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There is considerable and increasing interest in obtaining accu-
rate and efficient measures of auditory subcortical steady-state
responses (SSSR) via EEG. Bharadwaj and Shinn-Cunningham
(2014) proposed in this journal a method to achieve this goal by
applying a frequency-domain version of principal component anal-
ysis (PCA), termed complex PCA (cPCA; Brillinger, 2001), to multi-
channel EEG data. They reported that their method reduced the
variance of the noise floor when estimating phase locking value
(PLV) for the target frequency, relative to both traditional multi-
channel time-domain PCA and single-channel analysis. This
method, along with the code provided by the authors (https://
github.com/SNAPsoftware/ANLffr/blob/master/anlffr/spectral.py),
has enjoyed widespread use. However, we recently discovered that
the implementation produces results that do not correspond with
the description provided in the paper. Instead, the published code
is functionally equivalent to the more traditional method of calcu-
lating the average of the squared single-channel PLVs across all
channels. This letter outlines the discrepancies in the original
paper and accompanying code that lead to this outcome.

It is generally agreed that the SSSR may have multiple neural
generators and that the phases of recorded SSSR are different
across channels. The proposed method invoked the use of cPCA
to capture and correct for these phase differences by applying
eigendecomposition on the normalized cross-spectral density
matrix (their Equations 6 and 7) and taking the first eigenvalue
as the multi-channel PLV. It is true that previous applications of
cPCA (e.g., Venne, 1985) have used the first eigenvalue of the
cross-spectral density matrix as the power of the first principal
component series. Because the principal component series is a
weighted sum of all channels in the spectral domain, and the
phases of the complex weights estimated by the eigenvectors com-
pensate for the phase differences across channels, the principal
component series estimates the dominant underlying source acti-
vation after aligning channel phase. However, the first eigenvalue
of the normalized cross-spectral density matrix defined through
the PLV or inter-trial coherence (ITC; Delorme and Makeig, 2004)
does not represent the PLV or the ITC of the first principal compo-
nent series. One obvious reason is that the eigenvalues of the nor-
malized cross-spectral density matrix are not bound between 0
and 1. If the eigenvalues are instead divided by the sum of all
eigenvalues, the normalized eigenvalues represent the ratio of
the power of principal component series and total power, which
is not related to the PLV or ITC.

The reason for the apparently improved PLV estimates reported
in the original paper is due to a flaw in the code. The function
‘‘mtcpca” takes a 3-dimensional array (channel by trial by time)
Published by E
as input and returns a one-dimensional multichannel PLV with fre-
quency labels as output. The Fourier transforms of each trial are
averaged to obtain the single-channel PLV stored in vector C[;,fi]
(line 434 and 437), then the Csd matrix is calculated as the outer
product of the vector C[;,fi] and itself (line 440). Therefore, the rank
of Csd must be 1. In a typical estimated cross-spectral density
matrix, the centered data are first multiplied before averaging, so
the matrix rank generally will be the number of variables when
the sample size is greater than the number of variables. In contrast,
the eigendecomposition of the rank-one matrix Csd will give
exactly one non-zero pair of an eigenvalue and eigenvector. The
eigenvalue will be the sum of the squared magnitudes of all com-
plex elements in the C[:,fi] vector, which is simply the sum of
squared single-channel PLVs. At line 442, this eigenvalue is divided
by the number of channels, making it equal to the mean squared
single-channel PLV (Delorme and Makeig, 2004). A proof and
demonstration that the output of mtcpca (equivalent to mtcplv
in the toolbox) is equal to the average of the squared PLVs across
channels is provided at https://github.com/HaoLu-a/cPCA-erratum.

The conclusion that the multichannel PLV proposed by
Bharadwaj and Shinn-Cunningham (2014) is the mean squared
single-channel PLV, rather than the result of cPCA, is supported
by the results shown in their paper. In Panel B of their Fig. 2, only
one non-zero eigenvalue was extracted in the spectral domain PCA.
This is the expected result of applying PCA to a rank-one matrix,
and implies that all variables were perfectly correlated, but would
be essentially impossible to achieve otherwise, even with the sim-
ulated data used in the paper. In Fig. 3, the phase shift was esti-
mated because the first eigenvector is the average phase across
trials for each channel. Similarly, the improvements using real
EEG data, shown in Fig. 4 and Fig. 5, represent a reduction in the
variance of the estimated PLV noise floor rather than a reduction
of the mean level of the noise floor itself, and so are consistent with
the expected effect of averaging the squared single-channel PLVs
across all 32 channels, although the values shown in the figures
seem to represent the root of the mean squared PLV.

Although the procedure proposed by Bharadwaj and Shinn-
Cunningham (2014) does not function as desired, there may still
be potential gain in solving the problem arising from the different
phases of the signal at different EEG channels. One such approach
would be to apply eigendecomposition to the regular cross-spec-
tral density and to then convert trials of multichannel EEG into tri-
als of principal component series. The principal component series
are weighted sums of multi-channel data in the spectral domain,
with phase differences aligned by complex weights, so the princi-
pal component series carry most of the power in the raw data. The
PLVs calculated from trials of principal component series derived
from multichannel SSSR may thus achieve a higher signal-to-noise
ratio than simple multichannel averaging. Another approach
would be via canonical correlation analysis (CCA), which naturally
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handles the different phases across channels by including both sine
and cosine functions in the reference signal (e.g., Nakanishi et al.,
2015). Any such approach will require further investigation to
determine whether it provides consistent benefits over simple
PLV averaging. Given the widespread use of multichannel EEG to
obtain auditory SSSR data, the development of tools for signal
extraction remains an important goal.
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