACCURACY & INFORMATION TRANSFER RATE (ITR)

Classifier Average Average ITR Best ITR
accuracy (bits/min) (bits/min)

SVM 72.10% 7.30 25.00

CNN 77.01% 11.11 32.03

B. Performance gain with CNN

The gain in classification accuracy of CNN over SVM
varied across participants. Fig. 4 shows that this improvement
is strongly and negatively correlated with the SVM classifi-
cation results (ρ=-0.541, p=0.002). The CNN method seems
to have benefited subjects with a lower decoding score more
than those with a higher one, and thus reduced the variability
in decoding accuracy across subjects. One possible reason
is that the SVM accuracy is low in some subjects not only
because there is less distinguishing information in their EEG
signals, but because such information is not reliably extracted
from EEG using the CWT method. The CNN approach
does not rely on hand-crafted features, but rather learns
through training what features to use. It may help preserve
information that is present, but does not get represented in
generic, hand engineered features. The CNN approach thus
may be especially beneficial to participants with a low SVM
score.

C. Correlation with behavioral performance

The participants exhibit a wide range of behavioral perfor-
mance in this study — some nearly achieved a perfect score
in the attention task, while some others answered correctly
in less than 70% of the trials. Interestingly, we observed
a strong positive correlation between the participants’ be-
havioral performance and their attention decoding accuracy
using CNN (ρ=0.583, p<0.001, Fig. 5). This suggests that
the variance in individual CNN classification results shown
in Fig. 3 can be partially explained by how well a participant
performed in the attention task. If the main reason for giving
an incorrect response is that a subject’s attentional focus
drifted, the proposed BCI system has the potential to achieve



Fig. 4. The gain in classification accuracy from using CNN over SVM
is negatively correlated with the SVM classification results. Each circle
represents data point of one subject.

Fig. 5. The CNN classification accuracy is positively correlated with the
subject’s behavioral performance in the attention task.

even better accuracy and efficiency if the user is always fully
engaged and motivated, which is more likely during real-life
applications.

IV. CONCLUSIONS

This study proposed a method to decode auditory attention
from single-trial EEG for the purpose of building a BCI sys-
tem. We adopted a subspace-based artifact removal pipeline,
which can process signals in a real-time manner. The CNN
approach yielded high classification accuracy and efficiency,
outperforming a SVM baseline as well as previous studies.
The CNN decoding results are strongly correlated with the
participants’ behavioral performance in the attention task,
suggesting a possible improvement in decoding, when used
in real-life applications, where users are highly motivated.
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