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Cross-modal interactions of auditory and visual temporal modulation were examined in a game-

like experimental framework. Participants observed an audiovisual stimulus (an animated, sound-

emitting fish) whose sound intensity and/or visual size oscillated sinusoidally at either 6 or 7 Hz.

Participants made speeded judgments about the modulation rate in either the auditory or visual

modality while doing their best to ignore information from the other modality. Modulation rate in

the task-irrelevant modality matched the modulation rate in the task-relevant modality (congruent

conditions), was at the other rate (incongruent conditions), or had no modulation (unmodulated con-

ditions). Both performance accuracy and parameter estimates from drift-diffusion decision model-

ing indicated that (1) the presence of temporal modulation in both modalities, regardless of whether

modulations were matched or mismatched in rate, resulted in audiovisual interactions; (2) congru-

ence in audiovisual temporal modulation resulted in more reliable information processing; and (3)

the effects of congruence appeared to be stronger when judging visual modulation rates (i.e., audi-

tion influencing vision), than when judging auditory modulation rates (i.e., vision influencing

audition). The results demonstrate that audiovisual interactions from temporal modulations are

bi-directional in nature, but with potential asymmetries in the size of the effect in each direction.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4979470]
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I. INTRODUCTION

Inputs to different senses that share common properties

interact with one another and shape perception. These inter-

actions can be automatic and obligatory, occurring even

when attention is directed away from one of the sensory

modalities (Molholm et al., 2007). Temporal properties of

sensory inputs can influence the strength and nature of cross-

sensory interactions (Spence, 2011). For example, when

auditory and visual stimuli turn on and off together (Spence

and Squire, 2003; Kubovy and Yu, 2012) or (more generally)

have correlated amplitudes (Parise et al., 2012; Denison

et al., 2013; Maddox et al., 2015), the inputs are likely to be

perceived as originating from a single source (fuse into one

perceptual object). This in turn can make it difficult to access

information about a feature in one sensory modality, inde-

pendent of the information in the other modality, even when

an observer attempts to ignore the second modality.

Alternatively, audio-visual interactions could arise via more

general cognitive biasing mechanisms, even if audio and

visual information are not necessarily bound at the percep-

tual level (Bizley et al., 2016).

Two recent studies of multisensory temporal processing

examined the influence of dynamic auditory stimuli on judg-

ments of visual modulation rates in a multisensory scene

offered by a video game (Fish Police!; Goldberg et al.,
2015; Sun et al., 2016). Players were asked to judge the rate

at which a visual stimulus (a computer-generated fish) was

modulated in size while it moved across the display and

emitted an intensity-modulated sound. The modulation rate

of the sound either matched or was incongruent with

(“mismatched”) the visual modulation rate. Results demon-

strate the robustness of “auditory-driving” effects (Gebhard

and Mowbray, 1959; Shipley, 1964; Welch and Warren,

1980): auditory information can drive the perception of

visual temporal properties. Specifically, the studies found

more errors in identifying the visual modulation rate when

visual and auditory inputs were mismatched, even though

participants were instructed to ignore the sounds (i.e., to

focus cross-modal attention; see Spence and Driver, 1997).

We were motivated to use a video-game like environment to

study multi-sensory processing by a desire to make the tasks

more engaging for participants than typical psychological/

psychophysical tasks. Indeed, gamifying psychophysical

tasks may improve participant motivation to try their best on

the task (Washburn, 2003; Miranda and Palmer, 2014). The

current study uses the same Fish Police! environment fora)Electronic mail: lennyv@bu.edu
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similar reasons. However, the current study differs from the

previous studies using the same game environment in its

treatment of the response data and by expanding on the tasks

that participants were asked to perform.

The first difference between the current study and the

previous studies using Fish Police! is in its treatment of

reaction time (RT) data. Audiovisual interactions are

known to affect RT on speeded response tasks (Marks,

1987). However, analysis of RT data is often difficult in the

presence of differences in accuracy due to speed-accuracy

trade-offs (Wickelgren, 1977; Heitz, 2014) or distributional

changes in RT across conditions (Speckman et al., 2008).

Additionally, consideration of reaction times only on

“correct” trials, as in the previous Fish Police! studies, may

offer an incomplete picture of how audiovisual interactions

shape perception. A class of decision-making models

known as “sequential sampling models” can be simulta-

neously fit to the RT distributions of both correct and error

responses and thus naturally deal with such issues

(Forstmann et al., 2016). The drift-diffusion model (DDM;

Ratcliff, 1978; Ratcliff and Rouder, 1998; Ratcliff and

McKoon, 2008) is the archetype of this model class. DDMs

include parameters meant to isolate and separately repre-

sent the quality of stimulus evidence (“drift rate”; higher

quality evidence leads to faster decisions), decision caution

(“decision threshold”; indicative of observer caution), a
priori response bias (“bias”), and the combination of stimu-

lus encoding and motor response times (“non-decision

time”). DDMs can thus provide insights into response data

that are not easily achieved using separate, model-free anal-

yses (Wagenmakers, 2009; Mathias, 2016). Here, response

data were considered using a conventional analysis method

considering correct/incorrect responses only (mixed-effect

logistic regression), as well as using DDM. Since the accu-

racy data provided to each model was identical, we

expected the conclusions drawn from each model to be

qualitatively similar. However, we predicted that the DDM

would provide additional insight into task performance due

to the incorporation of RT into the response model.

The present study also differs from the previous Fish
Police! experiments by examining whether the cross-modal

interactions affected perceived modulation that were

observed studies are “bi-directional”: whether temporal

modulations of visual features influence auditory modulation

rate judgments just as auditory intensity modulations influ-

ence visual modulation rate judgments. While visual infor-

mation can affect spatial features of an auditory percept

(Soto-Faraco et al., 2002; Soto-Faraco et al., 2004), visual

modulations may not have strong effects on judgments of

auditory modulation rates, since perception of the temporal

properties of a scene tend to be dominated by auditory infor-

mation (Welch and Warren, 1980; Recanzone, 2002; Shams

et al., 2002; Michalka et al., 2015). We hypothesized that

visual modulations influence the accuracy of judgments of

auditory modulation rate, just as auditory modulations influ-

ence judgments of visual modulation rates, but that these

effects are weaker than those of auditory modulations on

visual modulation rate.

II. METHODS

A. Experimental framework and game environment

Participants completed two tasks (an auditory task and a

visual task) within the framework of the Fish Police! open-

source game (Hickey, 2013). Participants completed the two

tasks in different sessions, completed on different days. The

order in which the sessions were completed was counterbal-

anced across participants.

On each trial within the game, a single computer-

generated image of a fish appeared on either the left or right

side of the game window and “swam” across the window on a

randomized two-dimensional path (Fig. 1). The fish was

always accompanied by a harmonic complex tone with an

interaural time difference of 600 ls, leading in the ear match-

ing the fish’s starting side (note that the spatial location of the

sound accompanying the fish was fixed, and not updated as the

fish moved along the screen). The location of the sound and

the originating side of the fish were never mismatched (e.g., it

was not possible to have the fish image originate on the left

and the tone originate on the right). The onsets of the fish

image and tone were simultaneous. Throughout the experi-

ment, an additional continuous background sound, meant to

evoke the sound of water rushing in a stream, was presented at

a low level (thus overlapping in time with the sound associated

with each fish); pilot experiments indicated that this additional

sound did not result in any perceptual masking of the tones.

The visual and auditory stimuli were either modulated

at 6 or 7 Hz, or were not modulated, depending on the task

and experimental condition. Visual modulation was achieved

by varying the size of the fish sinusoidally in the vertical

dimension between 70% and 125% of its original size.

Modulation of the auditory stimulus was achieved by sinu-

soidally varying the amplitude envelope with 50% modula-

tion depth. These rates and modulation depths were kept the

same throughout all parts of the experiment.

On each trial in the visual task, participants judged

whether the size of the fish was changing at a “fast” (7 Hz) or

“slow” (6 Hz) rate. The tone accompanying the fish could be

modulated at the same rate (congruent condition), modulated

at the other rate (incongruent condition), or have no modula-

tion (unmodulated condition); participants were informed that

any auditory modulations were task-irrelevant and that they

should ignore them. In the auditory task, participants made

fast/slow judgments about the tone that accompanied the fish

on each trial. In this task, the size of the fish could be congru-

ent, incongruent, or unmodulated. In the auditory task, partici-

pants were informed that the visual modulations were task-

irrelevant. In both the visual and auditory tasks, observers

were also asked to identify the starting location of the fish on

each trial (left/right). Specifically, participants pushed one of

four “shoulder” (top) buttons on a Logitech F310 gamepad

(see Fig. 1) to indicate the perceived modulation rate of the

fish in the attended sensory modality (slow or fast, corre-

sponding to the rear or front buttons, respectively), and the

location of the fish at the start of each trial (left or right, corre-

sponding to the left-side and right-side buttons).

After entering a response for a given trial, the fish would

disappear from view. Feedback was provided to participants
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both in the form of a running tally of correct, incorrect, and

missed responses at the top of the screen (see Fig. 1) and a

high pitched “ding” or a low-pitched “buzz” after each cor-

rect and incorrect responses, respectively. Each trial within

the game was timed; the next trial would automatically start

after either 2 or 2.5 s at random. A response was registered

as “missed” if the participant failed to press one of the four

buttons before a new fish appeared. Since the primary exper-

imental goal was investigation of audiovisual congruence on

modulation rate judgments, and because errors in location

judgment turned out to be exceedingly rare, trials in which a

location error was made were not considered in any subse-

quent analyses (further details below).

Each session began with a series of practice blocks con-

sisting of 20 trials containing congruent, incongruent, and

unmodulated trials, randomly intermingled. Practice blocks

were repeated until participants scored at least 70% correct

on block. After reaching this criterion, subjects completed 6

test blocks, each comprising 150 trials (50 each of congru-

ent, incongruent, and unmodulated trials in random order).

Training effects over the course of the six blocks were found

to be relatively small: the odds of responding correctly

increased by 5% per block for the visual task, and by 9% per

block for auditory task (see supplemental Fig. 1).1 Since

training effects were not the primary focus of the study, the

effect of block was not considered further.

In summary, the experiment had a 2� 2� 3 factorial

design: the first factor was the task (visual or auditory); the

second factor was the modulation rate of the stimulus in the

target modality (slow or fast); and the third factor was the

modulation of the task-irrelevant stimuli (congruent, incon-

gruent, or unmodulated). Excluding practice trials (which

were not analyzed), participants completed a total of 150 tri-

als per combination of task, congruence, and modulation

rate.

B. Testing environment

Participants were tested individually while seated in a dark

sound-attenuating booth (Industrial Acoustics, Brooklyn, NY)

containing a computer LCD display (Dell 2707WFP, operating

at a resolution of 1920� 1080), headphones (Sennheiser

HD600, Sennheiser electronic GmbH & Co., Hanover,

Germany) connected via a USB sound card (MOTU

Microbook, MOTU Inc., Cambridge, MA), and the USB

gamepad. Distance from the monitor, luminance, and sound

presentation level were not controlled precisely; participants

sat a comfortable distance away from the monitor (about

40 cm) and sounds were presented at an audible, yet comfort-

able, level. The game window (playable area: 635 pixels

wide, 968 pixels high, with the bottom 30 pixels partially

obscured by the translucent Windows OS Taskbar; see Fig.

1) was placed so that it occupied roughly the middle 1/3 of

the screen. This positioning of the game window and partici-

pant distance from the monitor led each visual stimulus to

subtend a visual angle of approximately 7.6�. Although par-

ticipants seemed likely to track the visual stimulus as it

moved across the screen when performing the visual task,

such a strategy is potentially detrimental to performance dur-

ing the auditory task. For this reason, we wished to minimize

the possibility that participants averted their gaze from the

game window and thus shut out visual information when

they performed the auditory task. For this reason, partici-

pants were instructed to keep their eyes open, direct their

gaze toward the monitor at all times, and not shift their gaze

to the sides of the screen (i.e., they were instructed to look at

the game window, and not the Windows Desktop on either

side of the game window). The experimenter monitored

cooperation with these instructions via an infrared camera

positioned inside the booth, facing the participant, which

was connected to a display outside the booth. The experi-

menter was able to monitor participants’ performance in real

FIG. 1. (Color online) Screenshot from Fish Police! as utilized in the current

experiment. On each trial, a fish (visual stimulus) swam across the screen in

a randomized two-dimensional path. The fish was always accompanied by a

tone (auditory stimulus), presented via headphones with an ITD leading to

the side matching the side of the screen from which the fish originated. The

size of the fish and/or the tones were modulated at 6 or 7 Hz in size (visual

stimulus) or amplitude (tone amplitude) to create the experimental condi-

tions (see text). Participants were asked to discriminate the rate at which the

visual stimulus or the auditory stimulus was modulated via button presses

on a gamepad (see illustration at bottom; top view of gamepad shown). A

running tally of correct responses, incorrect responses, and missed (no-

response) trials was displayed at the top of the game window, updated after

each event.
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time from outside the booth using a display that mirrored the

one on which fish were displayed to participants.

C. Participants

Thirteen participants (7 male, 6 female; age 20–27 year

old) were recruited from the Boston University community

and were compensated $12.50/h for taking part in the study.

All participants signed informed consent documents

approved by the Boston University Charles River Campus

Institutional Review Board. Participants were screened to

ensure that they had normal hearing at standard audiometric

frequencies between 200 and 8000 Hz. All participants

reported having normal or corrected-to-normal visual acuity.

Participants completed each session in less than 1.5 h,

including any elective breaks.

D. Data analysis

1. Game log parsing and data pre-processing

Game log files were parsed using MATLAB (v2013a),

and subsequent analysis was performed using custom scripts

written in Python (version 3) and R (version 3.3.1). A few

game logs became corrupted and resulted in some data (2 tri-

als) being dropped from the analysis at the parsing stage.

“Missed” trials and trials immediately following “missed” tri-

als (114 trials) were also removed; the latter were removed to

ensure correct scoring, because responses on these trials may

have been intended as responses to the preceding “missed”

trials.

Given the design of the experiment, participants could

make three different kinds of errors: they could incorrectly

report the modulation rate of the target stimulus while cor-

rectly reporting the initial location of the stimulus; they

could incorrectly report the location while correctly report-

ing the modulation rate; or they could incorrectly report the

target modulation rate and the location. Incorporation of the

location judgments into the task was originally intended to

inform another line of investigation on audiovisual spatial

judgments. However, the rarity of location judgment errors

(11 trials in total across all participants) meant that, in prac-

tice, the experiment reduced to a speeded binary decision

task on each trial. Therefore, to simplify analysis, trials with

location errors were dropped from analysis, and modulation

judgments were collapsed across locations. This made the

accuracy data suitable for consideration using logistic

regression, and the reaction times suitable for analysis with

DDM. Since abnormally short reaction times are known to

interfere with estimation of DDM parameters, trials with

reaction times less than 500 ms (19 trials) were also excluded

from the analysis. Ultimately, of the 23 400 experimental tri-

als conducted, 23 254 trials were retained for analysis.

2. DDM fitting

In several respects, applying the DDM to data from

speeded two-choice decision tasks is similar to applying sig-

nal detection theory (SDT; Green and Swets, 1966). Like

SDT, the DDM represents a mathematical implementation of

an optimal decision process given sensory inputs

contaminated by internal noise (Bogacz et al., 2006). Also

like SDT, the DDM contains several latent parameters with

distinct psychological interpretations (Wagenmakers, 2009;

Mathias, 2016). However, unlike SDT, the DDM is fitted to

the RT distributions of correct and error responses, rather

than just counts of responses, and contains more latent

parameters than SDT. Specifically, the DDM contains four

main parameters (Fig. 2), and three optional parameters. The

main parameters are (1) the drift rate (v), representing the

quality of stimulus evidence available on each trial and the

resulting rate at which information leading up to a decision

is accumulated; (2) the distance between the decision bound-

aries (a), representing the degree of certainty the observer

requires before responding; (3) the starting point of the diffu-

sion process (z), representing a priori bias toward making

one response or the other; and (4) the non-decision time (t),
representing factors influencing reaction times that are not

directly related to the decision process, such as time required

for sensory encoding, motor preparation, and response exe-

cution (Ratcliff and McKoon, 2008; Voss et al., 2013). The

optional parameters reflect trial-to-trial variability in drift

rate, bias, and non-decision times (denoted sv, sz, and st,
respectively); these are necessary to explain various phe-

nomena observed in real data, such as faster/slower error

responses, but prohibitively large numbers of trials are usu-

ally needed to obtain meaningful estimates at the level of

individual participants (see Wiecki et al., 2013).

DDMs were fitted to the data using the HDDM Python

package, version 0.6 (Wiecki et al., 2013). HDDM performs

Bayesian hierarchal estimation of DDM parameters via

Markov Chain Monte Carlo (MCMC) sampling from the

joint posterior distribution using PyMC (version 2.3.3) (Patil

et al., 2010). In this software package, individual-participant

parameters are estimated hierarchically, with mildly

FIG. 2. (Color online) Example of drift-diffusion model (DDM) for a two-

condition task. Dashed lines correspond to one set of responses and distribu-

tions, solid lines correspond to another set. On each trial, the process leading

to a decision is modeled as a random walk between the two boundaries; after

a fixed time (non-decision time t, which represents stimulus encoding time),

the random walk starts at point z (bias). When the random walk hits either

decision boundary (one located at position 0, the other located a arbitrary

units away), a response is executed. Differences in how often and when the

walk hits one of the decision boundaries leads to observed differences in

performance and reaction times, respectively, in a decision-making task.

The drift rate (v) can be thought of as similar to a vector sum or average of

the random walks; its direction indicates a favored decision, and the magni-

tude is indicative of the speed with which that decision is made. Adapted

from Wiecki et al. (2013) with permission.
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informative priors based on previously reported DDM

parameter estimates placed on the group distributions

(Matzke and Wagenmakers, 2009). The individual-

participant parameters both influence and are influenced by

the estimates of the group parameters, which greatly

improves parameter estimation relative to traditional maxi-

mum likelihood (Ratcliff and Childers, 2015). Independent

models were fit to data from the visual task and from the

auditory task, which was justified based on the lack of corre-

lation between performance on audio and visual tasks (see

Sec. III).

Estimates of the drift rate (v), decision threshold (a),

bias (z), and non-decision time (t) were permitted to vary as

a function of the congruence of the auditory and visual stim-

uli. The effects of congruence were entered into the model

using a “treatment-coding” scheme, with the unmodulated

condition serving as the baseline (intercept). The conse-

quence of this coding scheme is the same as the consequence

of using treatment coding in a linear model: parameters asso-

ciated with the congruent and incongruent conditions were

estimated as changes relative to the values associated with

the unmodulated parameter, rather than to the overall mean

or another reference point (Faraway, 2014). Distributions of

the mean and the standard deviation (pooled across congru-

ence conditions) of each of the four parameters were incor-

porated into the hierarchical model. Inter-trial variability

parameters (sv, st, and sz) were included in the models, but

were only estimated at the group level, and not as a function

of congruence. For simplicity and to reduce computational

demands, the effects of stimulus rate (fast or slow) on any

parameter were not considered; instead, stimulus rate was

implicitly encoded into the model by associating the decision

threshold boundaries with correct and incorrect responses,

and switching whether the starting point z on each trial was

closer to the correct or incorrect boundary depending based

on the rate of the presented stimulus (Wiecki et al., 2016).

This manipulation and our stimulus encoding scheme meant

that values of z greater than 0.5 in a particular congruence

condition indicated a systematic bias toward responding

“fast,” and values of z less than 0.5 indicated a systematic

bias toward responding “slow,” rather than a bias toward

“correct” or “incorrect.”

The joint posterior distribution of each model parameter

was obtained via MCMC sampling. Four independent chains

were run for 20 000 iterations each. The distributions of the

final 10 000 iterations of each of the four chains (assumed to

be represent steady-state probabilities) were combined,

resulting in 40 000 posterior samples per parameter, per

model. Marginal posterior distributions associated with each

parameter within a model were characterized by examination

of the 95% highest-density region (HDR) (Kruschke, 2013),

which were obtained in R using the “hdrcde” package, ver-

sion 3.1 (Hyndman, 2015).

3. Logistic regression modeling of task performance

A set of mixed-effect logistic regression models were

fitted to the response data to analyze effects of the experi-

mental manipulations on accuracy. This analysis was

performed using the “lme4” package in R (Bates et al.,
2015). Separate sets of models were fitted to the auditory

and visual tasks. In each model, the dependent variable was

the binary response outcome (correct or incorrect), and the

fixed effects included the various combinations of the exper-

imental manipulations (congruence, modulation rate of the

stimulus in the attended modality, and the interaction

between these two factors). A random effect of participant

(i.e., an “intercept-only” random effect) was included in

each model. The best-fitting model was chosen from the set

of candidate models on the basis of chi-squared tests

reported by running the “anova” function on the lme4 model

objects in R. Differences in levels of fixed effects in the

best-fitting model were quantified using odds ratios. Odds

ratios and their associated confidence intervals were com-

puted and compared using generalized linear hypotheses

tests, as implemented in R using the “glht” function from the

“multcomp” package (Hothorn et al., 2016).

III. RESULTS

A. Accuracy data

Proportion correct scores are shown in Fig. 3 for each

task (visual task and auditory task in left and right panels,

respectively), for trials with no opposite modality modula-

tion, congruent modulation, and incongruent modulation.

Performance was better overall in the auditory task than the

visual task (compare distributions of points in the right panel

to those in the left panels). In both tasks, mean proportion

correct was lowest on incongruent trials (mean performance,

visual task: 59.34%; mean performance, auditory task:

74.49%), highest on congruent trials (visual task: 75.18%;

auditory task: 83.33%), and intermediate on unmodulated

trials (visual task: 67.08%; auditory task: 79.79%).

B. DDM results

1. Reaction times

We sought to confirm suitability of our RT data to fitting

with a “standard” DDM (in which all parameters are

assumed to be time-invariant over the course of a trial),

rather than using a more complicated model with time-

varying parameters (e.g., see Milosavljevic et al., 2010;

White et al., 2011). Briefly, a model with time-varying drift

rates may be necessary to account for “conflict” data in

which error RTs are faster than correct RTs on incongruent

trials (White et al., 2011). To investigate this possibility,

RTs were pooled over all subjects and then grouped to form

separate RT distributions for each task, modulation rate, con-

gruence condition, and correct/incorrect responses. Results

are shown in Fig. 4.

Considering incongruent trials only (Fig. 4, bottom

panels), there is a slight tendency for shorter RTs for errors

when participants were presented with fast visual stimuli in

the visual task (Fig. 4, lower half of bottom left panel), and

for slow auditory stimuli in the auditory task (Fig. 4, upper

half of the bottom right panel). However, errors tend to

have longer RTs for slow visual stimuli and fast auditory

stimuli (Fig. 5, upper half of the bottom left panel and
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lower half of the bottom right panel, respectively).

Additionally, shorter error RTs are not confined to incon-

gruent trials in the visual task; a tendency for fast errors is

seen for fast visual stimuli in the visual task, regardless of

what type of auditory stimulus is presented (see Fig. 4, bot-

tom half of each of the left panels).

Overall, we concluded that while additional insights

into the data might be possible using a more sophisticated

decision-making model, there were no systematic, reliable

changes in reaction times that would invalidate the interpre-

tation of a standard seven-parameter DDM without time-

varying parameters.

2. DDM parameter estimates

Effects of experimental manipulations on the posterior

distributions of the parameters of interest (v, a, z, and t) are

shown in Fig. 5. Since the unmodulated condition was used as

a reference condition, the parameter values associated with

the congruent and incongruent conditions were expressed as a

change relative to that condition; to aid visual comparison

across conditions, the congruent and incongruent parameter

distributions reported below and shown in each panel of

Fig. 5 were shifted by the mean value of the posterior distribu-

tion of the unmodulated condition for that task. Therefore,

congruent and incongruent distributions can each be consid-

ered significantly different from the unmodulated condition if

the 95% HDR of the congruent/incongruent posterior distribu-

tion does not include the mean value of the unmodulated dis-

tribution (indicated by the blue dashed line in each panel).

The congruent and incongruent distributions can be consid-

ered different from one another if the 95% HDRs of the distri-

butions do not overlap.

a. Drift rate (v). Results for v (Fig. 6; upper left panel)

mimic the overall pattern of results evident from the raw

accuracy data (Fig. 3). In both tasks, mean posterior v was

smallest in the incongruent condition, intermediate in the

unmodulated condition, and largest in the congruent condi-

tion. The congruent and incongruent 95% HDRs do not over-

lap with each other and do not include the mean posterior

value of v in the unmodulated condition, meaning that in all

congruence conditions, the values of v were all credibly dif-

ferent from one another.

b. Non-decision time (t). Non-decision time distribu-

tions (Fig. 5, upper right panel) indicated that the presence

of an opposite-modality stimulus modulation led to shorter

non-decision times in both tasks (congruent and incongruent

distributions are shifted to the left of the dashed blue line).

We note that although the tail end of the 95% HDR for the

congruent condition in the auditory task included the mean

of the unmodulated condition, it is reasonable to interpret

the congruent change in non-decision time relative to the

unmodulated condition as nonzero and negative given the

values of the unmodulated mean and the upper end of the

congruent 95% HDR (both numbers round to approximately

0.813). Non-decision times were also slightly shorter in the

auditory task when visual stimuli were incongruent, com-

pared to when the visual stimuli were congruent (incongru-

ent distributions shifted to the left of the congruent

distribution in the bottom plot only).

c. Decision thresholds (a). Decision thresholds (Fig. 5,

lower left panel) were similar across the three conditions

within either task; the exception was a shift toward a higher

decision threshold in the auditory task for incongruent stim-

uli only.

d. Bias (z). Model fits of the bias parameter z (Fig. 5,

bottom right) indicated that there was no significant bias when

opposite modality modulations were present, in either task

(bottom right panel; 95% HDR includes 0.5 for congruent and

incongruent distributions for each task). However,

FIG. 3. (Color online) Proportion cor-

rect data for the visual discrimination

task (left panel) and the auditory task

(right panel). Each data point is from a

single participant. Points are broken

down based on discriminated stimulus

rate (slow and fast, downward and

upward facing triangles, respectively),

and combined across the two rates (dia-

monds). Box plots illustrate median,

25th percentile (bottom), 75th percen-

tile (top), and the lowest/highest values

that are within 1.5� the interquartile

(0.25–0.75) range (top and bottom

whiskers).

J. Acoust. Soc. Am. 141 (4), April 2017 Varghese et al. 2479



examination of the unmodulated results for each task indicates

that there was a bias toward responding “fast” when the

opposite-modality stimulus was unmodulated (lower

right panel; unmodulated distributions are shifted to the right

of 0.5).

3. Comparisons across tasks

Within each task, the differences between each congru-

ence condition were subtracted from one another and then

divided by the pooled standard deviation estimate to derive

posterior distributions of an effect size similar to Cohen’s d
(Cohen, 1992). Results are shown in Fig. 6. From the plots,

it becomes clear that there is an overall benefit of across-

modality congruence in the modulation rates relative to

when the unattended stimulus is unmodulated (Fig. 6, left

panel; neither distribution includes 0), and that this benefit

is larger for the visual task than it is for the auditory task

(Fig. 6, left panel; 95% HDRs do not overlap). Comparing

when the task-irrelevant sensory input is unmodulated and

when it is incongruent, effect sizes are nonzero but similar

across tasks (Fig. 6, middle panel; neither distribution

includes 0, but 95% HDRs are overlapping). Finally, exami-

nation of the effect size comparing congruence vs incongru-

ence for each task indicates that the HDRs are slightly

overlapping. However, the HDRs suggest that the congru-

ence vs incongruence effect is larger for the visual task than

for the auditory task (Fig. 6, right panel; neither distribution

includes 0, 95% HDRs exhibit some overlap).

FIG. 4. (Color online) Reaction time distributions in the visual discrimination task (left panels) and auditory discrimination task (right panels), combined

across all subjects and responses. Data are broken down by the opposite-modality modulations (top panels: unmodulated, middle panels: congruent, bottom

panels: incongruent). Distributions are also broken down by stimulus rate and response: the top distributions in each panel show the reaction time probability

densities for correct/incorrect (solid/dashed) responses to slow stimuli, and the lower, inverted distributions in each panel are the reaction time probability den-

sities for correct/incorrect (solid/dashed) responses to fast stimuli. Arrows indicate the 12.5, 25, 50, 75, and 87.5 percentiles for each distribution, with dark

and light arrows indicating the quantiles for correct and incorrect responses, respectively.
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C. Logistic regression analysis of task performance

1. Logistic regression on accuracy, visual task

For the visual task, the logistic regression model that

included covariates of stimulus rate, audiovisual congruence,

and the interaction fit the response data best (Table I).

Comparisons of odds ratios from this model (Table II) indi-

cated that, regardless of the stimulus rate, odds of a correct

response when participants identified visual stimuli were 2.1

times greater when the auditory modulations were congruent

with the visual modulations compared to when they were

incongruent (fast/congruent> fast/incongruent; slow/con-

gruent> slow/incongruent). The patterns of odds ratios were

different across stimulus rates in the unmodulated

conditions. For fast stimuli, odds of a correct response were

2.1 times greater when the auditory stimuli were unmodu-

lated compared to when the auditory stimuli were incongru-

ently modulated (fast/unmodulated> fast/incongruent).

However, there was no statistically significant difference in

response accuracy when visual stimuli were fast and paired

FIG. 5. (Color online) Posterior distri-

butions of DDM parameters permitted

to vary as a function of congruence.

Parameters derived from data on the

visual discrimination task occupy the

top half of each panel, and parameters

from the auditory task occupy the bot-

tom half of each panel. Within each

plot, the distribution near the top of the

plot is the reference (unmodulated)

condition. The mean of the unmodu-

lated distribution is indicated in each

panel by the vertical dashed line. The

95% HDR of each distribution is indi-

cated in square brackets next to the

appropriate curve. Arrows with aster-

isks indicate that there is no overlap in

the 95% highest density regions for the

two distributions being compared

(when comparing congruent and incon-

gruent conditions to one another), or

that there is no overlap between a high-

est density region and the mean of the

reference condition (when comparing

congruent or incongruent distributions

to the unmodulated condition); see text

for details. AU¼Arbitrary Units.

FIG. 6. Effect sizes of congruence on

drift rate, computed as the difference

between two posterior distributions

(from amongst the congruent/incongru-

ent/unmodulated distributions shown in

the upper left panel of Fig. 5), divided

by the estimate of the pooled standard

deviation of that parameter estimate

(see Sec. II). The comparison of interest

is labeled at the top of each panel; the

numbers in brackets in each panel indi-

cate the 95% HDR for the visual (V)

and auditory (A) effect size distribu-

tions for each comparison.
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with auditory stimuli that were either congruent or unmodu-

lated (i.e., fast/congruent � fast/unmodulated; odds ratio

between conditions of approximately 1, p approximately 1).

For slow visual modulations, odds of a correct response

were 2.1 times greater when these were paired with congru-

ent auditory modulations compared to when there were no

auditory modulations (slow/congruent> slow/unmodulated).

There was no statistically significant difference when com-

paring performance for judgments of slow auditory modula-

tions when the visual modulations were either not present or

incongruent (slow/unmodulated � slow/incongruent; odds

ratio estimate to be approximately 1; p approximately 1).

2. Logistic regression on accuracy, auditory task

For the auditory task, a model containing effects of con-

gruence, rate, and the interaction between the two factors

best explained the data (Table III). The general trends from

this model are similar to those observed in the visual task

(Table IV).

Odds of a correct response were greater when the accom-

panying visual modulations were congruent with the auditory

modulations compared to when they were incongruent; odds

ratios were approximately 1.9 and 1.7 when participants

judged fast and slow auditory modulations, respectively.

Odds of a correct response when judging auditory stimuli

were 1.6 times greater when fast auditory modulations were

paired with unmodulated visual stimuli compared to when

fast auditory modulations were paired with incongruent visual

modulations (fast/unmodulated> fast/incongruent). However,

they were equally likely to respond correctly when fast audi-

tory stimuli were paired with either congruent or unmodulated

visual modulations (fast/congruent � fast/unmodulated; odds

ratio approximately 1.1, p¼ 0.528, 95% confidence interval

of the odds ratio includes 1). For the slow auditory stimuli,

participants were about 1.4 times as likely to respond cor-

rectly when the audio and visual modulations were congruent

compared to when there were no visual modulations (slow/

congruent> slow/unmodulated), but were about equally

likely respond correctly when there were no visual modula-

tions was unmodulated compared to when the visual modula-

tions were incongruent (slow/unmodulated � slow/

incongruent; odds ratio approximately 1.2; p¼ 0.102, 95%

confidence interval of the odds ratio includes 1).

3. Comparisons across tasks

We considered whether an individual’s performance on

the visual task was related to their performance on the audi-

tory task (Fig. 7). Simple linear regressions indicated that

regardless of the stimulus rate or cross-modal condition,

TABLE I. Logistic regression model specification and selection for the visual discrimination task. Model specifications in Wilkinson/lme4 notation, with ran-

dom effect of subject specified (i.e., separate intercept for each subject). Best fitting model (lowest AIC, significant result from Chi Squared test) is indicated

in bold.

Model Specification DFa AICb Chi Squaredc DDFd p valuee

response� (1 j subj) 2 14538

response� rateþ (1 j subj) 3 14460 80.268 1 �0.001f

response� congruenceþ (1 j subj) 4 14321 141.101 1 �0.001f

response� congruenceþ rateþ (1 j subj) 5 14230 93.452 1 �0.001f

response ~ congruence 1 rate 1 congruence:rate 1 (1 j subj) 7 14158 75.304 2 �0.001f

aDegrees of freedom (DF).
bAkaike Information Criterion (AIC).
cChi Squared value from testing against the previously listed model.
dChange in degrees of freedom vs. previously listed model (DDF).
ep value from Chi Squared test.
fSignificant p values.

TABLE II. Summary of logistic regression fixed effects when compared using generalized linear hypothesis tests. Data are compared separately for fast and

slow stimuli due to the significance of the interaction term in the model selection process.

Stimulus rate Modulation comparison Estimatea SEb z valuec p valued OR [95% CI]e

Fast Congruent vs Incongruent 0.740 0.072 10.234 <0.001f 2.096 [1.737, 2.529]

Unmodulated vs Incongruent 0.745 0.071 10.509 <0.001f 2.106 [1.752, 2.532]

Congruent vs Unmodulated �0.005 0.078 �0.063 �1 0.995 [0.814, 1.217

Slow Congruent vs Incongruent 0.747 0.069 10.745 <0.001f 2.110 [1.761, 2.527]

Unmodulated vs Incongruent �0.001 0.067 �0.010 �1 0.999 [0.841, 1.188]

Congruent vs Unmodulated 0.747 0.069 10.851 <0.001f 2.111 [1.765, 2.525]

aEstimate is the coefficient corresponding to the comparison in the previous column.
bStandard error of the estimate (SE).
cz Value is the z value for the modulation comparison listed.
dp Value is the p value adjusted for multiple comparisons via single-step method.
eOdds ratio (OR); 95% confidence interval for the odds ratio (95% CI).
fSignificant p values.
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proportions correct on the tasks were not correlated with one

another.

Finally, we considered a logistic regression model to

examine the accuracy data combined across tasks. Task (visual

or auditory), condition (opposite modality was congruent,

incongruent, or unmodulated), and task-relevant stimulus

rate (fast or slow), as well as all combinations of interac-

tions between these factors, were included as fixed

effects in this model. A random effect of task-within-par-

ticipant was included in the model fit, i.e., the effect of

task (visual task and auditory task) was clustered within

participant.

Tests of the fixed effect model parameters (Table V) con-

firmed that performance was generally better in the auditory

task than on the visual task; participants were about 2.3 times

more likely to respond correctly in the auditory task compared

to the visual task. Combining across tasks, participants were

1.9 times more likely to respond correctly when stimuli were

congruent compared to when they were incongruent when

data are considered independently of task. The rate-dependent

effects indicated in the models fit separately for each task also

held for the combined model: there was no difference

between performance when the task-irrelevant stimulus was

incongruent or unmodulated when discriminating slow stimuli

(odds ratio approximately 1.1, 95% confidence interval

includes the value one), or between performance when the

task irrelevant stimulus was congruent and when the task

irrelevant stimulus was unmodulated when discriminating fast

stimuli (odds ratio approximately 1.1, 95% confidence inter-

val includes the value one).

Odds ratios obtained from logistic regression the odds

ratios may be interpreted directly as effect sizes (Fleiss

et al., 1994). When performing an effect size comparison on

the logistic regression models that was analogous to the

effect size comparison performed for the drift rate parameter

in the DDM, the larger effects of congruence in the visual

task relative to the auditory task are absent: the 95% confi-

dence intervals of the odds ratios for the comparisons involv-

ing congruence overlap when they are compared across tasks

(compare OR and 95% CI in Table II and Table IV).

IV. DISCUSSION

A. Congruence effects in both tasks suggest
audiovisual effects of modulation rate are bi-
directional, but asymmetric

Congruency effects were observed in both the visual

task and the auditory task: judgment accuracy was highest

when audio and visual stimuli were congruent, lowest when

they were incongruent, and intermediate when the task-

TABLE III. Logistic regression model specification and selection for the auditory discrimination task. Model specifications in Wilkinson/lme4 notation, with

random effect of subject specified (i.e., separate intercepts for each subject). Best fitting model (lowest AIC, significant result from Chi Squared test) is indi-

cated in bold.

Model specification DFa AICb Chi Squaredc DDFd p valuee

response� (1 j subj) 2 11059

response� rateþ (1 j subj) 3 11041 19.951 1 <0.001f

response� congruenceþ (1 j subj) 4 10961 81.428 1 <0.001f

response� congruenceþ rateþ (1 j subj) 5 10947 16.711 1 <0.001f

response ~ congruence 1 rate 1 congruence:rate 1 (1 j subj) 7 10943 7.864 2 0.020f

aDegrees of freedom (DF).
bAkaike Information Criterion (AIC).
cChi Squared value from testing against the previously listed model.
dChange in degrees of freedom vs. previously listed model (DDF).
ep value from Chi Squared test.
fSignificant p values.

TABLE IV. Summary of logistic regression fixed effects when compared using generalized linear hypothesis tests. Data are compared separately for fast and

slow stimuli due to the significance of the interaction term in the model selection process.

Stimulus rate Modulation comparison Estimatea SEb z valuec p valued OR [95% CI]e

Fast Congruent vs Incongruent 0.617 0.084 7.352 <0.001f 1.853 [1.490, 2.304]

Unmodulated vs Incongruent 0.489 0.083 5.881 <0.001f 1.631 [1.314, 2.024]

Congruent vs Unmodulated 0.127 0.088 1.454 0.528 1.136 [0.905, 1.427]

Slow Congruent vs Incongruent 0.539 0.082 6.557 <0.001f 1.715 [1.385, 2.124]

Unmodulated vs Incongruent 0.179 0.077 2.324 0.102 1.196 [0.979, 1.462]

Congruent vs Unmodulated 0.360 0.085 4.263 <0.001f 1.434 [1.151, 1.786]

aEstimate is the coefficient corresponding to the comparison in the previous column.
bStandard error of the estimate (SE).
cz Value is the z value for the modulation comparison listed.
dp Value is the p value adjusted for multiple comparisons via single-step method.
eOdds ratio (OR); 95% confidence interval for the odds ratio (95% CI).
fSignificant p values.
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irrelevant modality was unmodulated, regardless of which

sensory input (auditory or visual) the participants were judg-

ing. DDM drift rates paralleled the accuracy findings, indi-

cating that the quality of evidence contributing to a decision

about modulation rate was highest on congruent trials and

lowest on incongruent trials. Our observation of congruency

effects in both tasks suggests that audiovisual interactions

for temporal modulations occur bi-directionally.

Bi-directional audiovisual interactions may arise on

congruent trials via neural mechanisms that act to favor per-

ceptual binding of sensory inputs with similar temporal

properties (Bizley et al., 2016). Binding of information with

similar spatiotemporal properties and the formation of visual

“objects” or auditory “streams” is the basis of scene organi-

zation within a single modality (Treisman and Gelade, 1980;

Luck and Vogel, 1997; Shinn-Cunningham, 2008).

Audiovisual object formation appears to work in similar

ways (Bizley et al., 2012; Bizley et al., 2016). As such, tem-

poral modulations in different modalities at the same rate

may force the percept of a bound object in a stimulus-driven

manner (Koelewijn et al., 2010; Talsma et al., 2010).

However, we observed cross-modal interactions when the

task-irrelevant input was incongruent, not only when it was

congruent. Specifically, drift rates were slower for incongru-

ent trials than when the irrelevant input was unmodulated

(see Fig. 7); the interactions arise even when the temporal

FIG. 7. (Color online) Correlations

between proportion correct for the

auditory (y axis) and visual (x axis),

tasks, plotted separately for the two

stimulus rates (slow and fast; labels at

right). Text labels indicate participant

identities to facilitate comparisons of

the same participant across plots.

Shaded areas are 95% confidence inter-

vals around the regression lines.

Adjusted r2 and p values (from an F-

test) for each condition are reported in

each figure legend.

TABLE V. Summary of accuracy logistic regression fixed effects when comparisons of interest are tested using generalized linear hypothesis tests. In Wilkinson/

lme4 notation, the model was specified as response� conditionþ stimulusþ taskþ condition:stimulusþ condition:taskþ task:stimulusþ condition:task:stimulus

þ (1þ task j subj). Parameters listed were obtained by combining over interactions when performing the hypothesis tests. Abbreviations as in Table II.

Comparison Estimatea SEb z valuec p valued OR [95% CI]e

Visual vs Auditory �0.818 0.249 �3.288 0.006f 0.441 [0.232, 0.840]

Congruent vs Incongruent 0.660 0.039 17.105 <0.001f 1.936 [1.752, 2.140]

Slow/Congruent vs Slow/Unmodulated 0.554 0.055 10.160 <0.001f 1.740 [1.511, 2.003]

Slow/Unmodulated vs Slow/Incongruent 0.089 0.051 1.753 0.337 1.093 [0.958, 1.247]

Fast/Congruent vs Fast/Unmodulated 0.061 0.058 1.049 0.808 1.063 [0.914, 1.237]

Fast/Unmodulated vs Fast/Incongruent 0.600 0.145 4.140 <0.001f 1.822 [1.251, 2.651]

aEstimate is the coefficient corresponding to the comparison in the previous column.
bStandard error of the estimate (SE).
cz Value is the z value for the modulation comparison listed.
dp Value is the p value adjusted for multiple comparisons via single-step method.
eOdds ratio (OR); 95% confidence interval for the odds ratio (95% CI).
fSignificant p values.
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fluctuations in the two modalities do not match. This may be

because temporal coherence in modulations across modali-

ties may only affect binding for stimulus modulation rates

below about 4 Hz or so (Fujisaki and Nishida, 2005). We

used rates of 6 and 7 Hz, which may be too rapid to influence

binding directly; instead, it could be that the auditory and

visual inputs are bound even in incongruent modulation tri-

als because the auditory and visual inputs turn on and off

together. Alternatively, interactions between auditory and

visual information may occur at later processing stages that

are more related to audiovisual congruence/incongruence

resolution (e.g., Hein et al., 2007; Noppeney et al., 2010),

and completely unrelated to cross-modal binding. Mistakes

on incongruent trials may reflect cognitive mechanisms. In

this sense, our task and results may have more in common

with within-modality conflict resolution tasks, such as

Stroop Tasks (e.g., Vendrell et al., 1995; Leung et al., 2000)

or Eriksen Flanker Tasks (e.g., van Veen and Carter, 2002).

Indeed, one potential explanation for the pattern of drift rate

results, in which higher drift rates were found for congruent

stimuli and lower drift rates were found for incongruent

stimuli compared to the unmodulated condition, is that the

observed drift rates in the fitted DDM correspond to differ-

ently weighted drift processes from each modality, with the

weighting determined by the focus of modality-specific

attention. In this view, facilitation or interference effects are

likely to be cognitive rather than perceptual. More generally

speaking, however, distinguishing true perceptual binding

effects and from cognitive conflict resolution mechanisms

will require different paradigms and stimuli (e.g., see Bizley

et al., 2016) or may require disambiguation using functional

imaging methods (see Sec. IV B, below).

Despite observations of bi-directionality, and indepen-

dent of the discussion about the mechanisms by which it

arises, the DDM drift rate effect sizes indicate that the

increase in evidence quality (drift rate) that comes about due

to congruent modulations tended to be larger for the visual

task than in the auditory task (Fig. 7). The asymmetry in the

level of temporal congruence benefit is consistent with find-

ings demonstrating that the auditory system is more suited to

temporal processing than the visual system (Welch and

Warren, 1980; Recanzone, 2002; Michalka et al., 2015). In

this view, the percept of time-varying features in a scene

should be dominated by information encoded in the sensory

system optimized for temporal information (i.e., the auditory

system). In contrast, inputs to the visual system may provide

a more reliable source of information for spatial judgments;

for example, visual stimulus motion has been shown to affect

judgments regarding direction of auditory apparent motion

(Soto-Faraco et al., 2002; Soto-Faraco et al., 2004). These

rules, however, may not hold for inputs that are degraded in

some way; for instance, while the visual system is suited for

spatial judgments, spatial information will be extracted from

auditory information if a visual input provides sufficiently

ambiguous information regarding position (Alais and Burr,

2004).

Changes in each task were also observed in the non-

decision time parameter (congruent and incongruent non-

decision times were faster than those on unmodulated trials)

and the bias parameter (bias values were shifted toward

responding “fast” more often on the unmodulated condition in

each task). Non-decision times are conceptualized as includ-

ing stimulus encoding times (Ratcliff and McKoon, 2008),

and thus decreases in this parameter when modulations were

present may be a behavioral consequence of shorter laten-

cies arising from the engagement of neural populations sen-

sitive to multi-modal temporal modulations (e.g., Meredith

et al., 1987). More investigation is needed, however, since

non-decision times also comprise motor response times and

possibly sources of variance in RT distributions (Ratcliff

and McKoon, 2008).

It is harder to speculate on what caused the changes in

bias observed in both tasks. For the visual discrimination

task, the change in bias due in the unmodulated condition

bias could be partly due to a single subject responding “fast”

a disproportionate number of times when a slow visual stim-

ulus was presented with an unmodulated auditory stimulus

(see the leftmost set of points in the left panel of Fig. 3). For

the auditory discrimination task, the bias might be explained

by participants doing slightly worse overall when presented

with slow auditory stimuli and unmodulated visual stimuli

(mean accuracy: 76.91%), compared to when they were pre-

sented with fast auditory stimuli and unmodulated visual

stimuli (mean accuracy: 82.66%). Here, we note that if com-

puting the bias using DDM was not an option (perhaps due

to a lack of RT data or a lack of computational power), the

bias in participant responses could have been deduced from

an analysis using traditional signal detection theory rather

than performing a logistic regression on correct and incorrect

responses. Alternatively, a systematic bias could have been

determined by fitting logistic regression models with the

same fixed effects, but with the participant response (fast/

slow) as the dependent variable in the models.

B. Limitations and future work

A limitation in drawing comparisons between findings

on an auditory task and a visual task is that the amount of

information conveyed via each sense and the strategies

employed by participants in utilizing these two sources of

sensory information may differ from one another. Although

identical physical stimuli were employed during both the

auditory and visual tasks in the current study, it is likely that

the amount of visual information perceived during the audi-

tory task was less than the amount perceived during the

visual task. A strategy that participants could have employed

on auditory trials was to fix their gaze on a portion of the

screen outside the game window or on some portion of the

game window that would prevent the image of the moving

fish entering the fovea. While an infrared camera was uti-

lized to ensure that participants were not closing their eyes,

turning their heads, or otherwise blatantly disregarding

instructions, controlling for gaze position could only have

been by tracking eye movements. Given this problem, it is

difficult to argue that the effects of visual inputs on auditory

modulation discrimination are fundamentally weaker than

the effects of auditory inputs on visual modulation discrimi-

nation based on the current results alone. Furthermore, the
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differences in strategy and stimulus information perceived

(or utilized) by players may have contributed to the lack of

correlation between performance levels on each task. On the

other hand, the fact that congruence and incongruence

effects were observed in the auditory task lends credence to

the assertion that the audiovisual interactions arising from

temporal modulations in each sensory modality are

automatic.

Proportion correct data and results of the logistic regres-

sion analysis of accuracy suggest that there may be interac-

tions between audiovisual interactions and stimulus rates.

Specifically, performance was no better when the auditory

and visual stimuli were both at 7 Hz (i.e., congruent) than

when the task-irrelevant stimuli were unmodulated. In con-

trast, judgments of slow stimuli in both tasks were likely to

benefit from the presence of congruent, task-irrelevant mod-

ulations, but performance on incongruent and opposite-

modality unmodulated trials was similar. The simplest expla-

nation for this finding in the opposite-modality-unmodulated

case is there is more information available to the observer in

a fixed amount of time for a fast modulation rate than for a

slow modulation rate. One (admittedly speculative) possibil-

ity is that the benefit of congruence at 6 Hz is due to the

fusion of audio and visual stimuli enhancing perception

when the modulations are congruent, but the effects of

incongruence observed for 7 Hz stimuli are cognitive-level

confusion effects that interfere with information accumula-

tion. That effects differ at these two rates may not be surpris-

ing; for instance, previous studies of audiovisual interactions

in speech have suggested that perceptual binding of audio

and visual stimuli may be weak for temporal modulation

rates above approximately 7 Hz (Chandrasekaran et al.,
2009). The 6–7 Hz rates used in the present experiment may

straddle some critical rate below which task performance is

dictated by perceptual-level binding, and above which per-

formance is dictated by other mechanisms. We note that our

findings hinting at rate-specific effects are at odds with the

previous Fish Police! experiments, in which no rate effects

were found. The differences between the previous results

and the current set of results may be due to some combina-

tion of the different stimulus rates used in each experiment

(6 and 7 Hz in the current study, vs 6 and 8 Hz in the previ-

ous studies) and the different trial blocking employed in

each experiment (congruent, incongruent, and unmodulated

trials were intermingled, in random order, in the current

experiment, compared to having the three conditions in sepa-

rate blocks of trials in Sun et al., 2016). Taken together,

these results point to a need for additional experiments to

examine interactions between cross-modal temporal modula-

tions and the rates at which they occur. We obtained sensible

and easily interpretable results using a “standard” seven-

parameter DDM. Still, alternative formulations of the DDM

may provide further insights into the strategies participants

use when they are successfully able to resolve incongruence

across auditory and visual modalities. For example, versions

of the DDM have been developed to explicitly deal with

“conflict” tasks (White et al., 2011; Ulrich et al., 2015). It is

also possible to model time pressures, such as those imposed

on each trial within the game in the present study, explicitly

within the DDM framework. This can be done by making

decision boundaries dependent on time, and by collapsing

the distance between the two boundaries as time increases

(Milosavljevic et al., 2010). These more complex models

can account for time-varying changes in evidence available

to the participant, or multiple-stage decisional models in

which a decision is made once some subset of the available

evidence has been selected. The downside to fitting time-

varying DDMs is that the readily available software pack-

ages for fitting standard DDMs (e.g., HDDM) must be modi-

fied extensively to be adapted for that purpose. Furthermore,

more complex models may not offer additional insights into

the data that are not available with a simpler model; for

example, DDM models in which boundaries are allowed to

collapse do not always fit the data better than a “simple”

DDM without time varying parameters (Milosavljevic et al.,
2010).

Finally, although sequential sampling models provide

additional insights into decision making relative to indepen-

dent analyses of performance and RT, the models cannot

directly identify changes in decision-making processes that

occur at the perceptual level vs those that are more cognitive

in nature. In other words, fitting model parameters to behav-

ioral data alone cannot distinguish between cross-modal inter-

actions that occur at sites associated with sensory-level cross-

modal processing (e.g., in superior colliculus; Meredith and

Stein, 1986; Meredith et al., 1987) or those that occur in brain

areas more directly associated with cognition and decision

making (e.g., prefrontal cortex; Euston et al., 2012). When

using DDM or similar models, such distinctions can be drawn

in humans with the aid of functional neuroimaging techniques

such as fMRI or MEG/EEG. Sequential sampling models and

their central theme of modeling information accumulation can

be easily related to work seeking to identify candidates of

information accumulation sites for audiovisual tasks in the

brain (Noppeney et al., 2010). Additionally, some recent stud-

ies have utilized regression methods to relate parameters from

sequential sampling models to EEG (Cavanagh et al., 2011)

and local field potential (Herz et al., 2016) data. Using similar

techniques on behavioral and neural data from audiovisual

tasks may be a particularly useful method for identifying the

neural loci and time courses of various types of audiovisual

interactions, including the temporal modulations utilized in

the present experiment.

C. Conclusions

Audio-visual interactions for temporal modulations are

bi-directional and obligatory; observers are affected by tem-

poral fluctuations in a task-irrelevant sensory input even

when they know that input will be uninformative. Although

bi-directional, the influence of auditory information on

visual judgments is larger than the influence of visual infor-

mation on auditory judgments. When data were entered into

a DDM, the main difference between congruent and incon-

gruent auditory and visual temporal modulations emerges as

differences in drift rate, which corresponds to quality of

stimulus evidence available to the observer. Future studies

should aim to resolve whether audiovisual interactions
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involving temporal modulations arise because of neural

mechanisms at early sensory integration sites, or in brain

regions more closely associated with cognitive processing

and information accumulation.
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