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How humans solve the cocktail party problem remains unknown.
However, progress has been made recently thanks to the realization
that cortical activity tracks the amplitude envelope of speech. This
has led to the development of regression methods for studying the
neurophysiology of continuous speech. One such method, known as
stimulus-reconstruction, has been successfully utilized with cortical
surface recordings and magnetoencephalography (MEG). However,
the former is invasive and gives a relatively restricted view of pro-
cessing along the auditory hierarchy, whereas the latter is expensive
and rare. Thus it would be extremely useful for research in many
populations if stimulus-reconstruction was effective using electroen-
cephalography (EEG), a widely available and inexpensive technology.
Here we show that single-trial (≈60 s) unaveraged EEG data can be
decoded to determine attentional selection in a naturalistic multi-
speaker environment. Furthermore, we show a significant correlation
between our EEG-based measure of attention and performance on a
high-level attention task. In addition, by attempting to decode atten-
tion at individual latencies, we identify neural processing at ∼200
ms as being critical for solving the cocktail party problem. These
findings open up new avenues for studying the ongoing dynamics of
cognition using EEG and for developing effective and natural brain–
computer interfaces.

Keywords: attention, BCI, cocktail party, EEG, speech, stimulus-
reconstruction

Introduction

Since its first behavioral description (Cherry 1953), researchers
have sought to identify the neural underpinnings of the cock-
tail party problem; that is, our ability to easily attend to one
speaker in a multispeaker environment. Recent research in this
area has focused on changes in cortical activity that track the
dynamic changes in the speech stimulus (Kerlin et al. 2010;
Ding and Simon 2012a; Koskinen et al. 2012; Mesgarani and
Chang 2012; Power et al. 2012; Zion Golumbic et al. 2013). For
example, by assuming a forward mapping from the amplitude
envelope of speech to EEG, it has been shown to be possible
to derive separate linear impulse response measures to each of
2 concurrent speech streams, and that directing attention to
one of these streams produces modulations of these impulse
responses over the left hemisphere at a latency of ∼200 ms
(Power et al. 2012). While these effects suggest that selective
attention operates at the level of semantic processing, they are
only discernible after averaging over many trials and subjects,

a lack of sensitivity that is not atypical of EEG-based cognitive
neuroscience studies.

Several recent studies have used recorded cortical popu-
lation data to estimate the input stimulus using a mapping ap-
proach in the reverse direction (i.e., from the neural data back
to the stimulus) (Rieke et al. 1995; Stanley et al. 1999; Mesgara-
ni et al. 2009; Pasley et al. 2012; Zion Golumbic et al. 2013).
This stimulus-reconstruction approach has been shown to be
exquisitely sensitive to selective attention in a multispeaker
environment (Ding and Simon 2012a, 2012b; Zion Golumbic
et al. 2013). For example, one such study showed that recon-
structed speech spectrograms from cortical surface responses
to a mixture of speakers were dominated by the salient spectral
and temporal features of the attended speaker, and were only
weakly correlated with the unattended speaker (Mesgarani
and Chang 2012). While this is an important insight into how
the cortical representation of speech gives rise to a perception rel-
evant for the listener’s intended goal, invasive recording is only
possible with human listeners undergoing clinical treatments, and
as such is not suitable for many populations in which we would
like to study selective attention to speech. Furthermore, the rela-
tively local nature of surface recordings may not be optimal for as-
sessing how attentional selection to speech operates along the
entire auditory processing hierarchy (Power et al. 2012).

Using magnetoencephalography (MEG), which is a more
global measure of cortical activity, Ding and Simon (2012a)
showed that responses to a single-trial speech mixture could be
decoded to give an estimate of the envelope of the input speech
stream, and that this estimate typically had a greater correlation
with the attended speech than the unattended. While this is a
powerful and important result, the cost, lack of portability, and
relative rarity of MEG recording facilities make population-
specific research somewhat difficult. Thus, it would be extre-
mely useful if such a decoding approach could be used with
EEG data. This technology is cheaper, more widely accessible,
easier to use in many specific cohorts, and can be integrated
into everyday devices, making it a realistic option for brain–
computer interface (BCI) applications. In addition, EEG is sensi-
tive to both tangential and radial components of cortical current
sources, while MEG is sensitive only to tangential components.
This suggests that EEG may be sensitive to important aspects
of electromagnetic brain activity that may not be well captured
by MEG. For example, EEG exhibits many attention-related
components that are not clearly detected with MEG (Näätänen
1992; Kahkonen et al. 2001).
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Here we show for the first time that selective attention in a
multispeaker environment can be decoded using unaveraged
single-trial EEG. Moreover, we show that the strength of the
attended speech representation in the EEG is correlated with
subjects’ performance on a high-level cocktail party task.

Materials and Methods

Participants
Forty human subjects took part (mean ± standard deviation (SD) age,
27.3 ± 3.2 years; 32 male; 7 left-handed). The experiment was under-
taken in accordance with the Declaration of Helsinki. The Ethics Com-
mittees of the Nathan Kline Institute and the School of Psychology at
Trinity College Dublin approved the experimental procedures and
each subject provided written informed consent. Subjects reported no
history of hearing impairment or neurological disorder. These data
have been published previously using a different analysis approach
(Power et al. 2012).

Stimuli and Procedures
Subjects undertook 30 trials, each of ∼1 min in length, where they
were presented with 2 classic works of fiction: one to the left ear, and
the other to the right ear. Each story was read by a different male
speaker. Subjects were divided into 2 groups of 20 with each group in-
structed to attend to the story in either the left or right ear throughout
all 30 trials. After each trial, subjects were required to answer between
4 and 6 multiple-choice questions on both stories. Each question had 4
possible answers. (See Supplementary Fig. 1 for examples of the types
of questions asked). We used a between-subjects design as we wanted
each subject to follow just one story to make the experiment as
natural as possible and because we wished to avoid any repeated
presentation of stimuli. For both stories, each trial began where the
story ended on the previous trial. Stimulus amplitudes in each audio
stream within each trial were normalized to have the same root mean
squared (RMS) intensity. In order to minimize the possibility of the
unattended stream capturing the subjects’ attention during silent
periods in the attended stream, silent gaps exceeding 0.5 s were trun-
cated to 0.5 s in duration. Stimuli were presented using Sennheiser
HD650 headphones and Presentation software from Neurobehavioral
Systems (http://www.neurobs.com). Subjects were instructed to
maintain visual fixation for the duration of each trial on a crosshair
centered on the screen, and to minimize eye blinking and all other
motor activities.

Data Acquisition and Preprocessing
Electroencephalography data were recorded for 34 of the subjects
using 128 electrode positions (17 of these subjects attended to the
speech on the left and the remaining 17 to the right). Data for the
remaining 6 participants were collected using 160 electrode positions
(3 of these subjects attended to the left and the remaining 3 to the
right). These data were then remapped to an equivalent 128 electrode
positions using an interpolated spline function. The data were filtered
over the range 0–134 Hz and digitized at the rate of 512 Hz using a
BioSemi Active Two system. Data were referenced to the average of all
scalp channels.

In order to decrease the processing time required, all EEG data were
downsampled by a factor of 8 to give an equivalent sampling rate of
64 Hz, after applying a zero phase-shift antialiasing filter. The ampli-
tude envelopes of the speech signals were obtained using a Hilbert
transform, and then downsampled to the same sampling rate of 64 Hz
to allow us to relate their dynamics to those of the EEG.

Because envelope frequencies between 2 and 8 Hz are linearly
relatable to the EEG (Pasley et al. 2012; Zion Golumbic et al. 2013),
the EEG data were digitally filtered offline with a band-pass filter
between 2 and 8 Hz, and the speech envelopes were low-pass filtered
below 8 Hz.

Stimulus-Reconstruction
We wished to determine how accurately we could estimate to which of
the 2 speakers each subject was attending based on a single trial (∼60 s)
of EEG data. Our strategy for this was centered on the approach of
stimulus-reconstruction. This approach attempts to reconstruct an esti-
mate of the input stimulus S using recorded neural data R via a linear
reconstruction model g. For a set of N electrodes, we represent the
response of electrode n at time t = 1… T as R(t,n). The reconstruction
model, g(τ, n), is a function that maps R(t,n) to stimulus S(t) as follows:

ŜðtÞ ¼
X
n

X
�

gð�;nÞRðt � �;nÞ ð1Þ

where Ŝ denotes the estimated stimulus. The function g is estimated by
minimizing the mean-squared error between the actual and recon-
structed stimulus

min e ¼
X
t

½SðtÞ � ŜðtÞ�2

Solving this analytically results in calculation of the normalized reverse
correlation (Bialek et al. 1991; Stanley et al. 1999)

g ¼ C�1
RR CRS ð2Þ

where CRR and CRS are the auto-correlation of the EEG data, and the
cross-correlation of the stimulus and EEG data, across all electrodes
and time-lags, respectively,

CRR ¼ RRT

CRS ¼ RST

and R and S are defined as

R ¼

r1ð0Þ r1ð1Þ � � � r1ð�maxÞ � � � r1ðT Þ
..
. ..

. ..
.

0 0 � � � r1ð0Þ � � � r1ðT � �max Þ
..
. ..

. ..
.

rnð0Þ rnð1Þ � � � rnð�maxÞ � � � rnðT Þ
..
. ..

. ..
. ..

.

0 0 rnð�maxÞ rnðT � �maxÞ

2
666666666664

3
777777777775

and

S ¼ ½Sð0Þ Sð1Þ Sð2Þ . . . SðT Þ�

The matrix R is only padded with zeros on the left to ensure causality.
Because of the stochastic nature of the neural responses, the autocorre-
lation of the neural responses CRR is full rank and easily invertible.

In our case, we used all 128 channels of EEG data. Because previous
research indicates that EEG activity reflects the dynamics of the speech
envelope at latencies up to 250 ms poststimulus (Lalor and Foxe 2010),
we initially attempted to maximize the accuracy of our speech recon-
struction using EEG at time-lags τ from 0 to 250 ms poststimulus. As we
calculated a mapping from the neural data back to the stimulus, in
practice we used time-lags from −250 to 0 ms.

For illustrative purposes, if the number of electrodes N = 2, and the
response of electrode 1 at time t = 1… T is defined as r1(t), and the
range of time-lags τ spans from −2 to 0, then

R ¼

r1ð2Þ r2ð2Þ r1ð1Þ r2ð1Þ r1ð0Þ r2ð0Þ
..
. ..

. ..
. ..

. ..
. ..

.

r1ðT Þ r2ðT Þ r1ðT � 1Þ r2ðT � 1Þ r1ðT � 2Þ r2ðT � 2Þ
0 0 r1ðT Þ r2ðT Þ r1ðT � 1Þ r2ðT � 1Þ
0 0 0 0 r1ðT Þ r2ðT Þ

2
666664

3
777775

T

Each decoder g is essentially a multivariate impulse response function
calculated from all 128 electrodes and all time-lags simultaneously.
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Stimulus-reconstruction is therefore performed by convolving this
impulse response with the EEG data.

As there were 2 simultaneous input speech streams (attended and
unattended), we trained 2 decoders for each trial: one where linear-
regression was performed between the EEG data and the attended
stream alone, and another where linear-regression was performed
between the EEG data and the unattended stream alone. We refer to
these as Attended and Unattended decoders, respectively. As each
subject undertook 30 trials, this resulted in 60 decoders for each
subject (30 Attended and 30 Unattended).

For each reconstruction, we evaluated the reconstruction-accuracy
by determining a correlation coefficient (Pearson’s r) between the re-
constructed speech envelope and the actual attended and unattended
speech envelope, which we will refer to as rattended and runattended,
respectively (Fig. 1).

Previous research (Ding and Simon 2012a) has shown that attended
and unattended speech can be extracted separately from neural data, im-
plying that it is not just the case that attended speech is more strongly
represented by the same neural generators. Therefore, in order to ascer-
tain the direction of attention for each subject, we had 2 choices:

1. We could use the Attended decoders in order to estimate which
story the subject was attending to.

2. We could use the Unattended decoders in order to estimate which
story the subject was not attending to.

When using the Attended decoders to reconstruct an estimate of the
input stimulus, we would consider a trial to be correctly decoded if
the reconstruction had a greater correlation with the attended stream
(i.e., if rattended > runattended). Similarly, when using the Unattended
decoders, we would consider a trial to be correctly decoded if the
reconstruction had a greater correlation with the unattended stream
(i.e., if runattended > rattended). The percentage of trials where we
correctly decoded attentional-selection will hereafter be referred to as
decoding-accuracy. We then employed these decoders in 2 different
ways to reconstruct the input speech stream for each trial. We discuss
these 2 approaches in turn.

Decoding Attention
First, we decoded the attention of each subject using the decoders that
were trained on their own data. We refer to this as the Subject-Specific
decoding method. As each decoder g is a 2-dimensional matrix (elec-
trode channels × time-lags) representing a multivariate impulse
resonse function, we can combine decoders from multiple trials by

simply averaging these matrices together. We will refer to the numeri-
cal values of these matrices as the parameters of the decoders. For
training and validation, a leave-one-out cross-validation approach
was used, whereby each trial was decoded using the averaged
parameters of the decoders trained on every other trial
(i.e., 29 min of training data, and 1 min of test data).

Secondly, we were concerned that our Subject-Specific decoding
approach may have been biased as the decoders were trained on data
where subjects were always attending to the same ear, and to the same
speaker. Therefore, for our second approach, we sought to avoid any
such potential bias by adopting a Grand-Average decoding method.
That is, for each subject, we decoded each trial using the averaged par-
ameters of the decoders trained on every other subject and every other
trial (leave-one-out cross-validation). Importantly, as there were 40
subjects in total, this method utilized 20 decoders that were trained on
the opposite ear as the subject being decoded, and only 19 decoders
that were trained on the same ear, thus limiting any potential direction-
of-attention bias.

For both the Subject-Specific and Grand-Average decoding methods,
it is important to clarify that we used the Attended decoders in order to
estimate which story the subject was attending to, and the Unattended
decoders in order to estimate which story the subject was not attending
to.

Reconstruction-Accuracy and Decoding-Accuracy at Individual
Time-Lags
As mentioned above, we trained the decoders on EEG data across a
broad interval of time-lags from 0 to 250 ms simultaneously in an
attempt to optimally reconstruct the input speech envelopes. However,
our previously published analysis of the same data has indicated that
attentional effects on a dichotic cocktail party experiment are most pro-
minent specifically from ∼170 to 250 ms poststimulus (Power et al.
2012). This suggested that we might improve decoding accuracy by
focusing on a more specific interval of time-lags. To investigate this,
we trained decoders on EEG data at individual time-lags, rather than
across a range of time-lags simultaneously.

For illustrative purposes, if the number of electrodes N = 2, and the
response of electrode 1 at time t = 1… T is defined as r1(t), and we
want to calculate a decoder at a time-lag of ∼50 ms poststimulus, then
at a sampling rate of 64 Hz, this equates to a time-lag of 3 samples.
Therefore, the response matrix R becomes:

R ¼

r1ð3Þ r2ð3Þ
r1ð4Þ r2ð4Þ
..
. ..

.

r1ðT Þ r2ðT Þ
0 0
0 0
0 0

2
6666666664

3
7777777775

The decoder g is then calculated in the sameway as before:

g ¼ ½RRT��1RST

where S is the input stimulus envelope.
In our case, we evaluated decoders at time-lags ranging from 0 to 400

ms poststimulus. Therefore, at a sampling rate of 64 Hz, this resulted in
26 individual time-lag decoders separated by intervals of 15.6 ms.

Spatiotemporal Analysis of Decoders
In order to investigate which electrode channels contributed most to
our decoding-accuracy, we examined the average decoder weightings
at each individual time-lag. These individual time-lag decoders can es-
sentially be considered as spatial filters that optimally map the channel
data (at a particular lag) to the stimulus.

Correlation with Behavior
Wewished to determine if there was any correlation between how well
a subject performed at answering questions to the attended story and
how well we could reconstruct the attended stimulus. We hypothesized

Figure 1. Illustration of the decoding strategy. Data from all electrode channels are
decoded simultaneously to give an estimate of the amplitude envelope of the input
speech stream. The correlation between this reconstruction and both the attended and
unattended speech streams is then calculated for each trial.
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that the reconstruction-accuracy would show a correlation with behav-
ioral performance across subjects and across single trials. Initially, we
performed this analysis using reconstructions based on the interval of
time-lags from 0 to 250 ms.

We first assessed the correlation between the percentage of ques-
tions answered correctly for each trial (∼1200 trials in total), and the
rattended obtained for each trial using the Attended decoders. We will
refer to this as our Across Trials Reconstruction-Accuracy Test.

Next, we calculated the mean rattended across trials for each subject,
and the percentage of questions answered correctly in total for each subject.
We refer to this as our Across Subjects Reconstruction-Accuracy Test.

It should be noted that one subject was excluded from these
analyses as the percentage of questions they answered correctly was
almost 3 SDs below the mean (Z =−2.84), while no other subject per-
formed >1.56 SDs below the mean.

Correlation with Behavior at Individual Time-Lags
As with our decoding-accuracy, we wanted to see if the correlations
with behavior were specific to the 170–250 ms range. To do this, we
used the r-values obtained from the decoders trained at individual
time-lags (as described before), and assessed any correlation with be-
havior using the abovementioned tests. Specifically, we looked at
rattended for both the Attended and Unattended decoders.

Effect of Trial Duration
Finally we wanted to see how the duration of the test data affected the
decoding accuracy. To do this, we used the Attended Subject-Specific
decoders with time-lags from 0 to 250 ms, while using progressively
shorter durations of test data from each trial.

Results

Behavioural Results
As reported previously (Power et al. 2012), our behavioral
results clearly showed that subjects were compliant in the task.
On average, subjects correctly answered 80.4 ± 7.3% of ques-
tions on the attended story and 27.1 ± 7.0% on the unattended
story, which was not statistically greater than chance (P = 0.77).
This is in line with previous reports on dichotic listening be-
havior, which show that it is not possible to listen to, and re-
member, 2 concurrent speech streams (Cherry 1953).
Consistent with this, a 2 × 2 ANOVA with factors of story (left
ear/right ear) and attention (attended/unattended) revealed a
significant main effect of attention (F = 1164.13, P < 0.001), no
effect of story (F = 3.08, P = 0.084) and no story × attention
interaction (F = 2.15, P = 0.147). Individual subject perform-
ance is given in Supplementary Figure 2.

Decoding Accuracy
1) Using the Subject-Specific decoding method, 39 of the 40
subjects had a decoding-accuracy significantly above chance,
and 7 subjects had a decoding-accuracy of 100% (mean 89%;
Fig. 2A). For the Unattended decoders, 37 subjects had a
decoding-accuracy significantly above chance, with one subject
being decoded with 100% accuracy (mean 78.9%; Fig. 2A). The
significant level of decoding-accuracy (63.33%) was determined
using a binomial test at the 5% significance level.

2) Using the Grand-Average decoding method, the Attended
decoders yielded a decoding-accuracy significantly greater
than chance for 36 of the 40 subjects, with 100% accuracy for 5
subjects (mean 82%; Fig. 2B). For the Unattended decoders, 32
of the 40 subjects had a decoding-accuracy significantly greater
than chance, with 100% accuracy for one subject (mean 75%;

Fig. 2B). For the Attended decoders, the decoding-accuracy of
the Subject-Specific approach was slightly, but significantly
greater than that of the Grand-Average approach (P = 0.003,
paired t-test). There was no significant difference between the
Subject-Specific and Grand-Average decoding-accuracy for the
Unattended decoders (P = 0.103).

Scatter plots showing rattended and runattended for all subjects
and all trials using the Attended and Unattended decoders for
both the Subject-Specific and Grand-Average decoding methods
are shown in Figure 2C,D, respectively. The plots show that
when using the Attended decoders, rattended is typically greater
than runattended for both the Subject-Specific (median r = 0.054
and −0.005, respectively) and Grand-Average (median r = 0.038
and −0.007, respectively) decoding methods. Conversely, when
using the Unattended decoders, runattended is typically greater
than rattended for both the Subject-Specific (median r = 0.032 and
−0.006, respectively), and Grand-Average decoding methods
(median r = 0.026 and −0.012, respectively).

Reconstruction-Accuracy and Decoding-Accuracy
at Individual Time-Lags
Although using individual time-lags reduced both the
reconstruction-accuracy and the decoding-accuracy achievable,
a clear pattern emerged indicating which time-lags are most
important when determining attentional-selection for both
the Subject-Specific and Grand-Average decoding methods
(Fig. 3A,B). Using the Attended decoders, the reconstruction-
accuracy for the attended speech stream (rattended) was found
to be largest at time-lags between 170 and 250 ms, with a peak
at ∼218 ms. Conversely, runattended was smallest during this
time frame, with a negative peak at ∼203 ms. Consequently,
decoding-accuracy was at a maximum between 170 and 250 ms
for the Attended decoders, with a peak at ∼203 ms (Fig. 3C,D).
A similar pattern emerged for the Unattended decoders, thus
yielding a decoding-accuracy that was also maximal during the
same time-interval (Fig. 3C,D).

As a result of these individual time-lag results, we trained de-
coders using a narrow interval of time-lags from 170 to 250 ms
(instead of the broad 0 to 250-ms-interval used earlier). While,
as expected, the mean reconstruction-accuracy dropped sig-
nificantly for the Subject-Specific and Grand-Average decoding
methods (P = 0.0015 and P = 0.013, respectively; paired t-test),
using these narrower time-lags produced an increase in
decoding-accuracy for all methods. However, this increase was
only significant for the Grand-Average decoding method (At-
tended P = 0.02, Unattended P = 0.004, paired t-test; Table 1).
As was the case with the broader (0 to 250 ms) time interval
used earlier, the Subject-Specific approach led to a small, but
significantly greater decoding-accuracy than the Grand-
Average approach for the Attended decoders (P = 0.0117), with
no difference for the Unattended decoders (P = 0.3139).

Spatiotemporal Analysis of Decoders
Figure 4 shows how the filter weights are distributed across
the scalp for selected individual time-lags. While there is no
obvious spatial pattern at lags of 100 and 150 ms, a clear
pattern is evident at 200 and 250 ms. This pattern includes 2
bilateral foci of stronger weightings over temporal regions,
with the weightings in these regions being inverted for the Un-
attended decoders relative to the Attended decoders. We take
this highly structured pattern of decoder weights to support
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our claim that 200 ms represents an important locus of atten-
tion as opposed to being simply the locus of maximal
decoding-accuracy produced by an exhaustive search across
individual time-lags. This is especially true as the location of
strongest decoder weights is over scalp regions indicative of
auditory cortical activity. In addition, these patterns help to
explain the pattern of reconstruction-accuracy results observed
in Figure 3 (e.g., rattended for the Attended decoder is inverted
relative to rattended for the Unattended decoder—circle symbols
in Fig. 3B).

Correlation with Behaviour
For the Across Trials Reconstruction-Accuracy test, we found a
significant correlation with behavioral performance for both
the Subject-Specific (r = 0.07, P = 0.017) and Grand-Average
decoding methods (r = 0.08, P = 0.005). For the Across Subjects
Reconstruction-Accuracy test, we found a significant corre-
lation for the Grand-Average decoding method (r = 0.32, P =
0.05), but no significant correlation for the Subject-Specific
decoding method (r = 0.12, P = 0.45). It is possible that the dif-
fering results for the Across Subjects (∼40 data points) and
Across Trials (∼1200 data points) tests for the Subject-Specific
decoding method may simply be an issue of statistical power.
However, we suspect that the lack of any correlation in our
Across Subjects test may have been driven by large inter-
subject variations in reconstruction-accuracy (i.e., rattended) that

may be independent of attention. It is almost certain that the
strength at which the speech envelope is represented in the
scalp EEG relates to several subject-specific factors, such as cor-
tical folding, skull thickness, etc. Therefore, it is not unlikely that 2
subjects with similar behavioral performance would differ in their
mean rattended values. With this in mind, we tested the hypothesis
that good behavioral performance follows as a result of a subject
being able to consistently sustain their attentional deployment, and
that this consistency should be measurable in terms of a consistent
difference between the accuracies with which we can reconstruct
the attended and unattended streams (rattended− runattended), no
matter what the absolute reconstruction-accuracy values. That is,
the more consistent (i.e., lower variance) the reconstruction differ-
ences, the better a subject should have done on the questions. We
will refer to this as as our Across Subjects Reconstruction-
Consistency Test. Using this test, we found a significant correlation
for the Attended Subject-Specific decoding method (r =−0.39, P
= 0.01), but no significant correlation for for the Grand-Average
decoding method (r =−0.08, P = 0.62).

Correlation with Behavior at Individual Time-Lags
As with our broad time-lags, we also found correlations with
behavior at individual time-lags (Fig. 5). Correlations for the
Attended decoders are shown in black, and the Unattended de-
coders are shown in gray. Significant correlations (P < 0.05) are
indicated by filled circles. Most of the significant correlations

Figure 2. Decoding-accuracy and reconstruction-accuracy across all trials and all subjects. (A) Decoding-accuracy for the Attended decoders (black), and the Unattended decoders
(gray) using the Subject-Specific decoding method and (B) the Grand-Average decoding method. Subjects are sorted according to the performance of their Attended decoder. The
solid line indicates the classification performance level at which decoding-accuracy is significantly greater than chance (63.33%) based on a binomial test at the 5% significance
level. (C) Across all trials and all subjects, rattended is plotted against runattended for the Attended (black) and Unattended (gray) Subject-Specific decoders. (D) The same information
when using the Grand-Average decoders.
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occur at time-lags from 200 to 250 ms, with some occuring at
lags 100 to 150 ms. Similar patterns can be observed for both
the Across Subjects and Across Trials Reconstruction-Accuracy
tests (both for Subject-Specific and Grand-Average methods)
with the Attended and Unattended decoders producing corre-
lations that are almost perfectly out of phase with one another
and that are maximally different at ∼200–250 ms. This is not
hugely surprising given the inverted spatial patterns observed in

our decoder weightings (Fig. 4). As with the broad interval (0–
250 ms) based analysis, the Across Subjects Reconstruction-Accu-
racy test was not found to be significant for the Subject-Specific
approach, but the same time interval was revealed as important
in the Across Subjects Reconstruction-Consistency Test.

Effect of Trial Duration
As expected, decoding-accuracy dropped as the test data
duration decreased. However, even with just 10 s of test data,
attention was correctly decoded significantly above chance for
30 of the 40 subjects (mean decoding-accuracy 68.6%, min
50%, max 86.7%; Supplementary Fig. 4).

Discussion

Using electroencephalography (EEG) to accurately character-
ize sensory activity on a single-trial basis has traditionally been
extremely difficult due to the very large relative amplitude of
the background EEG. The most widely used EEG-based
method for analyzing auditory processing has been the Audi-
tory Evoked Potential (AEP) technique, which focuses on the

Figure 3. Reconstruction-Accuracy and Decoding-Accuracy across all time-lags. (A) Reconstruction-Accuracy for the Subject-Specific decoding method across individual time-lags
from 0 to 400 ms for the Attended decoders (black) and the Unattended decoders (gray). (B) The same analysis for the Grand-Average decoding method. (C) Decoding-Accuracy for
the Subject-Specific decoding method. (D) Decoding-Accuracy for the Grand-Average decoding method.

Table 1
Comparison of decoding-accuracy across time-lags and decoding methods

0–250 ms 170–250 ms

Attended (%) Unattended (%) Attended (%) Unattended (%)

Subject-Specific 89.0a 78.9 89.4a 80.8
Grand Average 81.8 75.4 83.9b 79.1b

Note: The decoding-accruacy achieved when using broad time-lags from 0 to 250 ms, versus
narrow time-lags from 170 to 250 ms.
aA significant increase (P< 0.05) in decoding-accuracy for the Subject-Specific decoding method
compared with the Grand-Average decoding method.
bA significant increase (P< 0.05) in decoding-accuracy when using the narrower time-lags.
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response evoked by the onsets of discrete stimuli, typically
averaging the resulting responses over many trials to achieve a
good signal-to-noise ratio (Picton and Hillyard 1974; Picton
et al. 1974). More recently, regression methods have been used
to quantify a mapping between continuous auditory stimuli
and the resulting neural data (Kerlin et al. 2010; Lalor and Foxe
2010; Ding and Simon 2012a, 2012b; Koskinen et al. 2012;
Mesgarani and Chang 2012; Power et al. 2012). Here, we used
such an approach to reconstruct the input stimulus in an
attempt to estimate attentional-selection in a multispeaker
environment. Despite the fact that we used unaveraged EEG,
and did not correct for muscle or blink artifacts, we were able
to classify attention accurately on a single-trial basis. Moreover,
we showed correlations between behavior and both the accu-
racy and consistency of our EEG-based stimulus reconstruc-
tions. Finally, we showed that correlations between behavior
and reconstruction-accuracy were maximal during a timeframe
of ∼200–250 ms poststimulus, results that provide support for
the importance of a late locus of attention in solving the
cocktail party problem.

Decoding Accuracy
We achieved a decoding accuracy of 82%–89%, which is com-
parable to that achieved in related work. For example, another
recent study using stimulus-reconstruction to decode attention
in a 2-speaker environment has reported an accuracy of up to
92% based on single-trial (1 min) MEG data (Ding and Simon
2012a). A direct comparison is difficult given that MEG and
EEG are sensitive to different aspects of electromagnetic
activity. Also, in that study, subjects were presented with the
same stimuli 3 times, so that much of the background activity
could be averaged out across trials. Moreover, the 2 speakers
were of opposite sex, which may have led to greater separabil-
ity of the neural activity to each stream based on inherent
differences in the spectral characteristics of male and female
speakers. Given these methodological differences, it is striking
how similar our EEG results are to this previous result. This
similarity is especially encouraging given that EEG is relatively
low-cost, easy to use, and portable.

There has been other work that has attempted to use EEG to
decode selective attention in a complex auditory environment.

One recent study (Choi et al. 2013) shows that single-trial (∼3 s)
AEP data can be used to classify the direction of attention in
response to competing streams made of musical notes, achiev-
ing an accuracy of ∼65–70%. Another study modeled the
degree of gamma band synchronization between stimuli and
neural activity allowing them to distinguish attention to speech
versus music with an average accuracy of 69% (Looney et al.
2010). Our decoding accuracies compare extremely well with
these previous reports, especially given the naturalistic, speech-
specific nature of our stimuli and task, albeit with single-trials of
somewhat longer duration.

Reconstruction-Accuracy and Decoding-Accuracy
at Individual Time-Lags
By examining stimulus-reconstruction using decoders based
on individual time-lags we have shown that the interval of
170–250 ms is of paramount importance for decoding atten-
tion to speech. As mentioned above, this finding provides
support for the existence of an important late locus of attention
in solving the cocktail party problem. We have advanced this
idea before with our previous paper speculating that effects at
such latencies may represent a filtering process operating at
the level of semantic analysis (Power et al. 2012), a speculation
that fits with theories of a multistage process underpinning
selective attention to speech (Treisman 1964). This notion is
further supported by recent research using electrocorticogra-
phy (ECoG) recordings that found significant differences in the
strength of attentional effects on the representation of speech
in different parts of auditory cortex (Mesgarani and Chang
2012; Zion Golumbic et al. 2013). Indeed, the fact that atten-
tion may differentially affect processing at distinct stages of the
auditory processing hierarchy could be exploited to further
improve the accuracy of the decoding of selective attention to
speech using single-trial EEG data. While EEG captures a more
global measure of neural activity than ECoG, including that of the
entire auditory processing hierarchy, it should be possible to
improve decoding performance by basing stimulus reconstruc-
tions on estimated source activity from ‘higher order’ auditory
regions where attentional modulation is particularly strong. As we
have used the recorded scalp EEG data directly, the unattended
speech is likely strongly represented in our data. This is evident

Figure 4. Topography of the decoder weights averaged over all subjects. Decoders were trained at individual time-lags, where the distribution of spatial filter weights across the
scalp can be displayed as a topographic map.
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from the success of our Unattended decoders, and is in line with
previous EEG and MEG research (Kerlin et al. 2010; Ding and
Simon 2012b; Mesgarani and Chang 2012; Power et al. 2012).

While we have discussed the importance of processing at
∼200 ms for solving the cocktail party problem, it is important
to note that many dichotic speech studies have shown much
earlier effects using the averaged ERP method (e.g., (Hink and
Hillyard 1976; Woods et al. 1984; Teder et al. 1993). As dis-
cussed previously (Power et al. 2012), the discrepancy
between our results and these earlier studies may be due to
this study’s explicit assumption of a relationship between the
EEG and the speech envelope. This might render our method
insensitive to earlier attention effects (e.g., those based on
space or frequency), which may be indexed by endogenous
potentials that are more easily captured by averaged ERPs.
That said, we suggest that it is highly unlikely that such early
effects would correlate with our high-level behavioral
measures, although this needs to be tested in future work.

Subject-Specific and Grand-Average Decoding Methods
We performed decoding using 2 approaches: Subject-Specific
and Grand-Average. Both of these methods produced high
decoding accuracies (Fig. 2) and similar patterns of decoding-
accuracy and reconstruction-accuracy across time (Fig. 3). The
fact that the Attended Subject-Specific decoding method out-
performed the Attended Grand-Average decoding method may
be due to inter-subject differences in how attended speech is

represented in the EEG and/or to the aforementioned possi-
bility that the Subject-Specific decoders might be slightly
biased as a result of how we administered the task. The lack of
any qualitative difference between the performances of the
Attended Subject-Specific and Grand-Average decoders, com-
bined with the fact that there was no quantitative difference for
the Unattended decoders, lessens the immediate relevance of
this issue. Future work should build more balance into the task
design, possibly by training decoders on single-speaker
speech prior to attentional decoding.

Spatiotemporal Analysis of Decoders
When comparing Attended and Unattended decoders, the in-
verted patterns of spatial filter weights at 200 and 250 ms
(Fig. 4) was noteworthy. This was not a trivial finding given
that the Attended and Unattended decoders were separately
trained on the (independent) attended and unattended speech
streams, respectively. We contend that these patterns provide
further support for a locus of selective attention to speech op-
erating at a specific level of the auditory processing hierarchy.
Within this context, the foci of positive/negative spatial
weights for the Attended/Unattended decoders reflect the rela-
tive enhancement/suppression of the attended and unattended
speech at a particular level of processing. Given the relatively
long latency at which these patterns become apparent, we pos-
tulate, as we have done before (Power et al. 2012), that this
locus operates at a level where the content of unattended

Figure 5. Correlation with behavior at Individual Time-Lags. Correlation between reconstruction-accuracy and behavioral performance across individual time-lags from 0 to 400 ms.
The Attended decoders are shown in black, and the Unattended decoders are shown in gray. Large markers indicate significance (P<0.05). Test 1 is the Across Trials
Reconstruction-Accuracy Test, and assesses the correlation between the percentage of questions answered correctly on each trial, and the r-value obtained for each trial. Test 2 is
the Across Subjects Reconstruction-Accuracy Test, and assesses the correlation between the percentage of questions answered correctly in total, and the mean r-value obtained
for each subject. Test 3 is the Across Subjects Reconstruction-Consistency Test, where we assess the correlation between the variance of the difference between rattended and
runattended, and the percentage of questions answered correctly in total.
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speech is suppressed and prevented from being encoded into
working memory. These inverted patterns of spatial filter
weights explain the related inverted patterns of reconstruction-
accuracy (Fig. 3A,B) and behavioral correlations (Fig. 5A,B)
reported above.

In our previous analysis of the same data (Power et al.
2012), we found a left-lateralized attention effect at ∼200 ms
for those subjects who attended to their right ear, and a more
bilateral distribution for those subjects who attended to their
left ear. Therefore, it is somewhat surprising that we observed
no obvious lateralization of weights in Figure 4. Analyzing the
data separately for subjects attending to speech in their left and
right ears provides some reconciliation. Spatial filter weights
for those subjects attending their right ear were left lateralized
whereas the weights for those attending their left ear were
more bilaterally distributed (Supplementary Fig. S3).

Having made the point that the spatial filter weights (at least
the foci at ∼200 ms) imply relative suppression of the unat-
tended stream, it is important to recall that we have been able
to reconstruct the unattended speech stream from our data,
even using individual time-lag decoders at 200 ms (Fig. 3A,B—
gray triangles), although to a far lesser extent than the attended
stream. This implies, unsurprisingly, that the pattern of
weights in our Unattended decoders are more complex than
we have been suggesting and that unattended speech remains
robustly represented in the data at these time lags. These data
suggest, as has been done before (Ding and Simon 2012a), that
attended speech is not simply more strongly represented by
the same neural generators, but rather that both speech
streams are represented separately in the neural data. There-
fore, if one was interested solely in obtaining the highest
decoding-accuracy, for example, for a BCI application, one
would simply use the Attended decoders to attempt to recon-
struct the attended stream.

Correlation with Behavior
From the point of view of future research, perhaps the most
exciting findings from our data are the correlations between
our reconstruction measures and behavioral performance.
We showed a correlation across trials between our recon-
struction-accuracy and behavioral performance for both the
Subject-Specific and Grand-Average decoding methods. This
was very surprising given the high-level nature of our task.
Indeed our behavioral measure will certainly have included
a sizeable amount of random variation given the trial-to-trial
variability in the difficulty of the questions, and the fact that
the task was multiple-choice. This would partly explain our
low r-values. Moreover, the stimulus-reconstruction method,
as we have applied it, is only sensitive to the cortical activity
that tracks the slow amplitude envelope of speech. While
the envelope of speech is important for speech comprehen-
sion (Peelle and Davis 2012; Ghitza et al. 2013), it is not a
direct measure of intelligibility. Even if it were, intelligibility
and short-term memory performance are unlikely to per-
fectly correlate with each other. Future studies using differ-
ent behavioral measures that more directly index the
instantaneous deployment of attention would likely show an
even stronger relationship between decoding-accuracy and
behavioral performance. Recent MEG work showing that the
strength of the auditory cortical representation of the envel-
ope of speech (in noise) strongly correlates with

intelligibility provides support for this supposition (Ding
and Simon 2013).

Our Across Subjects Reconstruction-Accuracy Test was only
significant for the Grand-Average method. As we have postu-
lated above, the lack of a correlation for the Subject-Specific
approach might be due to inter-subject variation in reconstruc-
tion accuracy independent of attention. This variation might
not have affected the Grand-Average analysis because of the
generic nature of the decoders used in that analysis. On the
same point, we observed a double dissociation when we
implemented the Across Subjects Reconstruction-Consistency
Test. In this case, the Subject-Specific approach produced a
significant correlation with behavior, but the Grand-Average
approach did not. We postulate that the Subject-Specific corre-
lation reflects the notion that good behavioral performance
should follow from consistency in sustaining attention and that
this consistency should be reflected in the variance of the
reconstruction accuracy. Again the generic nature of the
Grand-Average decoders may explain the discrepant results by
removing any inter-subject differences in the variance of the
reconstruction-accuracy.

Advantages and Disadvantages of the
Stimulus-Reconstruction Approach
The advantage of the stimulus-reconstruction method over
other approaches is in its ability to incorporate all the available
information across the scalp at each point in time. It does this
by weighting the relative contribution from each electrode sim-
ultaneously (Fig. 4) by finding a multivariate linear filter that
incorporates the channel covariance structure in the estimation
of the impulse response. This approach encourages irrelevant
parameters to maintain zero weight, while allowing the model
to capture additional variance using electrodes potentially ex-
cluded by feature selection approaches; as such, this method
can result in a significant quantitative improvement in the
input–output mapping (Hastie 2009; Pasley et al. 2012). As
seen in supplementary Figure 4, even 10 s of data is enough to
decode attention for a number of subjects. This allows the
possibility of near real-time decoding of EEG. The speed with
which this can be done suggests a possible role for this
method in the future design of BCIs. With sufficient data and
training, it is feasible that a decoder optimized for a particular
subject could have enough sensitivity to accurately decode at-
tention based on data epochs that are far shorter than 60 s.
Such sensitivity could also lead to the widespread use of
stimulus-reconstruction approaches in EEG paradigms aimed
at monitoring the ongoing dynamics of cognition.

The stimulus-reconstruction method has a number of disad-
vantages however. Firstly, unlike forward-mapping ap-
proaches, it does not produce an interpretable impulse
response function for each electrode separately. This precludes
the use of analysis techniques that have long been used in the
event-related potential (ERP) literature. For example, the analy-
sis of the timing and amplitude of such impulse responses can
provide detailed insights into the time course of perception
and cognitive processes (Luck 2005). In addition such
responses can be analyzed using inverse modeling approaches
to estimate the spatial locations of their neural generators
(Scherg and Berg 1996). Therefore, we see the stimulus-
reconstruction approach as complementary to forward-mapping
methods (Lalor and Foxe 2010). When used together these
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methods have the potential to provide a fuller understanding of
human sensory, perceptual, and cognitive processes.

Supplementary Material
Supplementary Material can be found at http://www.cercor.oxford-
journals.org/ online.
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