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Abstract—Recent findings indicate that brain interfaces have
the potential to enable attention-guided auditory scene analysis
and manipulation in applications such as hearing aids and aug-
mented/virtual environments. Specifically, noninvasively acquired
electroencephalography (EEG) signals have been demonstrated
to carry some evidence regarding which of multiple synchronous
speech waveforms the subject attends to. In this paper we demon-
strate that: (1) using data- and model-driven cross-correlation
features yield competitive binary auditory attention classification
results with at most 20 seconds of EEG from 16 channels or even
a single well-positioned channel; (2) a model calibrated using
equal-energy speech waveforms competing for attention could
perform well on estimating attention in closed-loop unbalanced-
energy speech waveform situations, where the speech amplitudes
are modulated by the estimated attention posterior probability
distribution; (3) such a model would perform even better if it
is corrected (linearly, in this instance) based on EEG evidence
dependency on speech weights in the mixture; (4) calibrating
a model based on population EEG could result in acceptable
performance for new individuals/users; therefore EEG-based
auditory attention classifiers may generalize across individuals,
leading to reduced or eliminated calibration time and effort.

Index Terms—EEG, auditory attention detection, brain in-
terface

I. INTRODUCTION

MOST listeners solve the cocktail party problem (CPP)
of attending to one sound in the presence of competing

sounds with ease [1], [2]. Healthy adult listeners achieve this
by selectively attending to discriminating auditory features of
the desired source, such as spectral profile, harmonicity, spatial
position, and temporal modulation, in order to differentiate it
from other sources in the auditory scene [3], [4], [5], [6].
Listeners with hearing loss have difficulty focusing selective
attention [7], leading to a need for hearing aids to assist
with communication settings that may exhibit the CPP. Recent
research findings indicate that neural activity reveals auditory
cortical mechanisms of selective attention in the CPP using
spatial [8], [9], [10], [11], and spectral or pitch [12] cues of
sound sources. (For more information, please see reviews on
this topic [13]).

Cortical responses have been shown to entrain to the
temporal envelope of attended speech [14], [15], [16]. These
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effects can be seen in non-invasive magnetoencephalog-
raphy (MEG) [17], [18], [19] and electroencephalography
(EEG) [15], as well as during invasive electrocorticography
(ECoG) [20]. These observations have lead to efforts to use
recorded cortical measurements to reconstruct an attended
speech stimulus [21]. Recent studies have quantified the
quality of speech reconstructed from such recordings, and
have explored how the temporal properties of cortical re-
sponses track those of both attended and unattended speech
signals [22], [23], [24], [25], [26].

Differences in cortical responses to attended versus unat-
tended sound sources can be used to develop algorithms that
determine what source a listener is attending in the CPP. For
example, using EEG [22], [23], MEG [24], or ECoG [25],
a stimulus reconstructed from cortical recordings correlates
more strongly with an attended source versus an unattended
source. Other approaches for categorizing auditory attention
during the CPP have also been proposed and tested. In [27], a
biophysically inspired state space model that tracked auditory
sources using 160 MEG neural measurements was able to
categorize attentional focus within the order of a few seconds.
In [28], three types of discriminant features were used to
train and test a linear classifier that aims to identify attended
and unattended sound sources using EEG. They achieved high
classification accuracy using 20 seconds of 128-channel EEG
data.

Previously, we achieved successful classification of at-
tended versus unattended speech in a two-speaker scenario
using 60 seconds of single-channel EEG [29] and 20 sec-
onds [30] of 16-channel EEG measurements. In that earlier
study, we had also tested the idea of attention-estimate-based
modulation of source amplitudes in order to assess the possi-
bility of closed-loop auditory scene modulation and estimation
of attention. The introduced system performed well in real-
time testing, using 20 seconds of data for inference [30].

In this study, we extend our previously introduced EEG-
assisted sound source modulation framework in two novel
ways: (1) a recursive maximum a posteriori (MAP, i.e.,
Bayesian with unit cost for errors, zero cost for correct
decisions) auditory attention inference procedure based on a
generative signal model relating sound envelopes to EEG; in
contrast, the previous model used MAP inference with class
conditional likelihoods of EEG/envelope cross-correlation se-
quence based features. (2) a probabilistic model for recursive
MAP auditory attention inference extended with temporal dy-
namics of attention in a given context, as well as the impact of
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sound source powers on attention. These augmentations make
the model more appropriate for auditory attention tracking in a
closed-loop system where (estimated) source amplitudes may
be modulated.

The new signal-modeling approach did not change perfor-
mance significantly in test cases where conditions were similar
to calibration conditions, but when the auditory scene deviated
from calibration conditions, the model based approach allowed
us to employ a corrective action that resulted in improved
performance. The model based approach also achieved com-
petitive accuracy with a feature vector of lower dimension-
ality. In addition, the performance of individual-specific and
population-based calibration of attention inference models are
compared using both cross-correlation and signal-modeling
based feature extraction approaches; the results demonstrate
that while individual-specific calibration outperforms, subject-
to-subject transfer of models is viable and future model can
exploit this observation by using hierarchical models of EEG
(sessions < individuals < population) to achieve transfer
learning benefits towards reduced calibration effort.

II. PARTICIPANTS AND DATA ACQUISITION

A. EEG Acquisition and Preprocessing

Ten volunteers (5 male, 5 female), between the ages of
25 to 30 years, with no known history of hearing impairment
or neurological problems participated in this study, which
followed a Northeastern IRB-approved protocol. EEG signals
were recorded using a g.USBamp biosignal amplifier using
active g.Butterfly electrodes with cap application from g.Tec
(Graz, Austria) at 256 Hz. Sixteen EEG channels (P1, PZ,
P2, CP1, CPZ, CP2, CZ, C3, C4, T7, T8, FC3, FC4, F3,
F4 and FZ according to International 10/10 System) were
selected to capture auditory related brain activities over the
scalp. Signals were filtered by built-in analog bandpass ([0.5,
60] Hz) and notch (60Hz) filters. The acoustic envelope of
speech stimulus signals were calculated using the Hilbert
transform and then both EEG brain activity measurements
and speech envelopes were filtered by a linear-phase bandpass
filter ([1.5, 10]Hz). Then, tx seconds of EEG and acoustic
envelope signals following every stimulus and time locked to
the stimulus onset were extracted. This dataset has been used
in our previous work using a different analysis approach [30].

B. Experimental Paradigm

The experimental paradigm is summarized in Figure 1.
Each subject completed one calibration session and one online
session. Calibration sessions were approximately 30 minutes
and they consisted of 60 trials of 20-second-long stimulus
presentations separated by 4-second-long rest periods. In each
trial, two speech waveforms were presented simultaneously
and diotically (both sounds playing in both ears) as auditory
stimuli through earphones. Speech waveforms were selected
from audio books of literary novels. One male and one female
speaker narrated their stories in each trial for all sessions.
The session was divided into two subsessions of 30 trials.
In each subsession, subjects were instructed to direct their

attention to one of the speakers. For example, if one subject
was requested to direct his/her attention to the male speaker in
the first subsession, the attention was on the female speaker in
the second subsession. The order of the attended speaker was
randomized across subjects. The target speaker was indicated
to the subjects by displaying the letters F or M on a monitor
during each trial. In all speech waveforms, silent portions
longer than 0.2 second were truncated to be 0.2 second long.
The amplitude of each speech waveform was scaled to yield
equal energy in calibration trials.

The online session consisted of 10 sequences that were
each 2 minutes long. Each sequence contained 6 trials that
were each 20 seconds long; the speech waveform energies
were normalized such that each trial had equal energy for both
speakers. Before each sequence, by displaying the letter F or M
on the monitor, subjects were asked to attend to the designated
target speech waveform for that sequence. In each sequence,
the speech mixture weights were initialized to be equal (0.5
vs 0.5), and they were updated 5 times (after each 20-second-
long segment like the calibration trials) during 0.5-second-long
pauses in which inference calculations were carried out.

(a)

Figure 1. Experimental paradigm visualization: [First Row] Calibration
[Second Row] Online (quasi-real-time) sessions. Direction of the arrows
indicate the designated attended speaker.

III. PROPOSED METHOD

A. System Framework Overview

The overarching BCI framework used in this work was
previously introduced [30], and it consists of three main
modules: Digital Signal Processing (DSP), Automatic Gain
Control (AGC), and Auditory Attention Inference. The system
takes a mixture of sounds from the auditory environment as the
input, modifies the power of each source sound, and produces
a new mixture as the output. In anticipated applications, such
as hearing aids or augmented/virtual reality, the output of
this system would be delivered to the user’s ear, closing
the loop in online scenarios. The DSP module estimates
individual/independent sound sources from the mixture of
sounds in the environment (which could involve blind source
separation or adaptive interference cancellation in a realistic
setting). In this work, we assume that we have the estimated
sources which are the outputs of the DSP system based on
blind source separation.
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Figure 2. EEG-based Auditory Scene Modulation

Auditory Attention Inference System estimates the prob-
ability of attention on each specific sound source using EEG
measurements and estimated sound sources. Gain Controller
system takes the estimated probabilities from the Attention
Inference system to modify gains of power of each specific
sound. As we also emphasize in the introduction of this
manuscript, we extend the probabilistic framework for the
Attention Inference module in this manuscript. The details
of the extended Attention Inference and AGC modules are
provided in the following section.

B. Auditory Attention Inference and AGC Modules

We employ the graphical model presented in Figure 3
to built the Auditory Attention Inference module. In this
graphical model, An represents the unknown attention of the
subject during the nth trial; c is the contextual prior defined
over the subject’s attention; εn is the EEG evidence obtained
in response to the attended source during the nth trial; and
wn is the weight vector that modulates the sound sources.

The graph illustrated in Figure 3 extends the previous
model presented in earlier work [30]. The previous model
assumed that the unknown attention of the subject was the
only factor that affected the EEG evidence and the attention
of the subject only depended on a contextual prior. The current
model relaxes this assumption to include the dependency of
attention An to attention at the previous trial An−1, and the
weights that modulate the sound sources during the nth trial,
wn. As the weights modulating different sound sources will be
different, this difference may affect the attention of a subject;
therefore, we think that this extension in the graphical model
is essential to account for the effect of modulation in intent
inference.

AnAn−1 wn+1

wn εn

c

Figure 3. Proposed graphical model.

Using the graphical model presented in Figure 3, for each
trial the conditional posterior distribution for the attention of
the subject, An conditioned on the EEG evidence εn, prior
attention An−1, and modulation weights wn can be computed:
p(An|An−1, εn,wn, c). Under certain Independence assump-
tions, this posterior simplifies to

p(An|An−1, εn,wn, c) ∝

p(εn|An)p(An|wn)p(An|An−1, c)/p(An)
(1)

where

• P (εn|An) is the conditional distribution of the EEG
evidence conditioned on the attended sound source. This
conditional distribution is calculated based on EEG ev-
idence features extracted and learned for each sound
source (class) as explained in Section III-D.

• P (An|wn) is the conditional distribution of the attention
conditioned on the weights that modulate the sound
sources. In the decision framework, this conditional prob-
ability models how the relative power of each sound
source influences the probability of attending to that spe-
cific source. In Section IV-C, we describe how we develop
an approximate model for this conditional distribution.

• P (An|An−1, c) is the conditional distribution of the
attention in the nth trial conditioned on the attention on
the previous trial and context prior. Based on context,
transition of the attention from one state to another can
be prompt or slow. In our experiments, we assume that
this conditional distribution is uniform due to the lack of
any contextual evidence.

• P (An) is the prior distribution on the attention of a
subject during the nth trial. In our experiments, since
the trials are independent from each other, we assume a
uniform prior over the attention during each trial.

Next we use the posterior distribution computed in (1) to
calculate the weights for the (n + 1)th trial, wn+1, that are
used by the AGC module to modulate the sound sources. More
specifically, lets assume that Sn = (s1,n, ..., si,n, ..., sM,n) is
a matrix containing original sound sources presented during
the nth trial such that each column corresponds to a different
sound source with M as the number of sounds sources. Denote
Ŝn = (ŝ1,n, ..., ŝi,n, ..., ŝM,n) as the matrix containing the es-
timated sound sources that is obtained for example after blind
source separation. Moreover, wn = (w1,n, ..., wi,n, ..., wM,n)

ᵀ

is the vector of gain control weights with wi,n as the gain
of the ith estimated sound source; and en is the vector of
EEG measurements which is collected during the nth trial.
Note that according to this notation, An = i indicates that
the attention is on the ith sound source. Initially, the system
presents all sound sources with equal weights, but as en is
observed and EEG evidence, εn is extracted based on en and
Ŝn, the posterior distribution of the attention is updated with
the observed EEG evidence and the AGC module updates the
weights of the sound sources as a function of this updated
posterior distribution. We assume that the updated weight, in
general, is a function of past and present weights and attention
posterior distributions.
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Since, in this paper, we do not focus on developing
strategies for how weights should be controlled, as in previous
work [30], the experiments below specifically use weights that
are instantaneously obtained by applying a saturating linear
function to the current attention posterior distribution.

wn+1 ∝ p(An|An−1, εn,wn, c), (2)

with a limitation factor on wn+1,

wi,n+1 =

{
wmax if p(An = i|An−1, εn,wn, c) ≥ wmax

wmin if p(An = i|An−1, εn,wn, c) ≤ wmin

These limitations on weight range were imposed to ensure
the audibility of all sources, to enable mistake correction in
the event of algorithm/human errors, and to allow shifting
attention if desired.

C. Signal Modeling for Feature Extraction

We propose to use a signal model that assumes EEG is a
function of the estimated sound sources. This model is inspired
by previous results that indicated there is high correlation
between EEG and envelopes of the (attended and unattended)
sounds sources at various time lags [30]. Specifically, EEG
measurements were correlated with both attended and unat-
tended speech envelopes. Correlation patterns were similar
except that the correlation between the EEG and unattended
source was delayed and had a lower amplitude compared to
the correlation between the EEG and attended source. Based
on these observations, we suggest the following signal model:

en(t) = wi,nŝi,n∗hi+,n(t)+
∑
j 6=a

wj,nŝj,n∗hj−,n(t) + n(t) (3)

where sound source index i is attended to, while others
j 6= i are unattended, hj−,n(t) is the impulse response function
for unattended sound source with index j and hi+,n(t) is
the impulse response function for the attended source. As
defined previously, ŝi,n is the estimated speech envelope of
the attended source and ŝj,n is that of unattended source j.
Finally, we assume that n(t) is (temporally) white Gaussian
noise with zero mean and covariance E(nnT ) = σ2I .

D. Feature Extraction and Classification

This section describes how to extract EEG evidence, ε
using the proposed signal model and EEG calibration data.
Specifically, here we discuss how to learn the class/sound-
source conditional EEG evidence distribution, P (εn|An),
which is used by the Auditory Attention Inference module to
compute the posterior distribution of the attention as described
in (1). Assuming that there are N sources, first, using leave-
one-out cross validation over the calibration data, we learn the
impulse responses ĥi = [h1

−, ..,h
i
+, ...,h

j
−, ...,h

N
− ] through

least-square estimation, assuming that the ith source is the
attended or target and the others j 6= i are the unattended
or distractors. For a two speaker scenario, ĥ1 = [h1

+,h
2
−]

and ĥ2 = [h1
−,h

2
+] are estimated assuming that speaker-

1 and speaker-2 are the attended sources, respectively. The

details of the estimation are given in Appendix A. These
impulse response functions are then used in (3) to estimate
the EEG, and the correlation coefficient between measured
(and preprocessed/filtered) EEG and estimated EEG (from
the signal model assuming ith source being target, ĥi) are
calculated for each EEG channel. Accordingly, in a two
speakers scenario, we defined xch = [ρech,êch

A=1
, ρech,êch

A=2
]ᵀ

as a 2× 1 dimensional vector for each channel with ρech,êch
A=i

for i = 1, 2 as the correlation between the estimated and raw
EEGs when the ith source is the attended source. Assuming
that the number of the EEG channels is Nc, final feature
vector for each trial, x = (x1, ..., xch, ..., xNc)ᵀ is a 32 × 1
dimensional vector resulting from concatenation of all the
features of all EEG channels.

Once the feature vector is extracted for each trial, for
dimensionality reduction, we use the regularized discriminant
analysis (RDA). The RDA defines a quadratic projection of
high dimensional features to a one-dimensional evidence.
Assuming that there are only two sound sources, if the
distributions of the features for both classes (EEG features
corresponding to the attended and unattended sound sources)
were Gaussians, then this projection would be the result of
log-likelihood ratio which optimizes the Bayesian Risk. For
each EEG feature vector, we denote the RDA projections as
sRDA(x), and use these projected values as the EEG evidence,
ε. The details of the RDA projection is provided in our previ-
ous work [30]. Once the EEG evidence is extracted for class
i; that is when the ith sound source is the target (i.e., A = i),
using kernel density estimation we learn p(ε = ε|A = i). We
use a Gaussian kernel the bandwidth of which is estimated
using Silverman’s rule of thumb.

IV. EXPERIMENTAL RESULTS

All analyses are performed on data from calibration
(source energies equal in each trial) and online (source en-
ergies in each trial are modulated based on attention in-
ference) sessions. The calibration session data will also be
referred to as the equal-energy/weight dataset (DT1); and the
online session data as the modulated-energy/weight dataset
(DT2). Within equal-energy or modulated-energy datasets, 5-
fold cross-validation is employed to estimate classification
performance, which is quantified using area-under-ROC-curve
(AUC). Classification performance using AUC by calibrating
(training) with the equal-energy dataset and testing on the
modulated-energy dataset is also analyzed. In all analyses both
cross-correlation (CC) and signal model (SM) based features
are used. For both CC and SM features, parameters for the
extraction method are optimized as explained in Appendix B.

A. Single-Channel Classifier is Competitive with the 16-
Channel Classifier.

Using the selected order of h, SM feature vector xch

is formed as described in Section III-D. Using these EEG-
channel-specific features individually, attended source posteri-
ors are evaluated. Figure 4 (a) shows the median 5-fold cross-
validation AUC (across 10 participants) for each EEG channel
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Figure 4. Topographic map of classification performance over the scalp
for classifying attended versus unattended speakers, median values over all
participants. (a). cross-validation on dataset-1 or equal weights dataset using
SM and CC features. (b). model trained using dataset-1 and validated on
dataset-2 or variable weights dataset for SM and CC features.

in the form of a topographical map in equal-energy dataset
(dataset 1). Figure 4 (b) shows the median AUC resulting from
learning the model using the equal-energy dataset (dataset 1)
and test it on the modulated-energy dataset (dataset 2).

To complement these channel-specific results, Table I
shows the 5-fold cross-validation AUC for CC and SM features
on equal-energy dataset (DT1) when using the best channel
and when using all 16 channels. This table indicates that
while best scalp locations for EEG acquisition may be subject
specific, a small number of well-positioned electrodes can
be competitive with respect to many channels, and this is a
significant practical consideration to be explored further.

Table I
AUC FOR CLASSIFICATION USING SINGLE BEST CHANNEL VERSUS ALL 16

CHANNELS FOR EACH SUBJECT.

Participant Best (CC) All (CC) Best (SM) All (SM)
1 Fz: 0.94 0.92 F3: 0.92 0.93
2 C3: 0.93 0.89 C3: 0.92 0.91
3 C4: 0.99 0.97 C4: 0.99 0.97
4 Fc3: 0.87 0.87 Fc4: 0.81 0.92
5 F4: 0.88 0.93 C4: 0.71 0.64
6 T7: 0.92 0.88 Cz: 0.88 0.87
7 C3: 0.84 0.84 T7: 0.82 0.84
8 C4: 0.90 0.88 F4: 0.88 0.92
9 CPz: 0.95 0.94 F4: 0.94 0.93
10 C3: 0.89 0.84 C3: 0.82 0.93

B. AUC Improves with Increasing Trial Length

Different lengths of EEG is used to infer the attended
speech source by varying the length of EEG used from 2
seconds to 20 seconds. Figure 5 shows the median classifier
AUC (across 10 participants) when using all 16 channels, with
both CC and SM features; shaded areas are 90% confidence
intervals. As expected, accuracy increases when longer EEG
evidence windows (more samples) are used for inference.

Figure 5. Attended speech classifier AUC increases with trial length using
both CC and SM features, according to 5-fold cross-validation in both (top)
equal- and (middle) modulated-energy datasets, as well as (bottom) when
calibrating with equal-energy trials and testing on modulated-energy trials.
Median curves and 90% confidence intervals are shown.

C. Compensating for Sound Source Power Variation Improves
Classification Accuracy

The assumption that EEG-evidence statistics are invariant
under changing relative power of input sources is not realistic.
In calibration, energy of both speech sources were kept equal
in each trial. However, in online sequences where source am-
plitudes are modulated based on attention inference posterior,
the relative energies of sources deviate from being equal in
each trial. Testing a classifier calibrated with equal-energy
dataset on online dataset when trial energy is modulated by
weights controlled by inference posteriors, the EEG feature
distribution drifts away from the calibration model and as
expected results in a performance drop. One could design a
calibration session that explores various source energy levels
in trials to sample this parameter space sufficiently, but in
practice this may lead to prohibitively long calibration sessions
and will be undesired. A model based approach would enable
corrections for these effects to be incorporated into feature
extraction, therefore calibration procedures can be reasonable
in terms of time and effort requirements, while performance
in online use can be maintained.

Figure 6 shows, with data pooled from the online
(modulated-energy) datasets of the population of 10 partici-
pants, the probability of attending to male or female speakers
as estimated by the classifier (using SM or CC features)
versus the modulation weight for the corresponding trial.
The average of these probabilities in weight-bins, along with
the best line fits indicate that there is a dependency of the
classifier estimates of attention probabilities on source energy.
Considering this effect of modulation weights on classifier
assessment of EEG is expected to improve performance.

As a simple first-order approximation, using p(An =
i|wn) = awi,n + b derived from the linear least squares fits
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Figure 6. For SM (top) and CC (bottom) features, the (estimated) probability
of attending to the male speaker (left) versus the female speaker (right) versus
modulation weight of the respective speaker in each trial, presented as a
(green) scatter plot. The concentration of weights at 0.25, 0.5, and 0.75 are
due to initial weights being equal at 0.5 and lower and upper bounds of the
weights being set to wmin = 0.25 and wmax = 0.75, respectively. The
(blue) stars indicate average probabilities in one of eleven weight intervals,
while the (red) lines indicate best linear least square fits to these averages.

indicated above, the dependence of attention on source weights
is approximately corrected in this preliminary study using
p(εn|An)p(An|wn). Clearly, this is not a proper posterior,
since the likelihood of attention given weight is not a proper
probability distribution function; further modeling effort must
be put into this component in the future. With this simplistic
corrective action, classification AUC improves in a statistically
significant fashion, as demonstrated in Figure 7.

D. Population Classifier is Competitive with Individual-
Specific Classifiers.

Subject to subject generalization of classification accuracy
is a desirable feature in brain interfaces, as it would allow
pooling data from multiple users and calibrating a population
classifier, or using such a population model as the prior
for an individual classifier, in order to eliminate or reduce
calibration time for a new user. Using leave-one-subject-out
cross-validation scheme, the performance of a population clas-
sifier is tested. Training the classifier using calibration (equal-
energy) data from all subjects but one, and evaluating the
equal-energy data from the left-out subject reveals that such
subject to subject generalization is feasible. Validation AUCs
of population classifiers obtained by leaving each subject out
during calibration are reported in Table II. In contrast, as
an estimate of individual-specific classifier performance, 5-
fold cross-validation AUCs for classifiers calibrated on equal-
weight datasets for each participant are evaluated and in-
cluded in the table. The process is repeated with SM and
CC features for comparison. While we acknowledge that this
process focused only on equal-weight calibration datasets,
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Figure 7. AUC and 90% confidence intervals with/without considering the
linear approximate p(An|wn) correction for both SM and CC features. The
numbers above the two bars for each subject indicate the p-value for the
null hypothesis that the AUC after correction is less than or equal to the AUC
before correction. For SM features, the linear corrective term improves AUC in
a statistically significant fashion for almost all subjects, while for CC features,
this is not the case. This result indicates that the signal model based approach
may be improved further and generalize with appropriate corrective terms
superimposed on calibration models with limited source energy variability.

Table II
PERFORMANCE (AUCS) OF THE POPULATION CLASSIFIER VERSUS

INDIVIDUAL CLASSIFIER ON EQUAL WEIGHTS DATASET (DATASET-1).

AUC Participant 1 2 3 4 5 6 7 8 9 10

Population classifier (SM) 0.86 0.78 0.97 0.85 0.72 0.84 0.78 0.86 0.68 0.81

Individual classifier (SM) 0.93 0.91 0.97 0.92 0.64 0.87 0.84 0.92 0.93 0.93

Population classifier (CC) 0.93 0.94 0.95 0.88 0.85 0.85 0.87 0.89 0.86 0.90

Individual classifier (CC) 0.92 0.89 0.97 0.87 0.93 0.88 0.84 0.88 0.94 0.84

these results could be considered as an upper bound of
performance expectations when models are calibrated on equal
energy trials and tested online with modulated-energy trials,
based on previously discussed results. Qualitatively, the results
indicate that population data is representative of individual
data, and a hierarchical model that considers the individual
as an instance of the population could lead to a calibration
procedure that allows effective evidence pooling from multiple
users to reduce calibration time or improve calibration quality
for a particular individual.

V. CONCLUSION

EEG has been demonstrated to exhibit useful evidence
regarding auditory attention in the presence of multiple com-
peting speech waveforms. A data-driven cross-correlation fea-
ture and a signal model based feature is considered in two
scenarios. The results demonstrate that dense electrode arrays
as used in previous reports are not necessary; competitive
binary auditory attention classification results with at most 20
seconds of EEG from 16 channels, or even a single well-
positioned channel can be obtained. It is also shown that a
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model calibrated using equal-energy speech waveforms can
perform well in closed-loop unbalanced-energy speech wave-
form conditions, where the speech amplitudes are modulated
by the estimated attention posterior probability distribution.
Further analysis demonstrate that such a model would perform
even better if it is corrected (in this case, linearly) to account
for EEG evidence dependency on speech weights in mixture.
Finally, results indicate that calibrating a model based on
population EEG could result in acceptable performance for
new individuals/users; more interestingly, population data can
be pooled to form a prior model for individual classifiers,
thereby reducing calibration time significantly for new users.
The results presented in this paper contribute to the field of
auditory-attention driven manipulation of auditory scenes in
hearing aid and virtual/augmented reality applications.

APPENDIX A
SIGNAL MODEL DERIVATIONS

In this appendix we demonstrate the estimation method for
the model parameter h as defined in equation (3). Define L as
the order of auto-regressive signal model, N as the number of
time samples in each trial (both for sound source envelopes
and EEG signal), e as EEG time samples, and s1 and s2 as
the sound sources envelope time samples for source 1 and 2
respectively. Then according to our model we can define,
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Then, the model at nth trial is en = Cnh+ nn, where,

Cn =
[
S1
n
T

S2
n
T
]

and h =

[
h1

h2

]
.

Afterward, we define the following optimization problem to
estimate the parameter values at which the sum of squared
estimation error in all trials is minimized.

ĥ = argmin
h

∑
n

‖en − Cnh‖22

The solution to our convex optimization problem is

ĥ =
∑
n

(C>n Cn)
−1 ∑

n

C>n en.

In our model we propose that model parameter values are
dependent on target sound source hence, we solve the above
optimization problem two times to estimate the ĥ: (1) using
trials in which speaker 1 is target (ĥ1) and (2) using trials in
which speaker 2 is target (ĥ2).

APPENDIX B
MODEL ORDER SELECTION

The model order L of our proposed model in Sec-
tion III-C, needs to be optimized for best performance. More-
over, we need to define the optimum time window duration

[0, τmax] for CC features. In this appendix we present the
effect of these parameters on classification performance using
cross validation in Figure 8. We believe that the comparison
of different methods in our manuscript is fair because the
presented results are obtained at optimum values of these
parameters, according to the similar performance gains. More
specifically, we selected the parameter values for which the
average of AUCs over three types of analysis shown in
Figure 8 are maximized.

In Figure 8, red curves show median of cross-validation
performances on dataset-1 over all participants. Shaded areas
around each curve are showing the corresponding standard
error for that curve. Green curves show median of cross-
validation performances on dataset-2 over all participants. And
blue curves are showing the result of applying the learned
model using dataset-1, on dataset-2. Based on the explained

Figure 8. Median of classification performance (AUCs) over participants
versus; (a) impulse response length of the SM model (h length in seconds
or L samples) (b) τmax in seconds for extracting CC features in [0, τmax]
range.

criteria, impulse response length is set to 0.125 seconds
(L = 32) and τmax = 0.275 seconds.
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