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Abstract— Brain-computer interface (BCI) systems enable
humans to communicate with a machine in a non-verbal
and covert way. Many past BCI designs used visual stimuli,
due to the robustness of neural signatures evoked by visual
input. However, these BCI systems can only be used when
visual attention is available. This study proposes a new BCI
design using auditory stimuli, decoding spatial attention from
electroencephalography (EEG). Results show that this new ap-
proach can decode attention with a high accuracy (>75%) and
has a high information transfer rate (>10 bits/min) compared
to other auditory BCI systems. It also has the potential to allow
decoding that does not depend on subject-specific training.

I. INTRODUCTION

Electroencephalography (EEG) offers a noninvasive and
portable method for monitoring brain activity, making it a
popular technology for brain-computer interfaces (BCIs) [1].
Many successful BCI systems use visual stimuli as the
sensory input, and decode a user’s attention from neural sig-
natures such as event-related potentials (ERPs). These visual
paradigms efficiently transmit information to a computer,
as quantified by their information transfer rate (ITR). For
example, one recent study on visual ERP-based BCI reported
an average ITR as high as 20.26 bits/min [2].

Though visual BCI systems are efficient, they cannot be
used in scenarios where visual attention is already engaged
by real world demands (e.g. walking or driving), or by users
with visual impairment. Some previous studies developed
auditory BCI systems to tackle these problems. For example,
Kim et al. [3] used multiple streams of spatialized modu-
lated signal with a constant-frequency carrier as the stimuli,
and decoded attention from auditory steady-state response
(ASSR). An et al. [4] used more user-friendly stimuli,
synthesized melodies, and developed a novel BCI paradigm.
In another study to reduce user fatigue, Huang et al. [5]
proposed using drip drop sounds as the input. However, the
efficiency of these auditory systems is substantially lower
than most visual-based BCIs. For example, ITRs of the three
aforementioned studies were all below 3 bits/min, making
them less useful in real applications.

The current study proposed an auditory BCI system with
high efficiency. It used spatialized human-voiced syllables
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as the stimuli, and decoded selective attention from EEG.
Inspired by previous studies on auditory attention [6], [7],
[8], [9], both ERP and EEG spectrogram were used as
features to train and test a series of linear classifiers for
attention decoding.

II. METHODS

A. Participants

Thirty adults (21.95 ± 4.95 years old, 15 female) partic-
ipated in this study. No participant reported hearing loss
or any history of neurological disorders. The Institutional
Review Board of Boston University approved this study. All
participants gave written informed consent, and were paid
for taking part in the study.

B. Experiment

Before the experiment started, participants were asked
to sit comfortably in a soundproof booth in front of a
computer monitor. The syllables /ba/, /da/ and /ga/, spoken
by native English talkers, were used as stimuli. The syllables
were spatialized by a set of generic head-related transfer
functions (Media Lab, MIT), and played through a pair of
insert earphones (ER1, Etymotic Research). The intensity of
sound was adjusted to a comfortable listening level for each
individual to ensure syllable intelligibility. The simulated
locations of these syllables were 90◦from the left (L90),
center, or 90◦from the right (R90, Fig. 1a), in the horizontal
plane.

At the beginning of each trial, a visual cue (VC) was
shown on the screen for one second, which could be one
of the two words: “Space” or “Relax” (Fig. 1b). “Space”
indicated that participants should direct spatial attention in
the upcoming trial, while “Relax” represented a control trial
where no attention would be required. An auditory cue (AC)
— a spatialized /a/ sound — was given after the VC to
direct the participant’s attention. In “Space” attention trials,
the AC specified the target location (either L90 or R90). In
no-attention “Relax” trials, the AC always came from the
center (i.e. a neutral value). After a 1000 ms silent period,
a 4-syllable mixture was played. All syllables were 600 ms
long, and their onsets were separated by 300 ms. In “space”
attention trials, the first and the last syllables were always
distractors (D1) played from the center. Of the second and
third syllables, one was the target (T), which came from the
AC location. The other syllable was the second distractor
(D2) that came from the opposite side. Syllables /ba/, /da/,
and /ga/ were randomly permuted among T, D1 and D2. The
task was to ignore D1 and D2, and to identify T using the
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Fig. 1. (a) Spoken syllables were spatialized to center and to 90◦left (L90)
or right (R90), always in the horizontal plane. The syllable from the center
was always a distractor (D1). The target (T) might be at L90 or R90, with
a second distractor (D2) at the opposite side. (b) Illustration of the events
within a trial. A visual cue (VC) was followed by an auditory cue (AC).
A 4-syllable mixture was played 1 second after the AC. The participants
should respond when the fixation dot turned blue. A green or red dot was
presented at the end of the trial, showing the correctness of the response.

keyboard (“1” for /ba/, “2” for /da/, and “3” for /ga/). Visual
feedback was given after each response to show whether the
answer was correct. In no-attention trials, the participants
were asked to ignore all syllables, and give a random answer
at the end. The inter-trial interval was set to be 2 seconds
with jitter.

Each participant completed 756 trials in total. These
trials differed in the locations and talkers of the spoken
syllables, and in the type of attention (spatial or non-spatial)
required. Data from only four conditions (72 trials in each
condition) are presented in this analysis: 1) selective spatial
attention trials in which the four syllables occur in location
order Center-Left-Right-Center (Spa LR); 2) selective spatial
attention trials with syllables in order Center-Right-Left-
Center (Spa RL); 3) a control no-attention condition with
syllables in order Center-Left-Right-Center (Ctr LR); 4) a
control no-attention condition with syllables in order Center-
Right-Left-Center (CTR RL). From these four conditions,
we attempted two binary attention decoding problems: 1)
Spa LR vs Ctr LR; and 2) Spa RL vs Ctr RL. Note that
for each of these comparisons, the stimuli presented were
exactly matched; only the instructions given to the participant
differed. The following sections of this paper will explore
the differences in neural signatures for each pair, and how
effectively attention can be decoded.

C. EEG processing

EEG was collected using a 64-channel Biosemi system
throughout the experiment, sampled at 2048 Hz. Raw EEG

data first were bandpass filtered (0.1 - 50 Hz), and were then
downsampled to 256 Hz. An independent component analy-
sis was conducted subsequently using EEGLAB [10], [11].
Components that represented eye blinks, eye movements, and
muscle artifacts were removed from further analysis.

D. ERP and time-frequency analysis

The continuous EEG data were segmented into epochs to
study differences in ERPs and oscillation activity between
conditions. In this study, ERP is defined as the condition-
wise average EEG waveform time-locked to the onset of the
first syllable. The spectro-temporal representation of EEG
was studied using a continuous wavelet transform (CWT)
implemented using a custom MATLAB script. The wavelet
bases (Morlet wavelet with ω0 = 6) were normalized to have
unit total energy at all scales [12].

A group-level cluster-based permutation test [13], im-
plemented with FieldTrip [14], was used to examine the
difference in ERP and in CWT between each spatial attention
condition (i.e. Spa LR and Spa RL) and its corresponding
control condition (i.e. Ctr LR and Ctr RL, respectively).
Both cluster-forming and cluster-significance thresholds were
set at 0.05.

E. Feature extraction and classification

Subject-specific linear discriminant analysis (LDA) mod-
els were used to decode attention from single-trial EEG data
for each of the two classification problems (i.e., Spa LR vs
Ctr LR, and Spa RL vs Ctr RL). Inspired by the results in
Section III-A and III-B, the feature used for training and
testing the model contained multi-channel EEG time-courses
as well as the magnitude of the CWT, averaged within each
100 ms interval between 1500 ms and 2700 ms after the
onset of the AC (i.e., from the onset of the first syllable to
the offset of the third syllable). The CWT magnitudes were
also averaged within five frequency bands: delta (2 – 4 Hz),
theta (4 – 8 Hz), alpha (8 – 14 Hz), beta (14 – 30 Hz)
and gamma (30 – 40 Hz). The decoding accuracy of each
binary classification was derived from a leave-one-trial-out
cross-validation with 1000 repetitions.

III. RESULTS

A. ERP analysis

The differences in ERPs between spatial attention and
control conditions are shown in Fig. 2. Significant differences
were observed in frontal and parietal channels at multiple
time instances. The topographic pattern of the ERP difference
was similar for the two contrasts, with a slight difference
in the lateralization of the positivity at 1900 ms and 2200
ms. Such lateralization is likely affected by the spatialized
location of the syllable being played at those moments.

B. Time-frequency analysis

Event-related synchronization (ERS) and desynchroniza-
tion (ERD), defined as the percent change in value from
one condition to a baseline (i.e., Ctr LR and Ctr RL in
this study), were used to evaluate the signal change in
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Fig. 2. Topographic maps of ERP differences between spatial attention and
control conditions. Time stamps are with respect to the onset of the auditory
cue. Solid dots represent channels with significant effects (p < 0.05). Unit:
µV

(a) (b)

Fig. 3. (a) Average event-related synchronization (positive values) or
desynchronization (negative values) across all channels. The values are
masked by their significance derived from a non-parametric statistical test
(p < 0.05). Black dashed lines represent the onset of four syllables.
(b) Topographic maps of the alpha power difference between Spa RL and
Ctr RL. Time stamps are with respect to the onset of the auditory cue. Solid
dots represent channels with significant effects for at least one frequency
bin (p < 0.05).

the time-frequency domain when attention was engaged.
Strong ERS was seen in the alpha band before the onset
of the last distractor (2400 ms, Fig. 3a). Higher values of
alpha ERS were seen in the frontal and parieto-occipital
sensors (Fig. 3b). In addition, the ERS in the beta band,
and the ERDs in the delta, theta and gamma band were
also significant in at least one channel throughout the stimuli
period.

C. Decoding accuracy

Attention can be decoded accurately from EEG in most
participants. All results were above 50%, the absolute chance
level for a binary classification (Fig. 4). However, since
studies on brain signal classification are generally susceptible
to a high false positive rate, Combrisson and Jerbi [15]
proposed a method to correct the chance level based on
sample size, number of classes, and the desired confidence
interval. Even with the corrected chance level (56.94%, 95%
confidence), only one classification fell below chance (Fig.
4a). Table I shows the average decoding accuracy, their
equivalent ITR, and the best ITR among all participants.

(a) (b)

Fig. 4. Histogram of decoding accuracy. The red dashed lines at 56.94%
represent the corrected chance level.

TABLE I
DECODING RESULTS & INFORMATION TRANSFER RATE (ITR)

Conditions Average Average ITR Best ITR
accuracy (bits/min) (bits/min)

Spa LR vs Ctr LR 74.15% 9.44 23.53
Spa RL vs Ctr RL 75.83% 10.25 31.70

D. Behavioral correlate

In order to explore the relationship between decoding and
attentional effort, the decoding accuracy for each participant
was correlated with behavioral performance. In this study,
behavioral performance is defined as the percent correct of
the syllable identification tasks in spatial attention trials (see
Section II-B), which represents a proxy for the participant’s
mental engagement during the task. The results showed
strong correlation between behavior and decoding accuracy
for both Spa LR vs Ctr LR (ρ = 0.433, p = 0.017) and
Spa RL vs Ctr RL (ρ = 0.567, p = 0.001, Fig. 5).

IV. DISCUSSION

This study introduced a new auditory BCI system that can
generate a binary output within 2 seconds. Human-voiced
syllables were used as the stimuli, which are natural, user-
friendly, and unlikely to cause fatigue even with extensive
usage. Users can voluntarily attend or ignore these stimuli
to control the value of the output (e.g., “yes” or “no”). The
efficiency of the proposed system is substantially greater
than that reported in previous studies that used modulated
signals [3], [16], melodies [4], or drip drop sounds [5] as the
stimuli. The best ITRs across participants even outperformed
some visual BCI systems [2], [17]. The high ITR achieved
in this study was due in part to the use of short trials — the
classifications were run with only 1.2 seconds of EEG data.
Such a brief delay between attentional control and a BCI
output may even enable a conversation-level interaction with
a computer. To achieve even higher efficiency, in the future,
we will explore the feasibility of decoding the direction of
spatial attention (left or right) from single-trial EEG. To-
gether with the no-attention condition, we can build a 3-way
classifier, which may have better value in real applications.

The current decoding method uses high-dimensional fea-
tures for classification. Inspired by results in the ERP and the
time-frequency analysis, these features contain information
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Fig. 5. Scatter plots showing each subject’s behavioral performance and
decoding accuracy.

represented in either the time domain or spectro-temporal
domain. However, these features may not contribute equally
to classification. Including irrelevant features may even de-
crease the accuracy of the model. Similarly, some EEG
channels may contribute more than the others. Shrinking the
number of channels while maintaining a high decoding score,
if possible, would be important to building unobtrusive BCI
systems with few channels. In the future, we will conduct a
feature selection analysis by estimating feature weights, and
reduce the dimensionality of features used for classification.

It is nearly impossible for participants to sustain full atten-
tion throughout the whole experiment. At least some of their
incorrect responses during spatial attention tasks are likely
due to attention drifting. The strong correlation between
decoding accuracy and behavioral performance suggests that
some of the wrong classifications might simply originate
from a lack of attentional effort during such trials. Therefore,
the proposed BCI system has the potential to achieve even
higher efficiency if the user is always fully engaged, which
is usually the case during real-life applications.

Significant differences in ERP and CWT were shown in
group-level statistics, suggesting that some of the contrasting
features are common across subjects. Although user-specific
classifiers were our main focus, this suggests that a general
decoder might be feasible that is not trained on individual
subjects. Such a decoder would largely reduce the amount
of time and data required to implement a system for a new
user. A future study on the feasibility of building a general
classifier for all participants is warranted.

V. CONCLUSIONS

The current study proposed a new BCI system based
on auditory attention. It not only yielded high efficiency
compared with previously reported auditory BCI systems,
but also presented pleasant, user-friendly stimuli that allow
comfortable long-term use. The system also has the potential
to allow decoding that does not depend on subject-specific
training.
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