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� Multi-electrode measurement of auditory subcortical steady-state responses reduces noise by
3–4-fold compared to traditional approaches.

� This improvement makes acquisition of responses for many conditions within a single, one-hour
experimental session feasible.

� Simulations and human results both reveal the benefits of the multi-channel technique.

a b s t r a c t

Objective: Auditory subcortical steady state responses (SSSRs), also known as frequency following
responses (FFRs), provide a non-invasive measure of phase-locked neural responses to acoustic and
cochlear-induced periodicities. SSSRs have been used both clinically and in basic neurophysiological
investigation of auditory function. SSSR data acquisition typically involves thousands of presentations
of each stimulus type, sometimes in two polarities, with acquisition times often exceeding an hour per
subject. Here, we present a novel approach to reduce the data acquisition times significantly.
Methods: Because the sources of the SSSR are deep compared to the primary noise sources, namely back-
ground spontaneous cortical activity, the SSSR varies more smoothly over the scalp than the noise. We
exploit this property and extract SSSRs efficiently, using multichannel recordings and an eigendecompo-
sition of the complex cross-channel spectral density matrix.
Results: Our proposed method yields SNR improvement exceeding a factor of 3 compared to traditional
single-channel methods.
Conclusions: It is possible to reduce data acquisition times for SSSRs significantly with our approach.
Significance: The proposed method allows SSSRs to be recorded for several stimulus conditions within a
single session and also makes it possible to acquire both SSSRs and cortical EEG responses without
increasing the session length.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved
1. Introduction

Subcortical steady state responses (SSSRs), frequently referred
to as frequency following responses (FFRs), are the scalp-recorded
responses originating from sub-cortical portions of the auditory
nervous system. These responses phase lock to periodicities in
the acoustic waveform and to periodicities induced by cochlear
processing (Glaser et al., 1976). The responses specifically phase
locked to the envelopes of amplitude modulated sounds are some-
times called amplitude modulation following responses (AMFRs)
or envelope following responses (EFRs) (Dolphin and Mountain,
1992; Kuwada et al., 2002). Responses to amplitude-modulated
sounds originating from both the sub-cortical and cortical portions
of the auditory pathway are also collectively referred to as auditory
steady-state responses (ASSR) (Rees et al., 1986). In contrast to
tichan-
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auditory brainstem responses (ABRs; the stereotypical responses
to sound onsets and offsets; Jewett et al., 1970), SSSRs are the
sustained responses to ongoing sounds and include responses
phase-locked to both the fine structure and the cochlear induced
envelopes of broadband sounds. Since the term FFR, originally used
to denote phase locked responses to pure tones, is suggestive of
responses phase-locked to the fine-structure of narrowband or lo-
cally narrowband sounds, here we will use the term SSSR to de-
scribe the sustained responses originating from subcortical
portions of the auditory pathway. This name distinguishes them
from transient onset-offset related responses and responses gener-
ated at the cortical level. SSSRs have been used extensively in basic
neurophysiologic investigation of auditory function and sound
encoding (e.g. Aiken and Picton, 2008; Kuwada et al., 1986; Gockel
et al., 2011 also see Chandrasekaran and Kraus, 2010; Krishnan
et al., 2006; Picton et al., 2003, for reviews). Given the frequency
specificity possible with SSSRs, they have also been recommended
for objective clinical audiometry (Lins et al., 1996).

SSSRs are traditionally recorded with a single electrode pair
placed in either a vertical or a horizontal montage (which differ
in which underlying generators are emphasized; see Krishnan
et al., 2006, 2010). To achieve an adequate signal-to-noise ratio
(SNR) when measuring the SSSR, the stimulus is typically repeated
thousands of times. Often, stimuli are presented in opposite polar-
ities to separate the response components phase locked to the
envelope from those phase locked to the fine structure of the
acoustic waveform (Aiken and Picton, 2008; Ruggles et al., 2012).
Since many studies require SSSR data acquisition for multiple con-
ditions or with multiple stimuli, this often results in recording ses-
sions exceeding an hour per subject.

Multichannel electroencephalography (EEG), which is widely
used for the investigation of cortical processing, uses the same
basic sensors as SSSR measurements, but requires many fewer tri-
als because the cortical response generators are closer to the scalp
and produce stronger electric fields. EEG systems with high-
density arrays include as many as 64, 128, or sometimes even
256 scalp electrodes. Although the frequency response characteris-
tics of some cortical EEG systems are not always optimized for
picking up subcortical signals (which typically are at 80 Hz and
above), these multi-electrode setups can nonetheless be used to re-
cord SSSR data from multiple scalp locations.

Given this, it is possible to simultaneously record subcortical
and cortical processing of sounds with the high-frequency portions
analyzed to yield SSSRs and the low-frequency portions represent-
ing cortical activity (Krishnan et al., 2012). The primary source of
noise for the high-frequency SSSR portion of the recordings is back-
ground cortical activity (i.e., neural noise). Since the SSSR sources
are deep compared to the dominant sources of noise (in the cor-
tex), the SSSR varies more smoothly over the scalp than the noise
(for a discussion of the physics of the measurement process and
how scalp fields relate to neural activity, see Hämäläinen et al.,
1993). Scalp fields arising from cortical sources can cancel each
other out if they are out of phase (Irimia et al., 2012). This can be
exploited to help separate cortical and subcortical responses from
the same EEG recordings by combining information obtained from
a dense sensor array. Here, we propose and evaluate one method
for combining measurements from multiple scalp channels to im-
prove the SNR of SSSRs measured using cortical EEG arrays.

Although SSSRs can provide insight into auditory function and
subcortical encoding, interpreting them can be a challenge. Multi-
channel recordings of brainstem responses have been used primar-
ily in the analysis of the sources of the onset ABR, in which the
activity from different generators can be temporally separated, into
stereotypical responses known as waves I, III, and V (Grandori,
1986; Parkkonen et al., 2009; Scherg and Von Cramon, 1986). In
contrast, since the SSSRs represent sustained activity, temporal
Please cite this article in press as: Bharadwaj HM, Shinn-Cunningham BG. Rapid
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separation of the activity from different generators is not possible.
Moreover, in any narrow frequency band, particularly at high fre-
quencies, multiple SSSR sources likely contribute to the aggregate
measured response, each of which is a phase-locked response at
a different phase. This notion is consistent with the observation
that there are spectral notches and occasional phase discontinu-
ities in the SSSR as a function of modulation frequency for ampli-
tude modulated stimuli (Dolphin and Mountain, 1992; Kuwada
et al., 2002; Purcell et al., 2004). This is also consistent with the
observation that responses are attenuated but not eliminated in
studies inducing isolated lesions of single auditory nuclei (Smith
et al., 1975; Kiren et al., 1994). This multisource population activity
produces scalp potentials that are different mixtures of the source
activity at different scalp locations, depending on the geometry of
the generators, the recording electrodes, and the volume conductor
in between (Hubbard et al., 1971; Okada et al., 1997; Irimia et al.,
2013). Consistent with this notion, the steady-state phase of the
summed, observed response at a given frequency varies across dif-
ferent channels, as illustrated in Fig. 1.

Unfortunately, time-domain methods to combine multichannel
recordings, such as simple across electrode averaging or principal
component analysis (PCA), assume that the signal is at the same
phase across sensors. For instance, time-domain PCA involves
recombination of multiple measurements with real-valued
weights based on the covariance matrix. As a result, these methods
lead to signal attenuation when the signal components in each sen-
sor are not at the same phase. In other fields of analysis, complex
principal component analysis (cPCA) in the frequency domain
has been used to effectively combine multiple measurements
when the signal components are correlated, but have phase differ-
ences (Brillinger, 1981; Horel, 1984). In contrast to traditional
time-domain PCA, frequency domain cPCA recombines measure-
ment channels using the complex-valued weights obtained by
decomposing the complex cross-channel spectral density matrix.
The weights thus include channel-specific magnitudes and phases
in each frequency bin; the phases of each complex weight specifi-
cally adjust for phase differences between responses measured at
different sites to optimally combine responses across multiple sen-
sors. Here we apply cPCA to multichannel EEG recordings, thereby
accounting for phase discrepancies across the scalp and extract
SSSRs efficiently. We show that compared to single-channel
recording, this approach reduces the data acquisition required to
achieve the same SNR, both when applied to simulations and when
analyzing real multichannel SSSR recordings.
2. Methods

First, we describe the steps involved in the cPCA method. Then,
we describe our procedure to validate the method using simulated
data. Finally, using EEG-data acquired from normal-hearing human
listeners, we demonstrate how to apply the approach to extract
SSSRs from multi-electrode recordings.
2.1. Complex principal component analysis (cPCA)

Frequency-domain PCA can be used to effectively reduce the
dimensionality of vector-valued time-series in the presence of be-
tween-component dependencies at delayed time intervals (Brillinger,
1981). As illustrated in Fig. 1, for any frequency component, re-
sponses at different scalp locations occur with different effective
phases. This is unlikely to be due to conduction delays between
the recording site and the sources since the brain tissue and head to-
gether can be treated as a pure conductor (no capacitive effects) for
frequencies below about 20 kHz. That is, the forward model that re-
lates the measured potentials to the source currents can be treated
acquisition of auditory subcortical steady state responses using multichan-
14.01.011

http://dx.doi.org/10.1016/j.clinph.2014.01.011


A

B

Fig. 1. (A) A schematic illustration of the possible origin of phase differences of the SSSR recorded from different scalp electrodes. Each neural generator, shown as three
different colored arrows, is phased-locked to the stimulus, but at a different unique phase. Moreover, the generators contribute different amounts to different scalp locations,
as illustrated by the proportion of the ellipses shaded with the corresponding colors. This results in phase misalignment between the effective total response at different
recording sites. (B) Real SSSR obtained from a typical subject from two distinct scalp locations (relative to the average potential between the two earlobes) showing phase
differences in the response. The data is filtered between 90 and 110 Hz to emphasize the response at the fundamental stimulus frequency of 100 Hz. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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as quasi-static (Hämäläinen et al., 1993). Because each subcortical
source contributes a different amount to each scalp sensor, depend-
ing on their geometry relative to the recording electrodes, the
shapes and conductivity profiles of the different tissues in between,
the choice of reference etc. (Hubbard et al., 1971; Okada et al., 1997;
Irimia et al., 2013), the resultant signal in each sensor will have a dif-
ferent phase. For multivariate time-series, the cross-spectral den-
sity matrix captures up to second-order dependencies between
the individual components of the time-series, and therefore has
information we can exploit to account for these phase differences
in the signal across the sensors. First, we apply a discrete prolate-
spheroidal taper sequence, wkðtÞ, to the recorded/simulated signals
(Slepian, 1978). We then estimate the complex-cross channel
spectral density matrix, Mðf Þ, at each frequency bin, from which
we estimate the principal eigenvalue, kkðf Þ, and the corresponding
eigenweights, vkðf Þ, using a diagonalization procedure. For a given
frequency resolution, the use of the Slepian taper minimizes the bias
introduced due leakage of frequency content from other frequencies
outside the resolution bandwidth into the estimate of the passband
content (Thomson, 1982). Consequently, the Slepian taper mini-
mizes the bias in the estimates of the eigenvalues, kðf Þ, which result
from the spectra being colored (Brillinger, 1981). Thus, for recording
epochs of duration T, we have:

Xiðf Þ ¼
XT

t¼0

wkðtÞxiðtÞexpf�j2pftg ð1Þ

Mijðf Þ ¼ Xiðf ÞX�j ðf Þ
D E

ð2Þ

where Xiðf Þ denotes the tapered Fourier transform of the data xiðtÞ
in the ith recording channel, Mijðf Þ denotes the cross-spectrum be-
tween channels i and j, corresponding to the ijth element of the full
cross-channel spectral density matrix Mðf Þ, superscript � denotes
complex-conjugate, and :h i denotes averaging over trials. The tapers
wk; k ¼ 1;2; . . . ;Ntap form an approximate basis for signals that are
limited to a duration-bandwidth product of 2TW , and satisfy an
eigenvalue equation:

XT

s¼1

sin2pWðt � sÞ
sinpðt � sÞ wkðsÞ ¼ ckwkðsÞ ð3Þ

where the eigenvalues ck � 1 for k 6 Ntap ¼ 2TW � 1 are the con-
centrations of the tapers within the band �W 6 f 6W (Slepian,
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1978). The estimates of kkðf Þ obtained using the Ntap tapers (indexed
by k) are then averaged together to reduce the variance of the esti-
mate without additional bias from spectral leakage from frequen-
cies outside of the bandwidth W:

kðf Þ ¼
XNtap

k¼1

kkðf Þ ð4Þ

By construction, Mðf Þ is Hermitian and positive semi-definite.
Thus, Mðf Þ has real, non-negative eigenvalues, and can be diagonal-
ized using a Cholesky factorization procedure:

Mðf Þ ¼ Qðf ÞKðf ÞQ Hðf Þ ð5Þ

where Qðf Þ is the unitary matrix of complex eigenvectors of
Mðf Þ;Kðf Þ is the diagonal matrix of real eigenvalues and superscript
H denotes conjugate-transpose. Note that a separate cross-channel
spectral density matrix is estimated at each frequency bin and the
eigendecomposition is also performed at each frequency bin sepa-
rately. This is not redundant because, by the central limit theorem,
for a stationary signal, the estimated frequency coefficients are
uncorrelated and asymptotically Gaussian distributed. The principal
eigenvalue kðf Þ ¼ K11ðf Þ estimates the power spectrum of the first
principal component signal (Brillinger, 1981) and the phase of the
corresponding eigenvector vðf Þ ¼ Q :1ðf Þ estimates the phase delays
that need to be applied to individual channels in order to maximally
align them. Here Q :1 denotes the first column vector of Q, composed
of the first element of all the rows of the matrix.

SSSRs are often appropriately analyzed in the frequency domain
as they represent steady-state mixtures of subcortical source activ-
ity (Aiken and Picton, 2006; Aiken and Picton, 2008; Galbraith
et al., 2000; Gockel et al., 2011; Krishnan, 1999; Krishnan, 2002;
Wile and Balaban, 2007). The eigendecomposition of the cross-
spectral matrix is thus convenient for SSSR analysis in the sense
that the principal eigenvalue directly provides a metric of the SSSR
power at a given frequency without further processing being nec-
essary. Moreover, the phase-locking value (PLV) (Lachaux et al.,
1999) is a normalized, easily interpreted measure of across-trial
phase locking of the SSSR at different frequencies and also has
convenient statistical properties (Dobie and Wilson, 1993; Zhu
et al., 2013). The use of the normalized cross-spectral density
matrix Cplv ðf Þ (see below) instead of Mðf Þ allows for the direct esti-
mation of PLV through the eigendecomposition. An analogous
acquisition of auditory subcortical steady state responses using multichan-
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modification can be used to obtain estimates of inter-trial coher-
ence (ITC) (see Delorme and Makeig, 2004, 1994) by using Citcðf Þ,
as defined below:

Cplv
ij ðf Þ ¼

Xiðf ÞX�j ðf Þ
jXiðf ÞjjXjðf Þj

� �
ð6Þ

Citc
ij ðf Þ ¼

Xiðf ÞX�j ðf Þ
D E
jXiðf Þjh i jXjðf Þj

� � ð7Þ

where Cijðf Þ denotes the ijth element of the corresponding normal-
ized cross-spectral density matrix Cðf Þ and :h i denotes averaging
over trials. The set pðf Þ of the largest eigenvalues of Cðf Þ at each fre-
quency bin then provides the PLV or the ITC of the corresponding
first principal component directly. The variance of the PLV and
ITC estimates depend only on the number of trials included in the
estimation (Bokil et al., 2007; Zhu et al., 2013). In the absence of
a phase-locked signal component, both the mean (bias) and the var-
iance of the estimated PLV (i.e., the noise floor) are directly related
to the number of trials. Taking advantage of this, in order to com-
pare the SNR obtained using the cPCA method to the SNR from a
single channel and from time-domain PCA, we normalize the PLV
measure so that the noise floor is approximately normally distrib-
uted with a zero-mean and unit variance:

PLVzðf Þ ¼
PLVðf Þ � lnoise

rnoise
ð8Þ

where lnoise and rnoise denote the sample mean and standard devia-
tion of the noise floor estimated from the PLV or the ITC spectrum
pðf Þ using a bootstrap procedure (Zhu et al., 2013). Alternately, sim-
ilar estimates of noise can be obtained from pðf Þ by excluding the
frequency bins that have stimulus-driven response components.
PLVzðf Þ gives the PLV as a function of frequency measured in
z-scores relative to the noise floor and hence quantifies the SNR ob-
tained using different methods, allowing them to be compared
directly.

2.2. Simulations

Simulated SSSR recordings were produced by generating 32
channels of data with each containing a 200 ms burst of a 100 Hz
sinusoid at a different randomly chosen phase (distributed uni-
formly around the circle). Background EEG-like noise was added
to generate 200 simulated trials of raw EEG data. The noise had
the same spectrum and spatial (between-channel) covariance as
resting state EEG (note that the background cortical EEG activity
is itself one of the primary sources of noise for SSSR measure-
ments). The phase of the 100 Hz sinusoid (the SSSR signal of inter-
est), though not aligned across channels, was kept constant across
trials within each channel. The root-mean-squared (RMS) SNR for a
single trial in each channel was set at �40 dB. This is comparable to
typical SNRs for SSSRs obtained with our EEG setup, where the
SSSR amplitude is typically on the order of hundreds of nanovolts,
while the background, narrowband EEG amplitude is on the order
of tens of microvolts. The SSSR was then extracted from the simu-
lated data using traditional time-domain PCA as well as cPCA.

2.3. EEG data

2.3.1. Participants
Nine participants aged 20–40 were recruited from the Boston

University community in accordance with procedures approved
by the Boston University Charles River Campus Institutional Re-
view Board and were paid for their participation. For all subject,
pure-tone audiometric thresholds were measured from 250 to
8000 Hz at octave intervals. All participants had hearing thresholds
Please cite this article in press as: Bharadwaj HM, Shinn-Cunningham BG. Rapid
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within 15 dB of normal hearing level in each ear at all tested
frequencies, and none had any history of central or peripheral
hearing deficits.

2.3.2. Stimuli, data acquisition and processing
Stimuli were generated offline in MATLAB (Natick, MA) and

stored for playback using a sampling rate of 48,828 Hz. Each trial
consisted of a train of 72 ls-long clicks presented at a repetition
rate of 100 Hz for a burst period of 200 ms. The inter-trial interval
was random and uniformly distributed between 410 and 510 ms.
This 100 ms jitter ensured that EEG noise that is not in response
to the stimulus occurs at a random phase between �p and p for
frequencies above 10 Hz. For eight of the nine participants, for a
randomly chosen set of 500 out of the 1000 trials presented, the
polarity of the click-trains was reversed. This allows responses
phase-locked to the cochlear-induced envelopes to be separated
from the responses phase-locked to the temporal fine structure
of the acoustic input (Aiken and Picton, 2008; Ruggles et al.,
2011). For one participant, the total number of trials was increased
to 1500 (half presented in each polarity) to allow for a more de-
tailed analysis of how the noise level varied with the number of tri-
als for different analysis approaches (see Section 2.3.3). Scalp
responses to the click-train stimuli were recorded in 32 channels
at a sampling rate of 16,384 Hz in a sound-shielded room using a
BioSemi ActiveTwo EEG system. The measurements were then
re-referenced offline to the average potentials recorded at the
two earlobes using additional surface electrodes. An additional ref-
erence electrode was placed on the seventh cervical vertebra (C7)
to allow for offline construction of a vertical montage channel for
comparison (Gockel et al., 2011; Krishnan et al., 2006; Marsh
et al., 1975). The continuous recording from each electrode was
high-pass filtered in MATLAB at 70 Hz using an FIR filter with zero
group-delay to minimize signal contributions from cortical sources
before epoching (Kuwada et al., 2002; Dolphin and Mountain,
1992; Herdman et al., 2002). Response epochs from �50 to
250 ms relative to the stimulus onset time of each trial were seg-
mented out from each channel with the epochs going from �50
to 250 ms relative to the stimulus onset time of each trial, resulting
in 300 ms long epochs. Epochs with signals whose dynamic range
exceeded 50lV in any channel were excluded from further analy-
sis to remove movement and muscle activity artifacts.

2.3.3. Analysis
The epoched 32 channel data were processed using the cPCA

method described above to provide estimates of PLV and PLVz. In
order to taper the 300 ms long epochs for frequency analysis, the
time-bandwidth product was set to obtain a resolution
2W ¼ 6:66 Hz in the frequency domain. This allowed the use of
one Slepian taper that had a spectral concentration c � 1. The ver-
tical-montage single channel (Fz - C7) was used for comparison. In
addition to comparing the cPCA result to the single channel, we
also combined the 32 channels using traditional time-domain
PCA and estimated the PLV from the combined result. Two separate
analyses were performed to (1) compare the SNR across single-
channel, time-domain PCA and the cPCA methods and (2) to esti-
mate the number of cPCA trials needed using the cPCA method
to roughly obtain similar noise floor levels as the single-channel
approach for individual subject results.

To compare the SNR across methods for a given number of tri-
als, a bootstrapping procedure (Ruggles et al., 2011; Zhu et al.,
2013) was used to generate estimated PLV distributions for each
analysis approach that are approximately Gaussian distributed.
This allowed simple, direct comparisons across the analysis meth-
ods. For each method (vertical montage, time-domain PCA and
cPCA), 200 trials of each polarity were drawn at random 800 times
with replacement and the PLV values estimated for each draw. The
acquisition of auditory subcortical steady state responses using multichan-
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PLV estimates from different draws were then averaged in order to
make the result more normally distributed before transforming
them to z-scores to yield PLVzðf Þ. The value of the z-score at the
fundamental frequency (F0 ¼ 100 Hz) was used as a measure of
SNR, given that the noise distributions were equalized across the
different methods. We then systematically evaluated the effect of
increasing the number of recording channels on the SNR of the ex-
tracted SSSRs.

In order to get an idea of the number of trials needed to obtain
similar noise-floor levels as the more traditional, single-channel
approaches at the level of an individual subject, we estimated
the noise floor for a fixed pool of trials from the one subject for
whom we measured responses to 1500 trials. For this analysis,
we parametrically varied the number of trials we analyzed to
determine how the noise floor varied with the trial pool size. The
overall procedure is described step by step as follows:

1. Fix the analysis pool to the first Npool trials acquired from the
subject.

2. From the fixed pool of Npool trials, draw Npool trials with
replacement.

3. For each draw, estimate the PLV spectrum using the cPCA
method or for the vertical montage channel.

4. Repeat the drawing (with replacement) and PLV estimation
procedure for a total of M draws with the same fixed pool of
Npool trials.

5. Estimate the variance of the noise floor r2 ðNpoolÞ, for the
fixed pool of trials using the plugin formula (Bickel and
Freedman, 1981)
Please
nel re
r2ðNpoolÞ ¼
1

M � 1
s2 ð9Þ
where s2 is the sample sum of squared central deviations
over the M draws.

6. Repeat the procedure for different pool sizes by progres-
sively increasing Npool to obtain the noise-floor estimate
curves for the cPCA and the single-channel methods.

We performed this analysis while varying Npool from 100 to
1500 in steps on 50, with the variance estimate calculated using
M ¼ 50 draws for each trial pool. By using an individual subject’s
data and by fixing the pool of trials at each stage, this procedure
allows us to estimate how many trials are needed using a given
analysis method to achieve a given amount of noise suppression.
This analysis also allows us to compare the noise floor obtained
using the traditional single-channel montage with that obtained
using our multichannel approach, for a fixed number of trials.
3. Results

3.1. Simulations

Fig. 2A show sample SSSRs obtained by averaging 200 trials on a
single channel (top panel), using time-domain PCA (middle panel),
and using the cPCA methods (bottom panel). Though the SSSR
extracted by time-domain PCA shows some improvement in SNR
relative to using a single electrode, the gain in SNR using the cPCA
method is greater. This is further elucidated in Fig. 3A, which
shows the relationship between the phase delays estimated using
the cPCA method and the original simulated phase delays for a typ-
ical simulation. The estimated signal phase at a given channel cor-
responds very closely to the true simulated phase of the signal in
that channel. This shows that the complex eigenweights vðf Þ
obtained from the cross-channel spectral density matrix Mðf Þ cap-
ture the relative phase shifts between the individual channels.
cite this article in press as: Bharadwaj HM, Shinn-Cunningham BG. Rapid
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Fig. 3B shows the relationship between the errors in the estimation
of phase shift and the magnitude of the eigenweights across the
different channels. The magnitude of the phase estimation error
is inversely related to the channel weight magnitudes. This result
shows that the channels with poor SNR have the largest phase esti-
mation errors. Thus, using this method, the relative contribution of
a given channel to the final extracted SSSR and estimate of PLV
depends on the reliability of the channel; the channels that have
poorly estimated phases contribute relatively little to the final sig-
nal estimate. Finally, an assessment of the number of significant
principal components shows that, in contrast to time-domain
PCA, where multiple components are needed to capture all signal
energy (top panel of Fig. 2B), with the cPCA method, the majority
of the signal energy is captured by the single extracted principal
component (bottom panel of Fig. 2B). This makes sense, given that
the only parameters that distinguish between channels, namely
the channel SNR and relative phase, are both accounted for by
the complex weight vector obtained in the cPCA method. The
magnitudes of the eigenweights account for the relative SNRs
and between-channel correlations; the phase of the eigenweights
accounts for the discrepancies in the phase alignment.

3.2. Human EEG data

We applied the cPCA method to SSSR recordings obtained in re-
sponse to click trains with a fundamental frequency of 100 Hz and
harmonics up to 10 kHz. Estimates of the cross-channel spectral
density matrices were obtained using 300 ms epochs and a time-
bandwidth product of 2. This yielded an estimate of the complex
cross-spectral density matrix Mðf Þ, with a frequency resolution of
6:66 Hz. For a different, larger choice of frequency resolution, mul-
tiple, orthogonal tapers can be obtained that have the same time-
bandwidth product, providing a multitapered estimate. Here, we
used only a single taper, yielding the maximum possible frequency
resolution.

The top, middle, and bottom panels of Fig. 4A show the SSSR
phase locking values obtained using the vertical montage channel,
traditional time-domain PCA, and cPCA, respectively, for a repre-
sentative subject. All three methods produced comparable phase-
locking estimates. However, analogous to the simulation results,
the variance of the noise floor (seen at the non-harmonic frequency
bins where there is no signal) for the individual channnels and the
traditional PCA method were significantly higher than for the cPCA
method. This is quantified for all nine subjects in Fig. 4B, which
shows the variance of the noise floor for the single-channel mon-
tage and for the multichannel estimate using the cPCA method. It
is clear from visual inspection that for each subject, the cPCA meth-
od using 32 channels reduced the noise-floor variance, rendering
the stimulus-related response peaks at the fundamental and har-
monic frequencies more easily distinguishable from the noise floor.

This was tested statistically using a permutation procedure; the
variances of the PLV estimates (one estimate per subject per meth-
od, i.e. three numbers per subject) obtained from the bootstrap PLV
procedure for the different analysis methods (single-channel, time-
domain PCA and cPCA; labelled method) were pooled together. For
every subject, the method labels associated with the three variance
estimates were randomly permuted. For each permutation, the
within-subject difference in variance between pairs of methods
was calculated. These within subject variance differences between
method pairs were pooled across subjects and across permutations
to obtain null distributions for the differences in variance across
the methods. The null distribution thus obtained is the non-
parametric analog of the null distribution assumed in parametric
within-subject tests (such as the paired t-test) and represents the
variance differences that would have been obtained if the methods
yielded the same variance on an average. The differences between
acquisition of auditory subcortical steady state responses using multichan-
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Fig. 2. Simulation results: (A) The trial-averaged response at a single simulated channel (top panel), the extracted SSSR using time-domain PCA (middle panel), and the
extracted SSSR using cPCA (bottom panel) are shown. Though the time-domain PCA has a greater SNR compared to any single channel, the cPCA method produces SSSRs of
significantly higher SNR than does time-domain PCA. (B) The normalized eigenweights for the different principal components using traditional time-domain PCA (top panel)
and cPCA (bottom panel) for the simulated EEG data. The cPCA method captures most of the signal energy in one component, showing that one weight vector accounts for
both the magnitude and phase variations across channels.

A B

Fig. 3. Simulation results: (A) Relationship between the true simulated phase and the phase shifts estimated using the cPCA method for a typical simulation. The cPCA
method produces accurate estimates of the phase delay necessary to align the channels. (B) Phase estimation errors are inversely related to the channel weights (shown for a
typical simulation). Specifically, the channels with larger phase estimation error have a lower relative weight, and hence contribute weakly to the final extracted SSSR, while
channels with accurately estimated phases are weighted more strongly.
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the variances obtained from the correctly labelled methods were
then compared to the generated null distribution to yield a
p-value. For the same pool of trials, the cPCA method yielded sig-
nificantly lower variance than both a single-channel analysis
(p < 0:001) and the time-domain PCA (p < 0:01).

The statistical superiority of the cPCA method is illustrated fur-
ther in Fig. 5A, which shows, the PLVz estimates obtained using the
noise-normalization procedure previously described for one repre-
sentative subject. At each of the harmonics of 100 Hz, the z-scores
are higher for the cPCA method than for traditional methods, indi-
cating a gain in SNR. In order to quantify the gain in SNR further,
the PLVz values from the 100 Hz bin are compared to the PLVz val-
ues obtained using the best channel for each subject by computing
the ratio of the z-scores. This procedure allows us to quantify para-
metrically, the gain in SNR as more recording channels are
included for both the traditional time-domain PCA and the cPCA
methods. Fig. 6 shows the comparison as the number of recording
channels is increased from 1 to 32, averaged over 9 subjects. For
this plot, the channels were ordered as follows: Channel 1 is the
best channel for the individual subject. Channel 2 provides the
Please cite this article in press as: Bharadwaj HM, Shinn-Cunningham BG. Rapid
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maximum gain in SNR out of the remaining 31 channels when
added to channel 1. Channel 3 provides the maximum SNR gain
out of the remaining 30 channels when added to channels 1 and
2, and so on for each method. The theoretical gain in SNR that
would be obtained when combining independent identically dis-
tributed measurements is shown in red for reference. The SNR
increases as more and more channels are added for both the tradi-
tional PCA and the cPCA methods. Initially, the gain in SNR is rapid
as more channels are included in the SSSR extraction, almost
reaching the theoretical maximum achievable when each channel
has independent, identically distributed noise. However, the gain
appears to plateau as the electrode-density on the scalp increases.
From Fig. 6, it is evident that the cPCA method outperforms time-
domain PCA for all array sizes (p < 0:0001; permutation test).
Morever, on average, SNR gains of about 3 can be obtained with
as few as 10 sensors if the optimal arrangement was somehow
known a priori. However, it has to be acknowledged that here,
the sorting of channels is done a posteriori, optimally selecting each
channel that is added. Thus in practice the gain in SNR that one
would achieve by increasing the number of sensors is likely to be
acquisition of auditory subcortical steady state responses using multichan-
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Fig. 4. (A) Raw phase-locking value (PLV) scores obtained from a representative subject using a single channel (top), time-domain PCA (middle), and cPCA (bottom) for a
100 Hz click-train burst stimulus. The PLV obtained using the three methods are comparable at signal frequencies (multiples of 100 Hz), but differ in the variability of the
noise floor. The cPCA method hence produces PLV values that are statistically more robust than the other methods. (B) The noise floor variance estimated using the bootstrap
procedure is shown for each of the nine subjects for the single-channel montage and for the multichannel estimate using the cPCA method. It is clear from visual inspection,
and confirmed using the permutation procedure, that the noise-variance was smaller using cPCA that for the other methods for every subject, rendering the responses more
easily distinguishable from noise.

A

B

Fig. 5. Individual subject results: (A) Z-scored PLV values obtained from a representative subject using a single channel (top), time-domain PCA (middle), and cPCA (bottom)
for the 100 Hz click-train burst stimuli. Here the noise-floor in all three cases has been normalized to have a mean of zero and a variance of one (scaling the PLV into a z-
score). The z-scores at the harmonics of 100 Hz thus indicate the SNR obtained using the three methods. The cPCA method has a significantly higher SNR than both a single-
channel and the time-domain PCA. (B) Comparison of noise floor variance estimates as a function of the number of trials between the cPCA method and the traditional vertical
montage channel from individual subject data. The arrow highlights the number of trials that may be required using the cPCA approach to obtain similar levels of noise
suppression as from 1000 trials using the traditional approach.
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more gradual, with the plateau not being reached until larger array
sizes. Nevertheless, to obtain a fixed SNR using multichannel
recordings with typical EEG array sizes, the duration of the record-
ing session could be significantly shorter when multiple recording
channels are combined than for either single-channel recordings or
using time-domain PCA.

To obtain a better understanding of the actual reduction in the
number of trials that need to be presented to obtain similar noise
suppression as 1000 presentations with a single-channel montage
at the level of the individual subject, the variance estimation
procedure with fixed data pools was employed as described in
Section 2.3.3. Fig. 5B shows the results obtained. In both the cPCA
and the vertical-montage cases, the variance drops inversely as
the number of trials (Npool) increases. The best fitting 1=Npool func-
tions are superimposed to guide the eye. It is evident that the
Please cite this article in press as: Bharadwaj HM, Shinn-Cunningham BG. Rapid
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cPCA method needs only about 250 trials to reduce the noise
floor to the same level as 1000 trials with the single channel
montage. The procedure was repeated with the remaining 8 sub-
jects to estimate the number of trials required with the cPCA pro-
cedure to achieve the same noise variance as the single channel
montage. On average, the cPCA allowed for a 3.4-fold reduction
in the number of trials needed. Thus, real data confirm the
efficacy of using complex PCA with multichannel recordings to
increase the SNR of SSSR recordings and significantly reduce data
acquisition time.

4. Discussion

Brainstem steady state responses are increasingly being used to
investigate temporal coding of sound in the auditory periphery and
acquisition of auditory subcortical steady state responses using multichan-
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Fig. 6. Real EEG results: The gain in SNR as the number of recording channels is
increased, quantified as the gain in z-score relative to using a single channel, time-
domain PCA, and cPCA methods. As more channels are added, both the time-domain
PCA and the cPCA methods provide a gain in SNR, but the cPCA method produces
larger improvements. The theoretical gain that would be obtained by combining
independent, identically distributed measurements is shown in red for reference.
Initially, the SNR gain approaches the reference curve, but then quickly plateaus.
This suggests that the noise source activity captured in different channels are nearly
independent when there are a small number of (optimally selected) channels
included, but that as the electrode density increases, the noise in the different
channels become correlated. Note, however that the rapid increase and subsequent
plateau in SNR with increasing number of channels is obtained given the a posteriori
knowledge of the best channels to select. In practice, the gain in SNR with
increasing number of channels would be more gradual, since the channels would
not be selected optimally from among a large set, but would instead be selected a
priori. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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brainstem. Here, we demonstrate the advantages of multichannel
acquisition of SSSRs, which are traditionally acquired with a single
channel montage. Our novel approach combines the information
from multiple channels to obtain a significant gain in response
SNR using complex frequency domain principal component analy-
sis. We illustrate the efficacy of the method using simulated data.
In order to demonstrate that the method is applicable and advan-
tageous in practice, we also apply the analysis to human EEG
recordings from a cohort of nine subjects. The multichannel
approach makes it possible to obtain significantly higher SNR for
a given number of trials, or equivalently to significantly reduce
the number of trials needed to obtain a fixed noise-level.

4.1. Clinical use

In addition to use in basic neurophysiological investigation of
auditory function, the reduction in data acquisition time afforded
by our multichannel approach renders the SSSR significantly more
suitable for clinical use. ASSRs in general, and SSSRs in particular,
have been suggested for clinical use for objective, frequency-spe-
cific assessment of the early auditory pathway including for assess-
ment of hearing sensitivity, sensorineural hearing loss, and
auditory neuropathy/dys-synchrony (see Picton et al., 2003;
Krishnan et al., 2006; Starr et al., 1996, for reviews). While the cor-
tical-source 40-Hz ASSR amplitude depends on the state of arousal
(e.g., it changes if the subject is asleep or under anesthesia), the
higher-frequency SSSRs are relatively unaffected (Cohen et al.,
1991; Lins et al., 1996; Picton et al., 2003). This, along with the fact
that SSSRs can be recorded passively, makes the SSSR suitable for
objective clinical assessment of auditory function in special popu-
lations including infants and neonates (Rickards et al., 1994;
Cone-Wesson et al., 2002). There appears to be an emerging
consensus that the ASSR will play an important role in clinical
audiology in the future (Korczak et al., 23:).
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4.2. Set-up time versus recording length

The obvious downside to using multichannel recordings to im-
prove the SNR for a given recording duration is the additional time
required to place multiple scalp electrodes. For a trained graduate
student setting up 32 recording channels with our Biosemi ActiveII
EEG system, we find that set up takes about 15 min on average. On
the other hand, the use of multichannel recordings with the cPCA
method allows us to obtain stable PLV and ITC measurements
(i.e., much smaller noise levels than obtained with the 1000 trials
using single channel measurements) with about 7–10 min of
recording for the typical stimuli we use (typically, 200–300 ms
bursts of amplitude modulated tones, click trains, spoken syllables
or the like, with inter-stimulus gaps of about 0.5 s), allowing us to
obtain responses to as many as six different experimental manip-
ulations within our typical recording session of 1 h.

4.3. The role of raw-signal narrowband SNR and other sources of
variability

We have shown that the SNR of the extracted SSSR using the
cPCA method is greater than when using a single channel or
time-domain PCA. However, it is important to note that the SNR
in the raw recordings (at each frequency bin) directly affects PLV
estimates. For clarity, we shall refer to this raw-signal SNR in the
frequency domain as the narrowband SNR. While the relationship
between the narrowband SNR and conventional response analysis
metrics such as time domain amplitude or spectral power is
straightforward, metrics of phase locking such as PLV and ITC
depend non-linearly on the narrowband SNR. However, since the
distributions of the PLV and ITC only depend on the narrowband
SNR and the number of trials used to calculate them, the effects
are easy to simulate. To illustrate the effect of narrowband SNR
on PLV at a particular frequency bin, the signal phase /s in the fre-
quency bin was modelled as coming from a von Mises distibution
(a circular normal density) and the noise phase /n as coming from
a uniform distribution in ð�p;pÞ. Note that the use of a 100 ms jit-
ter in stimulus presentation ensures that for the SSSR frequencies
of interest, the noise phase is indeed distributed uniformly over
the circle, as modeled here. 50 independent simulations were per-
formed, each with 400 independent draws of signal and noise
phase. The narrowband SNR (20log10A) was set by adding the two
phasors with the appropriate relative amplitude to obtain the sim-
ulated measurement, Xsimðf Þ, in the frequency bin:

Xsimðf Þ ¼ Aej/s þ ej/n ð10Þ

The value of A was then systematically varied; the resulting growth
of the PLV with narrowband SNR is shown in Fig. 7. For a signal with
phase /s drawn from the von Mises density f ðhjl;jÞ, where l is the
mean phase parameter and j parametrizes the concentration of the
phase distribution around the mean, the true PLV can be calculated
analytically:

f ðhjl;jÞ ¼ ejcosðh�lÞ

2pI0j
ð11Þ

PLV ¼ jEðejhÞj ð12Þ

¼ I1ðjÞ
I0ðjÞ

ð13Þ

where I0 and I1 are the 0th and the 1st order modified (hyperbolic)
Bessel functions of the first kind and Eð:Þ is the expectation operator
with respect to the density f ðhjl;jÞ. As seen in Fig. 7, once the nar-
rowband SNR is sufficiently large, the PLV quickly asymptotes to the
true phase locking value and then becomes insensitive to the SNR.
acquisition of auditory subcortical steady state responses using multichan-
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Fig. 7. Simulations showing the effect of narrowband SNR in the raw recording on
the non-linear relationship between the estimated PLV and the true PLV. At
sufficiently high narrowband SNR, the PLV estimates converge to the true PLV. Since
the cPCA method is more likely to push the narrowband SNR into this convergence
region, the PLV calculated from the SSSR extracted using the cPCA method is more
likely to represent the true PLV of the underlying response than are traditional
methods.
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Morover, we find that this behavior does not change if we draw the
signal phase from distributions with higher skew or kurtosis. Thus,
in this sense, the PLV estimates yield the ‘‘true’’ phase locking val-
ues for sufficiently high narrowband SNR. This observation reveals
another benefit of using multichannel recordings along with the
cPCA method. Since the cPCA method effectively combines channels
optimally before the PLVs are computed, it is more likely to push
the narrowband SNR of single trials into the saturation region of
the PLV-narrowband SNR curve (Fig. 7). As a result, the PLV estimate
is more likely to lie closer to its true underlying value and be less
biased by the noise in the measurements. This makes comparisons
of phase-locking across conditions and individuals more reliable. In
summary, not only does the cPCA method produce PLV estimates
with a lower variance, it also increases the likelihood that these
estimates are closer to the true underlying PLV. Further study is
needed to assess if in practice, the narrowband SNR is indeed in
the saturation region.

Another important factor to be considered in interpreting the
efficacy of the cPCA method is the inherent session-to-session
physiological variability of the SSSR itself. This can be accomplished
by systematically studying the test–retest reliability of the PLV
estimates for a given stimulus across multiple recording sessions.
We are not aware of any studies reporting the across-session vari-
ability of the SSSR. If the inherent session-to-session variability of
the SSSR is very large, the improvement in SNR obtained using mul-
tichannel measurements might not be useful for studies comparing
groups of subjects, since the improvement in SNR when extracting
the SSSR from single-session data might be irrelevant in the face of
large session-to-session variability that (if present) would under-
mine meaningful comparisons of measurements across subjects.
On the other hand, for within-subject, across-condition compari-
sons, the improvement in SNR is likely to be very useful in three
ways:

1. The cPCA method allows many more stimulus manipula-
tions or conditions to be presented in a single session,
thereby removing any across-session variability confounds
that may otherwise reduce the power of across-stimulus
comparisons.

2. By reducing the variance of the PLV estimates (within ses-
sion but across different subsets of trials, i.e., primarily
owing to background noise), within-subject differences
across conditions can be more more robustly compared.
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3. By allowing for fewer trials to be presented, the cPCA
method also helps to reduce any non-stationary effects of
long-term adaptation and learning that are likely to be pres-
ent when it is necessary to collect a large number of trials.

Indeed, in cases where cortical and subcortical data can be gath-
ered simultaneously, the benefits of cPCA are likely to be particu-
larly appreciated, reducing the number of trials necessary to
estimate brainstem responses so that they can be obtained ‘‘for
free’’ while cortical responses are gathered.

4.4. Source separation versus cPCA

Here, we combine recordings from multiple channels to yield a
single SSSR and corresponding phase locking value estimates with
low variance, so that comparisons across conditions are more reli-
able than traditional methods. However, when multiple generators
are indeed active, the physiological interpretation of what this
SSSR represents is tricky. For frequencies in the range of
70� 200 Hz, the group delay of the SSSR is consistent with a dom-
inant generator coming from a neural population in the rostral
brainstem/midbrain, likely the inferior colliculus (IC) (Dolphin
and Mountain, 1992; Herdman et al., 2002; Smith et al., 1975;
Sohmer et al., 1977; Kiren et al., 1994). Data from single-unit
recordings of responses to amplitude-modulated sounds suggests
that a transformation from a temporal to a rate code occurs as
the signals ascend the auditory pathway, with the upper limit of
phase-locking progressively shifting to lower modulation frequen-
cies (Frisina et al., 1990; Joris et al., 2004; Joris and Yin, 1992;
Krishna and Semple, 2000; Nelson and Carney, 2004). Because,
for broadband sounds, the SSSRs are dominated by responses
phase-locked to cochlear-induced envelopes (Gnanateja et al.,
2012; Zhu et al., 2013), it is likely that the dominance of response
generators higher up along the auditory pathway decreases at
higher response frequencies. Thus, at higher modulation frequen-
cies, more peripheral sources contribute appreciably to the SSSR,
consistent with non-linear phase-response curves obtained at
higher frequencies (Dolphin and Mountain, 1992).

One approach in SSSR data analysis would be to try and sepa-
rate the multiple sources contributing to the SSSR at a given fre-
quency. However, since the spatial resolution of EEG is poor,
particularly for subcortical sources, separating the sources based
on geometry alone is not feasible (Pascual-Marqui, 1999; Baillet
et al., 2001). The source segregation problem is ill-posed in the
sense that multiple source configurations can yield the same
measured fields at the scalp level. Though it may be possible to suf-
ficiently constrain the source estimation with the use of an elabo-
rate generative model of the SSSR that takes into account the
physiological properties of the neural generators along the audi-
tory pathway (Dau, 2003; Rnne et al., 2012; Nelson and Carney,
2004), at present, not enough data is available from human listen-
ers to specify such a model. Thus, we take the alternate approach of
not trying to separate the sources contributing to the total
observed signal. Instead, we combine measurements in order to
extract a SSSR response that is robust and has low variance. This
compound SSSR allows for more reliable comparisons across
stimulus manipulations than traditional acquisition/analysis
approaches.

4.5. Optimal recording configuration

As shown in Fig. 6, as more recording channels are added, the
SNR gain is initially steep and then plateaus. This suggests that
the noise in the different electrodes are correlated when the num-
ber of channels is high (i.e., high channel density on the scalp). This
begs the question as to what the best recording configuration
acquisition of auditory subcortical steady state responses using multichan-
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would be in terms of the number of channels and their locations on
the scalp. Answering this question involves consideration of two
aspects of the measurements: (1) correlation of the noise between
channels and (2) the variation of the signal strength itself across
the channels. To appreciate a simple trade-off that exists between
these two aspects, consider a pair of channels from distant scalp
locations, with one channel having good sensitivity to the signal
of interest and the other with poor or moderate sensitivity. When
these two channels are combined with similar weights, though the
noise is cancelled better, the signal would also be diluted by the
inclusion of the channel with poor sensitivity. The sensitivity of
different channels to the signal also depends on the choice of the
reference and the tissue geometry of individual subjects, further
complicating the discovery of an optimal recording configuration.
Thus, though the results of the current study do not reveal an obvi-
ous recommendation for a subject-invariant, optimal configuration
of electrodes for a small number of channels, typical EEG array
sizes and configurations such as the standard 32 channel montage
provide a large increase in SNR.

5. Conclusions

The cPCA approach to extracting SSSRs from multichannel
measurements yields results that are significantly more reliable
and robust than traditional single channel measurements. As a
result, it is possible to record brainstem steady-state responses
efficiently. This increased efficiency allows for SSSRs to be acquired
simultaneously with cortical auditory responses without a signifi-
cant increase in the length of the recording session.
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