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ABSTRACT:
Perceptual anchors are representations of stimulus features stored in long-term memory rather than short-term mem-

ory. The present study investigated whether listeners use perceptual anchors to improve pure-tone frequency discrim-

ination. Ten amateur musicians performed a two-interval, two-alternative forced-choice frequency-discrimination

experiment. In one half of the experiment, the frequency of the first tone was fixed across trials, and in the other half,

the frequency of the first tone was roved widely across trials. The durations of the interstimulus intervals (ISIs) and

the frequency differences between the tones on each trial were also manipulated. The data were analyzed with a

Bayesian model that assumed that performance was limited by sensory noise (related to the initial encoding of the

stimuli), memory noise (which increased proportionally to the ISI), fluctuations in attention, and response bias. It

was hypothesized that memory-noise variance increased more rapidly during roved-frequency discrimination than

fixed-frequency discrimination because listeners used perceptual anchors in the latter condition. The results sup-

ported this hypothesis. The results also suggested that listeners experienced more lapses in attention during roved-

frequency discrimination. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0000584
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I. INTRODUCTION

Models of discrimination commonly assume that sen-

sory representations are stored in more than one form of

memory. For example, Durlach and Braida (1969) proposed

two modes of auditory intensity discrimination. The first,

called trace mode, is used to discriminate the intensities of

sounds separated by up to a few seconds and involves stor-

ing accurate but transient representations in short-term

memory. The second, called context-coding mode, involves

longer lasting but vaguer representations coded in terms of

their distances from stable referents stored in long-term

memory. The term perceptual anchor was introduced to

describe long-term referents in a later study (Braida et al.,
1984). Models of visual discrimination sometimes employ

similar constructs. For example, Donkin et al. (2015) pro-

posed a model of color discrimination in which individuals

store certain hues in short-term memory and assign verbal

labels to others (e.g., “greenish blue”), storing those hues

along with their labels in long-term memory. Thus, regard-

less of differences in terminology, auditory and visual scien-

tists agree that short-term and long-term representations are

combined to improve discrimination (for more examples,

see Hafter et al., 1998; Jackson and Raymond, 2008; Lin

and Luck, 2009; Sorkin, 1987; Spencer and Hund, 2002).

The precise durations of these representations are debatable

and may differ between sensory modalities and stimulus fea-

tures. Here, we consider short-term representations to be

those that persist for up to several seconds and are not likely

to be remembered after the end of a trial in a typical psycho-

physical experiment. By contrast, we consider long-term

representations, or perceptual anchors, to persist for the

entire duration of a typical experiment.

The present study investigated whether listeners use

perceptual anchors during auditory frequency discrimina-

tion. In an early study on this topic, Harris (1952a) estimated

listeners’ difference limens for frequency (DLFs) for pure

tones in a two-interval, two-alternative forced-choice (2I-

2AFC) experiment. During one set of conditions, the first

tone on each trial was always 1000 Hz (fixed). During

another set of conditions, the first tone varied across trials

between 950 and 1050 Hz (roved). The interstimulus inter-

val (ISI) separating the tones was also manipulated. On

average, DLFs were larger at longer ISIs. Moreover, the rate

of increase in DLFs as a function of ISI duration was greater

during roved conditions than fixed conditions. Harris rea-

soned that, during fixed conditions, listeners formed a per-

ceptual anchor at the repeated frequency, which allowed

them to compare representations of the second tones to the

perceptual anchor rather than to representations of the first

tones. Since perceptual anchors are stable over time, ISI

duration had only a weak influence on DLFs measured
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during fixed conditions. By contrast, during roved condi-

tions, listeners were unable to use perceptual anchors,

resulting in a stronger influence of ISI duration on roved-

frequency DLFs. A possible limitation of Harris’s study is

that the 100-Hz roving range may have been too narrow to

minimize the utility of perceptual anchors during roved con-

ditions (Dai and Micheyl, 2012).

In the present study, listeners also performed a 2I-

2AFC pure-tone frequency-discrimination experiment simi-

lar to the one described by Harris (1952a). In one half of the

experiment, the frequency of the first tone was fixed across

trials, and in the other half, the frequency of the first tone

was roved. ISI durations and the frequency differences

between the tones on each trial were also manipulated. In

contrast to Harris, we employed a wide roving range, mak-

ing it unlikely that listeners used perceptual anchors on

roved trials. However, the major novelty of the present study

was its analytic approach. We devised a model that explic-

itly quantified several variables that may have influenced lis-

teners’ decisions in the experiment. We hypothesized that

one of these variables—the decay rate, or rate of increase of

memory-noise variance over time—would be greater on

roved trials than fixed trials because listeners used percep-

tual anchors in the latter condition. Although we did not

expect other variables in the model to be influenced by the

use of perceptual anchors, we hypothesized that they could

have differed between conditions for other reasons. We

therefore estimated all variables separately for fixed and

roved trials.

II. METHOD

A. Listeners

Ten listeners (six female, 19–29 years old) participated

in the experiment. All of them had �15 dB hearing level for

frequencies at octave steps between 250 and 8000 Hz and at

least some degree of musical experience. Musicians were

used to avoid the need for extensive training in pure-tone

frequency discrimination prior to the experiment (see

Micheyl et al., 2006). None had prior experience in psycho-

acoustical experiments, all were naive to the aims of the

study, and all were paid for their participation. All listeners

provided informed consent via documents approved by the

Boston University Charles River Campus Institutional

Review Board. None reported having absolute pitch.

B. Stimuli

On each trial, listeners heard two pure tones. All tones

were 100 ms in duration, presented at 70 dB sound pressure

level, and gated on and off with 20-ms raised-cosine ampli-

tude ramps. Tones were generated digitally and delivered

diotically via headphones (Sennheiser HD 580, Hannover,

Germany) using a 24-bit digital-to-analog converter at a

sampling rate of 44 100 Hz (MOTU Microbook, Cambridge,

MA). The frequency of the first tone on each trial was either

selected randomly (roved) from a rectangular probability

distribution defined on the equal-temperament musical scale

with a three-octave range (400–3200 Hz) or fixed at the cen-

ter of the roving range (�1130 Hz). The frequency of the

second tone on each trial differed from the first by an

amount denoted by D. The possible values of D were �1,

�0.75, �0.5, �0.25, 0, 0.25, 0.5, 0.75, and 1 semitone. The

duration of the silent ISI was either 2, 5, or 10 s. The corre-

sponding stimulus onset asynchronies (SOAs) were 2.1, 5.1,

and 10.1 s.

C. Procedure

Listeners were tested individually in a sound-

attenuating chamber (IAC, North Aurora, IL) in two or more

sessions lasting �2 h each, completed on different days. The

task instructions were always the same: indicate which tone

had the higher pitch by pressing “1” or “2” on a keyboard.

Response times were unlimited, and listeners were given

visual feedback about response accuracy in the form of

green or red text on the monitor (none of the listeners were

colorblind). On trials in which D¼ 0, neither response was

considered correct, and listeners always received negative

feedback.1 The next trial began 2-s after a response.

The experiment comprised 24 blocks of 90 trials. Blocks

contained ten repetitions of each D value presented in random

order. The duration of the ISI was fixed within blocks but

was shuffled between blocks. For half of the listeners, the fre-

quency of the first tone was fixed on trials in the first 12

blocks, and roved on trials in the second 12 blocks. For the

other half of the listeners, the opposite was true. After com-

pleting a block, listeners were given an opportunity to take a

break, and written instructions indicated the details of the

next block (e.g., “roved; ISI¼ 10 s.”).

D. Data analysis

1. Modeling the decision process

We assumed that responses were governed by a simple

decision process similar to the one assumed by signal detec-

tion theory (SDT; Green and Swets, 1988; Macmillan and

Creelman, 2005) in the analysis of data from 2I-2AFC

experiments but with several important differences. First,

we distinguished between two independent sources of inter-

nal noise, sensory noise and memory noise. Sensory noise

was assumed to be normally distributed on the equal-

temperament musical scale. Sensory-noise variance was

assumed to be constant across the roving range, across ISI

durations, and across both tones on a trial. The standard

deviation of sensory noise in semitones associated with the

representation of a single tone frequency was denoted by s.

Memory noise was also assumed to be normally distrib-

uted on the musical scale. Memory-noise variance was

assumed to be constant across the roving range but differed

across ISI durations. Following Kinchla and Smyzer (1967;

see also Kinchla and Allan, 1969), we assumed that memory

noise followed the Wiener process (Wiener, 1923). This

assumption meant that memory-noise variance associated

with the representation of a single tone frequency, denoted

by m2, was proportional to the SOA such that m2 ¼ dSOA,

372 J. Acoust. Soc. Am. 147 (1), January 2020 Mathias et al.

https://doi.org/10.1121/10.0000584

https://doi.org/10.1121/10.0000584


where d was the rate of increase in memory-noise variance

in semitones squared per s. For brevity, we call d the decay
rate. We assumed that the second tone per trial was not

influenced by memory noise.

Another difference between our model and classic SDT

was that we allowed for lapses in attention. A lapse was

defined as a response made independently of the stimuli and

task demands. Psychophysical models that do not allow for

lapses consider errors made on trials with highly discrimina-

ble stimuli to be extremely unlikely, which can severely dis-

tort estimates of other variables (Dai and Micheyl, 2011;

Klein, 2001; Prins, 2012; Wichmann and Hill, 2001). The

two variables related to lapses were l, the lapse probability,

and a, the probability of responding “second” on a lapse

trial.

Finally, we assumed that decisions on non-lapse trials

may have been influenced by response bias. SDT models of

yes/no experiments account for bias in choosing either “yes”

or “no” by incorporating a criterion (Green and Swets, 1988;

Macmillan and Creelman, 2005) or equivalently, by shifting

observations by a constant value (e.g., DeCarlo, 2010).

Similarly, SDT models of 2I-2AFC experiments can account

for bias in choosing either “first” or “second” (sometimes

called interval bias). Although this kind of bias is commonly

assumed to be small and usually ignored (Green and Swets,

1988; Macmillan and Creelman, 2005), this assumption may

not hold for many experiments and, similar to lapses, may

distort estimates of other variables if ignored (Garc�ıa-P�erez

and Alcal�a-Quintana, 2011; Yeshurun et al., 2008). Response

bias on non-lapse trials, quantified in semitones, was denoted

by b.

We combined the above assumptions to derive an ana-

lytic expression of a psychometric function (Appendix A).

This function yielded the probability that a given listener

responded second on a given trial in the experiment. The

inputs to the function were two stimulus variables, D and

SOA (defined in Sec. II B), and five psychological variables,

denoted by a, b, d, l, and s (defined above and summarized

in Table I).

2. Parameterization

The five psychological variables were allowed to differ

between listeners and between fixed and roved trials. This

was achieved by applying what may be described as nonlin-

ear (or generalized) mixed-effects models (Lindstrom and

Bates, 1990) to each psychological variable (Appendix B).

Briefly, each psychological variable was defined as a mono-

tonic transformation of a corresponding latent variable (e.g.,

a was the logistic transform of a). Each latent variable was

defined as the sum of a fixed effect and a random effect. The

fixed effect was trial type (fixed or roved), and the random

effect was listener. This approach exploited the repeated-

measures design of the experiment (Baayen et al., 2008). A

separate stochastic variable was created for each latent vari-

able and effect level (2 levels of fixed effect, 10 levels of

random effect), resulting in 60 stochastic variables (5 latent

variables � 12 effect levels).

Five deterministic variables, one for each psychologi-

cal/latent variable, were defined as the difference between

the two corresponding fixed-effect stochastic variables

(roved minus fixed). These variables, denoted by Ka; Kb;
Kd; Kk, and K1, were created for hypothesis testing (see

Sec. II D 4). For example, if Ka were larger than 0, it would

imply that a was larger during roved trials, on average,

across all listeners.

3. Model fitting and evaluation

Model fitting was done within a Bayesian framework

(Gelman et al., 2013; Kruschke, 2014). Observations were

assigned a binomial prior distribution, and stochastic varia-

bles were assigned informative normal priors that induced

appropriate implicit priors on all other variables (see

Appendix B). The joint posterior distribution was estimated

using the no-U-turn sampling Markov chain Monte Carlo

algorithm (Hoffman and Gelman, 2014). Sampling was

done in Python (Python Software Foundation2) using

PyMC3 (Salvatier et al., 2016). Two independent chains of

11 000 samples were collected. The first 1000 samples per

chain were used for tuning and then discarded. Chains were

inspected for convergence and autocorrelation using

Gelman–Rubin R̂ (Brooks and Gelman, 1996; Gelman and

Rubin, 1992), effective sample size (Neff; Gelman et al.,
2013), and Bayesian fraction of missing information (BFMI;

Betancourt, 2016). Model goodness of fit was evaluated

using Bayesian R2 (Gelman et al., 2018) and posterior pre-

dictive checking (PPC; Gelman et al., 2013).

4. Hypothesis tests

Bayes factors (Jeffreys, 1998; Kass and Raftery, 1995)

were used to test five hypotheses, namely that the five deter-

ministic variables differed from zero. The Savage–Dickey

method (Dickey and Lientz, 1970; Wagenmakers et al.,
2010) was used to approximate Bayes factors. This involved

fitting a skew normal distribution (Azzalini, 1985) to its

marginal posterior samples, computing the probability den-

sity at zero, then dividing the prior probability density at

zero by this value. Since the five deterministic variables all

had standard normal priors (see Appendix B), prior density

at zero was always 0.399.

5. Data and code availability

All data and code are publicly available.3

TABLE I. Descriptions of the five psychological variables from the psycho-

metric function.

Symbol Interpretation Units

a Second on lapse trials Probability

b Bias on non-lapse trials Semitones

d Decay rate Semitones2=s

l Lapses Probability

s Sensory noise Semitones
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III. RESULTS

A. Raw data

Figures 1 and 2 show the proportions of second

responses on fixed trials and roved trials, respectively. For

all listeners, the data showed clear sigmoidal psychometric

functions. The slopes of these functions were shallower on

roved trials than fixed trials, on average. Since the slope of a

listeners’ psychometric function is inversely proportional to

their DLF, this observation is consistent with those made in

previous studies, namely that listeners’ DLFs tend to be

larger during roved-frequency discrimination than fixed-

frequency discrimination (e.g., Amitay et al., 2005; Demany

and Semal, 2005; Harris, 1952b; Jesteadt and Bilger, 1974;

Mathias et al., 2011; Mathias et al., 2010). Slopes were also

shallower at longer ISI durations than shorter ones, gener-

ally, and this trend was more pronounced on roved trials.

This observation is equivalent to the one made originally by

Harris (1952a), which led him to conclude that listeners use

perceptual anchors during fixed-frequency discrimination.

B. Results from the model

1. Diagnostics and goodness of fit

The two chains of posterior samples did not diverge for

any variable (all R̂ > 0:999) and exhibited low autocorrela-

tion for most variables. For variables with moderate autocor-

relation, Neff was satisfactory (all Neff � 2593). BFMI was

1.02, which was good. Median Bayesian R2 was 0.978, and

PPC (Figs. 1 and 2) revealed extremely small discrepancies

FIG. 1. Raw data from fixed trials and model predictions. Symbols represent the proportion of second responses for a given listener, ISI, and D (40 trials per

symbol). Curves are posterior mean values of p. Shaded regions are in the range between the 2.5 and 97.5 centiles of simulated data via PPC.
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between the predictions of the model and the observed data.

Taken together, these findings suggest that the model was an

excellent fit to the data.

2. Sensory noise

Table II and Fig. 3 summarize the marginal posterior

means of s and s2, respectively. The group mean posterior

value of s was 10.9 cents (1 cent¼ 0.01 semitone) on fixed

trials and 5.6 cents on roved trials. The relevant determinis-

tic variable for testing whether s differed between fixed and

roved trials was K1. As shown in Fig. 4, the 95% credible

interval of the marginal posterior distribution of K1 was

shifted below zero, and the corresponding Bayes factor

(Table III) provided “extreme” evidence for the hypothesis

that s was smaller on roved trials.

This result can be interpreted as suggesting that, on aver-

age, the standard deviation of listeners’ sensory noise was lower

on roved trials than fixed trials. At first glance, this result may

appear to be counterintuitive because DLFs should be larger,

not smaller, during roved-frequency discrimination (e.g.,

Amitay et al., 2005; Demany and Semal, 2005; Harris, 1952b;

Jesteadt and Bilger, 1974; Mathias et al., 2011; Mathias et al.,
2010). We return to this point in the discussion (Sec. IV).

3. Memory noise

If listeners used perceptual anchors during fixed-

frequency discrimination in the present experiment, they

should have showed larger d on roved trials than fixed trials.

Typically, across listeners, d was 0.139 cent2/s on fixed tri-

als and 2.81 cents2/s on roved trials, which is more than a

FIG. 2. Same as Fig. 1 but for roved trials.
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20-fold difference. Figure 3 illustrates how this difference

influenced the memory-noise variance, m2, at different ISIs.

The relevant deterministic variable for testing the hypothe-

sis that d differed between fixed and roved trials was Kd. As

shown in Fig. 4, the 95% credible interval of the marginal pos-

terior distribution of this variable was shifted above zero. The

corresponding Bayes factor (Table III) provided extreme evi-

dence for the hypothesis that d was larger on roved trials.

4. Lapses

On average, listeners lapsed on 5.43% of fixed trials

and 8.28% of roved trials (Table II). Figure 4 shows that the

95% credible interval of the marginal posterior distribution

of Kk was shifted above zero. The corresponding Bayes fac-

tor (Table III) provided “very strong” evidence for the

hypothesis that l was larger on roved trials.

Commonly, listeners responded second on lapse trials

67.2% of the time on fixed trials and 57.9% of the time on

roved trials (Table II). However, the results are equivocal

concerning whether these values are meaningfully different

since the 95% credible interval of the marginal posterior dis-

tribution of Ka included zero (Fig. 4), and the corresponding

Bayes factor (Table III) provided “anecdotal” evidence of a

difference in a between fixed and roved trials.

TABLE II. Marginal posterior means of psychological variables.

a b d l s

Listener Fixed roved Fixed Roved Fixed Roved Fixed Roved Fixed Roved

L0 0.744 0.649 �0.0454 �0.0513 7:48� 10�4 0.0152 0.0101 0.0164 0.125 0.0644

L1 0.623 0.513 �0.0125 �0.0184 2:13� 10�4 0.00432 0.011 0.0178 0.0888 0.0458

L2 0.557 0.445 0.0295 0.0236 4:93� 10�4 0.00991 0.0444 0.0707 0.11 0.0567

L3 0.839 0.769 �0.0563 �0.0623 4:34� 10�4 0.0088 0.0529 0.0838 0.133 0.0685

L4 0.823 0.748 0.021 0.0151 6:93� 10�4 0.014 0.0248 0.04 0.138 0.0714

L5 0.415 0.311 �0.0374 �0.0433 0.0017 0.0345 0.0518 0.0821 0.0976 0.0503

L6 0.783 0.697 �0.0393 �0.0452 0.00425 0.086 0.0213 0.0345 0.0346 0.0179

L7 0.457 0.349 �0.0603 �0.0662 0.00272 0.0552 0.11 0.169 0.163 0.0842

L8 0.614 0.503 0.0157 0.00971 5:13� 10�4 0.0103 0.0113 0.0184 0.0972 0.0501

L9 0.868 0.807 0.166 0.16 0.00212 0.0429 0.205 0.296 0.0986 0.0509

Group mean 0.672 0.579 �0.00189 �0.00783 0.00139 0.0281 0.0543 0.0829 0.109 0.056

FIG. 4. Histograms of posterior samples from the five deterministic varia-

bles. Shaded regions represent the 95% highest posterior density interval or

credible interval. Solid curves are skew normal approximations fitted to

posterior samples. Dashed curves are prior densities. Points are point proba-

bilities used to approximate Bayes factors.

FIG. 3. Posterior mean variances of sensory noise (s2), memory noise

(m2 ¼ dSOA), and internal noise (r2 ¼ 2s2 þ m2). Gray lines are posterior

means for individual listeners.
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5. Response bias

The results suggest that, on average, listeners were not

more biased toward responding first or second on non-lapse

roved trials than non-lapse fixed trials. This statement can

be made because the corresponding Bayes factor was less

than one (Table III), providing very strong evidence for the

null hypothesis.

IV. DISCUSSION

The present study investigated whether listeners use

perceptual anchors during pure-tone frequency discrimina-

tion, as they appear to do when discriminating other features

of auditory and visual stimuli (e.g., Donkin et al., 2015;

Hafter et al., 1998; Jackson and Raymond, 2008; Lin and

Luck, 2009; Spencer and Hund, 2002). Ten amateur musi-

cians completed a 2I-2AFC frequency-discrimination exper-

iment, in which the frequency of the first tone per trial was

either fixed or roved over trials within blocks, and durations

of the silent ISIs and values of D were manipulated. Our

analytic approach was intended to disentangle the effects of

sensory noise, memory noise, lapses in attention, and bias

on performance. We initially hypothesized that listeners

would show a greater decay rate (rate of increase in

memory-noise variance) on roved trials than fixed trials, and

found clear evidence supporting this hypothesis. We also

found that listeners experienced more lapses in attention,

and possibly less sensory noise, on roved trials. Listeners

were not more or less biased during roved-frequency dis-

crimination than fixed-frequency discrimination.

In a much earlier study, Harris (1952a) conducted a

very similar experiment and also concluded that listeners

use perceptual anchors during fixed-frequency discrimina-

tion. However, a possible limitation of this study was that

the roving range was too narrow to rule out the possibility

that perceptual anchors were useful during roved-frequency

discrimination as well (Dai and Micheyl, 2012). This limita-

tion applies to more recent studies on this topic also (e.g.,

Ahissar et al., 2006). Here, we found evidence for the utility

of perceptual anchors during fixed-frequency discrimination

while employing a considerably wider roving range on

roved trials.

On the basis of our results, we speculate that other fea-

tures related to perceptual anchors may be found via experi-

ments of pure-tone frequency discrimination. One such

feature is the so-called resolution-edge effect, where during

roved discrimination internal noise is reduced when the

stimulus feature to be discriminated falls close to one of the

limits of the roving range. Previously, the resolution-edge

effect has been observed during pure-tone intensity discrim-

ination (Berliner and Durlach, 1973; Berliner et al., 1977).

Here, we attempted to find evidence of the resolution-edge

effect via extensions of our model in which the variables of

the psychometric function were influenced by the frequency

of the first tone on each trial. Unfortunately, these models

were complex, and we were unable to develop one which

yielded acceptable diagnostic metrics. We speculate that the

experiment did not contain enough roved trials, and we

intend to explore this topic further in a future study involv-

ing more data.

One of the ancillary findings of the present study was

that listeners were more likely to experience lapses in atten-

tion on roved trials. It is possible that listeners were more

attentive during fixed trials than roved trials for some rea-

son. However, this finding more likely reflects a difference

in listening strategy than listener attention. Suppose that on

a given trial, a listener lapsed during presentation of the first

tone and, consequently, failed to form a representation of

the frequency of the tone in short-term memory. Further,

suppose that during the same trial, the listener regains atten-

tion soon enough to form a representation of the frequency

of the second tone. Under these circumstances, the listener

may be more likely to make a correct response on fixed tri-

als than roved trials because in the former case the fre-

quency of the second tone could be compared to the

perceptual anchor instead of the non-existent short-term rep-

resentation of the frequency of the first tone. On roved trials,

when presumably there is no useful perceptual anchor, the

listener has nothing with which to compare the frequency of

the second tone. In other words, listeners may have been

able to compensate for lapses in attention more successfully

due to perceptual anchors during fixed trials. The design of

the present experiment and model did not permit lapse-with-

recovery trials to be distinguished from non-lapse trials.

Regardless of whether listeners’ states of attention truly

TABLE III. Summaries of marginal posterior distributions for the five deterministic variables, their proposed interpretations, Bayes factors, and strength of

evidence for these interpretations according to the scheme for interpreting Bayes factors originally proposed by Jeffreys (1998) and modified by Lee and

Wagenmakers (2014). Entries in the “interpretation” column (except the first row) complete the sentence, “On average, listeners experienced on roved

trials….”

Variable Posterior mean (95% Credible interval) Interpretation Bayes factor Evidence

Ka �0.451 (�0.947, 0.0504) — 1.23 Anecdotal

Kb �0.00594 (�0.0236, 0.0122) Similar bias 0.0112 Very strong

Kd 3.013 (2.53, 3.513) Greater decay rate 1:53� 1030 Extreme

Kk 0.493 (0.196, 0.781) More lapses 43.1 Very strong

K1 �0.662 (�1.15, �0.209) Less sensory noisea 168 Extreme

aMore precisely, listeners experienced less sensory noise, on average, across all frequencies within the roving range on roved trials than at �1130 Hz on

fixed trials.

J. Acoust. Soc. Am. 147 (1), January 2020 Mathias et al. 377

https://doi.org/10.1121/10.0000584

https://doi.org/10.1121/10.0000584


differed between fixed trials and roved trials, this finding of

a difference in observed lapse rates is important because, as

pointed out earlier, psychophysical models that allow for

lapses provide better estimates of other variables.

Another ancillary finding was that the standard devia-

tion of listeners’ sensory noise was smaller during roved tri-

als than fixed trials, on average. At first glance, this result

may seem counterintuitive because listeners usually show

larger DLFs during roved-frequency discrimination than

fixed-frequency discrimination (e.g., Amitay et al., 2005;

Demany and Semal, 2005; Harris, 1952b; Jesteadt and

Bilger, 1974; Mathias et al., 2011; Mathias et al., 2010).

However, in the present experiment, the variable s repre-

sented the average standard deviation of sensory noise

across all frequencies visited on roved trials. It is possible

that this average value was lower than the standard deviation

of sensory noise at �1130 Hz, the frequency visited on fixed

trials. Our model did not permit a direct comparison of sen-

sory noise at �1130 Hz on roved trials and fixed trials, and

attempts to fit a version of the model where s was dependent

on the frequency of the first tone per trial failed (see the ear-

lier point concerning the resolution-edge effect).

In conclusion, the results of the present study are broadly

consistent with those of numerous other studies showing that

individuals can boost their performance during sensory dis-

crimination by learning from the context of the experiment

(e.g., Donkin et al., 2015; Hafter et al., 1998; Jackson and

Raymond, 2008; Lin and Luck, 2009; Sorkin, 1987; Spencer

and Hund, 2002). It is interesting that, despite their different

terminology, psychophysical models proposed by auditory

and visual scientists to explain such effects in their respective

domains have turned out to be quite similar (cf. Donkin et al.,
2015; Durlach and Braida, 1969). This observation provides

support for the idea that the mechanisms of perception, sen-

sory discrimination, and memory are broadly similar across

the perceptual modalities.

ACKNOWLEDGMENTS

This work was supported by a National Institutes of Health

grant awarded to B.G.S.C. (Award No. R01DC013825).

APPENDIX A: DERIVATION OF THE PSYCHOMETRIC
FUNCTION

Let X denote whether a listener lapsed on a trial: if X¼ 0,

they lapsed, and if X¼ 1, they did not. Let Y denote a listener’s

response on a lapse trial: if Y¼ 0, they responded first, and if

Y¼ 1, they responded second. The probability that a listener

lapsed and responded second on a given trial was

Pr X ¼ 0 \ Y ¼ 1f g ¼ la: (A1)

On a non-lapse trial, we assumed that a listener generated

noisy internal representations of the frequencies of the

tones. Let x0 and x1 denote the true frequencies of the

first and second tones in semitones, respectively, and

let w0 and w1 denote the corresponding internal represen-

tations. Random variable w0 had the probability

distribution

w0 � Normal x0; s
2 þ m2

� �
: (A2)

Due to the assumption of Wiener diffusion,

m2 ¼ dSOA: (A3)

For simplicity, we assumed that w0 and w1 had the same

sensory-noise variance, and w1 was not affected by memory

noise. Consequently, w1 had the probability distribution

w1 � Normal x1; s
2

� �
: (A4)

Let Z denote a listener’s response on a non-lapse trial: if

Z¼ 0, they responded first, and if Z¼ 1, they responded sec-

ond. Formally,

Z ¼ 0 if w0 þ b > w1; (A5)

Z ¼ 1 if w0 þ b � w1: (A6)

Unlike the classic SDT 2I-2AFC model, this decision rule

does not involve “differencing” (Macmillan et al., 1977).

However, as discussed by DeCarlo (2012), differencing is

actually not necessary to derive d0 under the SDT 2I-2AFC

model. Likewise, the differencing assumption was not

necessary here. From the above, the conditional probabil-

ity that a listener responded second on a non-lapse trial

was

Pr Z ¼ 1 jw0 ¼ y
� �

¼ 1� F y j x1 � b; s2
� �

; (A7)

where y is a realization of w0, and F is the normal cumula-

tive distribution function. The corresponding unconditional

probability was

Pr Z ¼ 1f g ¼
ð

1� F y j x1 � b; s2
� �� �

� f y j x0; s
2 þ dSOA

� �
dy; (A8)

where f is the normal probability density function.

Conveniently, the above simplifies to (see DeCarlo, 2012)

Pr Z ¼ 1f g ¼ 1� F 0 j x1 � b� x0; 2s2 þ dSOA
� �

¼ U
D� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2 þ dSOA
p
	 


; (A9)

where U is the standard normal cumulative distribution

function. Finally, the probability that a listener responded

second on any trial, denoted by p, was given by

p ¼ Pr X ¼ 0 \ Y ¼ 1ð Þ [ X ¼ 1 \ Z ¼ 1ð Þ
� �

¼ laþ 1� lð ÞU D� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ dSOA
p
	 


: (A10)
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APPENDIX B: BAYESIAN MODEL

The vector w ¼ ½w0;w1;…;wk�T contained counts of sec-

ond responses binned by listener, trial type (fixed or roved),

ISI, and D. Elements of w followed the probability distribution

wi � Binomial n; pið Þ; (B1)

where n¼ 40 (see Sec. II C), and pi was the ith element of

p ¼ ½p0; p1;…; pk�T . Probabilities in p were related to vec-

tors of physical variables and vectors of psychological varia-

bles according to Eq. (A10). Psychological variables were

transformations of latent variables,

a ¼ logistic að Þ; (B2)

b ¼ identity bð Þ; (B3)

d ¼ exp dð Þ; (B4)

l ¼ logistic kð Þ; (B5)

s ¼ exp 1ð Þ; (B6)

and latent variables were related to stochastic variables by

a ¼ Cfa þHna; (B7)

b ¼ Cfb þHnb; (B8)

d ¼ Cfd þHnd; (B9)

k ¼ Cfk þHnk; (B10)

1 ¼ Cf1 þHn1; (B11)

where C was a two-column design matrix containing one in

the first column and zero in the second column for fixed tri-

als, and vice versa for roved trials, H was a design matrix

indicating the listener, and the rest were vectors of stochas-

tic, independent, and identically distributed (i.i.d.) variables.

Stochastic variables had the priors

fai
; nai

; fbi
; nbi

; fdi
; ndi

; fki
; nki

; f1i
; n1i
�i:i:d:Normal 0;

1

2

	 

:

(B12)

These induced standard normal implicit priors on trans-

formed variables, standard logit-normal priors on l and a,

standard normal priors on b, and standard log-normal priors

on d and s. Five additional deterministic variables were

Ka ¼ fa1
� fa0

; (B13)

Kb ¼ fb1
� fb0

; (B14)

Kd ¼ fd1
� fd0

; (B15)

Kk ¼ fk1
� fk0

; (B16)

K1 ¼ f11
� f10

; (B17)

all of which had standard normal implicit priors.

1Technically, neither response was correct on such trials because the tones

were identical. Anecdotally, the inclusion of these impossible trials

seemed to increase listeners’ attention to the task, especially in blocks

where they would have made extremely few errors otherwise (e.g., 0.5-s

ISI). However, we did not test this thoroughly and it may have been better

to randomly provide positive or negative feedback on impossible trials.

We included such trials in the experiment because we initially thought

that they would be informative for estimating response bias, which may

have differed between fixed trials and roved trials, although this turned

out not to be the case (see Sec. III B 5). To determine whether inclusion of

impossible trials influenced the results, we refitted the model while treat-

ing all such trials as missing. The new results were hardly discernible

from those of the original analysis and none of the conclusions changed.

We have chosen to omit these additional results from the paper for the

sake of brevity, but interested readers can find them within the public

repository (Sec. II D 5).
2See https://www.python.org (Last viewed 1/20/20).
3See https://github.com/sammosummo/PerceptualAnchorsPublic (Last

viewed 1/20/20).
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