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Two experiments, both presenting diotic, harmonic tone complexes (100 Hz fundamental), were

conducted to explore the envelope-related component of the frequency-following response

(FFRENV), a measure of synchronous, subcortical neural activity evoked by a periodic acoustic input.

Experiment 1 directly compared two common analysis methods, computing the magnitude spectrum

and the phase-locking value (PLV). Bootstrapping identified which FFRENV frequency components

were statistically above the noise floor for each metric and quantified the statistical power of the

approaches. Across listeners and conditions, the two methods produced highly correlated results.

However, PLV analysis required fewer processing stages to produce readily interpretable results.

Moreover, at the fundamental frequency of the input, PLVs were farther above the metric’s noise

floor than spectral magnitudes. Having established the advantages of PLV analysis, the efficacy

of the approach was further demonstrated by investigating how different acoustic frequencies

contribute to FFRENV, analyzing responses to complex tones composed of different acoustic

harmonics of 100 Hz (Experiment 2). Results show that the FFRENV response is dominated by

peripheral auditory channels responding to unresolved harmonics, although low-frequency channels

driven by resolved harmonics also contribute. These results demonstrate the utility of the PLV for

quantifying the strength of FFRENV across conditions. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4807498]

PACS number(s): 43.64.Ri [TD] Pages: 384–395

I. INTRODUCTION

The frequency-following response (FFR), measured as a

voltage on the human scalp, reflects how well subcortical

portions of the auditory pathway encode periodic portions of

an input acoustic stimulus (e.g., Krishnan, 1999; Galbraith

et al., 2000; Kraus and Nicol, 2005; Akhoun et al., 2008; Du

et al., 2011). Many studies of the FFR focus on those compo-

nents that are phase locked to the envelope of the input stim-

ulus (FFRENV; the portion of the response that is the same

for a stimulus and an inverted version of that stimulus), in

part because many artifacts and non-neural signals (such as

the cochlear microphonic) that can contaminate the measure

are canceled when estimating FFRENV (e.g., see Picton,

2011). The strength of FFRENV is correlated with percep-

tual ability on a range of tasks, including at the level of indi-

vidual subjects (e.g., Krishnan et al., 2010; Wile and

Balaban, 2007; Burman et al., 2008; Carcagno and Plack,

2011; Jerger and Hall, 1980; Krizman et al., 2012; Ruggles

et al., 2011; Ruggles et al., 2012). This relationship with per-

ceptual abilities in some tasks has lead to recent surge of in-

terest in FFRENV.

Many different methods have been proposed for

extracting periodic neural signals like FFRENV amid the

significant noise present in the measures. For instance, the

magnitude-squared coherence (MSC), which uses both

phase and amplitude information to estimate how much of

the power in raw measurements at a given frequency can be

attributed to the signal, often performs equal to or better

than other common methods for detecting a sinusoidal sig-

nal in auditory brainstem responses and similar noisy meas-

urements (e.g., see Dobie and Wilson, 1993, 1994, 1996;

Sturzebecher and Cebulla, 1997; Cebulla et al., 2001).

However, the calculation of MSC depends on the noise

being stationary; when this assumption is violated, methods

based on across-trial consistency of phase (independent of

amplitude), such as phase-locking value analysis (PLV,

sometimes called the phase coherence or PC) can be equally

powerful or even more sensitive than MSC (e.g., see Dobie

and Wilson, 1993, 1994; Lachaux, et al., 1999). Other

approaches, including Hotelling’s T2 test, Tcirc
2, and various

extensions of these approaches (and of MSC and PC) have

also been proposed, but in head-to-head comparisons, most

of these methods perform fairly similarly, depending on the

exact characteristics of the signal and noise in the measure-

ments (e.g., see Victor and Mast, 1991; Dobie and Wilson,

1993; Cebulla et al., 2001).

Perhaps the most intuitive approach to analyzing

noisy neural data is simply to average many repetitions of

responses to a fixed input and assess the spectral magnitude

of the results. However, such measures contain many
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different artifacts, ranging from line noise at multiples of the

alternating electrical current to broadband neuro-electrical

noise. This makes interpretation of the absolute spectral

magnitude results challenging; to determine which frequen-

cies in the response are driven by the acoustic input, the

noise floor, which is not flat, must be estimated and/or the

results normalized appropriately. In direct contrast, the unit-

less PLV metric (for instance) is directly interpretable, with-

out need for estimation of the noise floor in the measures.

Moreover, the simplest null-hypothesis model for the PLV,

that the measurement phase at any given frequency is uni-

formly distributed between �p and p (i.e., unaffected by the

stimulus presentation), has a distribution that depends only

on the number of samples going into the calculation. In par-

ticular, the noise floor is independent of both frequency and

the absolute power in the noise sources contributing to the

measured responses, and hence is flat (see Bokil et al.,
2007). The PLV also has its own intuitive appeal to many

auditory neuroscientists in that phase-locking measures such

as vector strength are commonly used when assessing audi-

tory coding in single-unit neurophysiology (e.g., see Joris

et al., 2004). Moreover, in some conditions, the PLV may be

a more reliable metric than spectral magnitude approaches

that estimate the signal-to-noise ratio of the power at the

stimulus frequency (e.g., see Picton et al., 1987; Stapells

et al., 1987), even though many FFR studies continue to

employ spectral magnitude estimation when evaluating neu-

ral responses (e.g., see Krishnan, 1999; Galbraith et al.,
2000; Krishnan, 2002; Wile and Balaban, 2007; Gockel

et al., 2011; Hornickel et al., 2012). Here, we directly com-

pare spectral magnitude and PLV measures of the FFRENV

evoked by complex tones to explore whether differences

across subjects and conditions are better revealed by PLV

analysis than by spectral magnitude analysis (Experiment 1;

note that though many studies explore the temporal-fine-

structure-related component of the FFR, the current study

focuses exclusively on the envelope-related component).

Past experimental and theoretical studies suggest that

FFRENV is generated primarily by subcortical structures

including the cochlea, auditory nerve, cochlear nucleus, and

inferior colliculus (Smith et al., 1975; Sohmer and Pratt,

1977; Sohmer et al., 1977; Gardi et al., 1979; Davis and Britt,

1984; Dolphin and Mountain, 1992; Dau, 2003; Wile and

Balaban, 2007; Harte et al., 2010; Chandrasekaran and Kraus,

2010; Du et al., 2011). Each peripheral auditory channel will

respond to the portion of the acoustic signal falling within its

critical band; the observable FFRENV is a sum of all of this

activity, across frequency channels, and therefore depends on

the phase locking within each channel as well as the phase

and magnitude relationships among the phase-locked activity

across all channels. For mid- to high-frequency peripheral

auditory channels, multiple harmonics of the input stimulus

are likely to fall within a critical band. In response to a peri-

odic input, envelope-locked neural activity in these channels

will contain energy at the fundamental frequency and low-

order harmonics of the periodic input, even though they are

tuned to higher acoustic frequencies (see, e.g., Gockel et al.,
2011; Shinn-Cunningham et al., 2012). In addition, even

phase-locked activity of a particular periodicity is not purely

sinusoidal, but will contain energy at different harmonics of

that fundamental. As a result, it is difficult to predict exactly

how different combinations of acoustic frequencies drive

FFRENV. To begin to address this question, Experiment 2

uses the PLV to analyze FFRENV in response to different har-

monic tone complexes: (1) low-frequency, resolved harmon-

ics, (2) higher-frequency, partially resolved harmonics, (3)

unresolved harmonics, and (4) both resolved and unresolved

harmonics.

II. METHODS

A. Participants

Sixteen participants (ages 21 to 38 years old; 12 males)

were recruited in Experiment 1. Twenty participants (ages

20 to 30 years old; 10 males) were recruited in Experiment

2. For all subjects, pure-tone audiometric thresholds were

measured from 250 Hz to 8000 Hz at octave intervals. All

participants had hearing thresholds within 15 dB of normal

hearing level in each ear at all tested frequencies, and none

had any history of central or peripheral auditory deficits. All

gave written informed consent in accordance with proce-

dures approved by the Boston University Charles River

Campus Institutional Review Board and were paid for their

participation.

B. Stimuli

Stimuli were generated offline in MATLAB (Natick, MA)

and stored for later playback using a sampling rate of 25 kHz.

In Experiment 1, the stimulus was comprised of eight, equal

intensity pure tones (100,200,…,800 Hz), all in sine phase, cre-

ating a complex tone with fundamental frequency (F0) of

100 Hz. In the quiet condition, the Experiment 1 stimulus was

presented alone; in the noise condition, a Gaussian noise (low-

pass filtered at 3000 Hz) was added to the stimulus at an acous-

tic signal-to-noise ratio (root mean square) of þ10 dB. The

noise was continuous, generated online by special-purpose

Tucker-Davis Technologies (Gainesville, FL) hardware.

In Experiment 2, we tested four different complex tones,

each with F0 100 Hz, comprised of equal intensity pure tones

presented in cosine phase, but containing different harmon-

ics of 100 Hz. The first contained the first five harmonics of

100 Hz (LOW: 100, 200, 300, 400, and 500 Hz), which, for

our normal-hearing listeners, should be easily resolved by

the auditory periphery (e.g., see Moore, 2003); the second

contained harmonics 6–10 (MID: 600, 700, 800, 900, and

1000 Hz), which should be partially resolved in the auditory

peripheral response; the third contained harmonics 12–16

(HIGH: 1200, 1300, 1400, 1500, and 1600 Hz), which should

be poorly resolved by the peripheral auditory system; the

final stimulus contained the first 20 harmonics (BROAD:

100,200,…,2000 Hz).

All of the complex tones in both experiments were

170 ms in duration, including 10 ms cosine-squared rise/fall

times. All were presented diotically at 80 dB sound pressure

level. The mean inter-stimulus interval was 770 (6 100) ms,

jittered from trial to trial to ensure that any signals unrelated

to the acoustic stimulus were at a different, random phase at
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the onset of each trial. The stimuli were presented with alter-

nating starting polarities, so that half of all trials were pre-

sented in one polarity and the other half inverted to the

opposite polarity.

C. Equipment

A personal computer controlled all aspects of the experi-

ment, including triggering sound delivery and storing data.

Special-purpose sound-control hardware (System 3 real-time

signal processing systems, including D/A conversion and

amplification; Tucker Davis Technologies, Gainesville, FL)

presented sound through insert phones (ER-1, Etymotic, Elk

Grove Village, IL) coupled to foam ear tips.

FFRENV responses were recorded using a BioSemi

Active Two System (BioSemi, Amsterdam, Netherlands) at a

sampling rate of 16.384 KHz. Altough BioSemi makes

special-purpose, high-impedance electrodes optimized for

recording subcortical responses, here, we used the standard

conductive Ag-AgCl scalp electrodes. The FFRENV responses

were recorded from active electrode Cz. Vertical eye move-

ments (electrooculogram, EOG) were monitored with two

external electrodes. Prior to data acquisition, we ensured that

the offset voltage for each active electrode was stabilized at

<20 mV.

D. Procedures

After electrodes were placed on the scalp, participants

were seated in an acoustically and electrically shielded

booth (single-walled Eckel C-14 booth, Cambridge, MA).

Throughout data collection, participants watched a silent, cap-

tioned movie of their choice, ignoring the acoustic stimuli.

Each participant in Experiment 1 performed one ex-

perimental session of �2 h, including setup and data collec-

tion. In each session, the Experiment 1 stimulus was repeated

4000 times each in quiet and in noise. These data were col-

lected in 8 blocks of 1000 trials each, alternating quiet and

noise conditions from block to block (starting with a quiet

block). Stimulus polarity alternated from trial to trial ran-

domly within each block, resulting in 2000 repetitions of each

stimulus (that is, 2000 repetitions each of 2 polarities and

2 conditions).

Each participant in Experiment 2 performed four

sessions (one per day, maximum), each lasting �1.5 h,

including setup and data collection. The four sessions each

presented one of the four different stimuli (LOW, MID,

HIGH, BROAD, ordered identically for each subject) 2000

times in a single, long block, alternating stimulus polarity

from trial to trial.

E. Data pre-processing

All raw recordings were bandpass filtered from 80 Hz to

3000 Hz (zero-phase filtering, 800th-order finite impulse

response filter, designed by the window method using a

Hamming window in MATLAB, Natick, MA), to retain sub-

cortical responses while minimizing lower-frequency noise

and interference from cortical activity. The bandpass-filtered

signals were then broken into epochs, from �50 to 250 ms

relative to the onset of each 170-ms-long complex tone. Any

epochs containing EOG activity greater than 60 lV (peak to

peak) were removed to eliminate contamination from eye

blinks. For all remaining epochs, the raw Cz responses were

then referenced to the average of the two earlobe measures.

For all participants, the number of artifact-free epochs

was greater than 1800 in each of the four different stimuli

(positive/negative polarities� quiet/noise conditions) in

Experiment 1, and greater than 900 for each polarity of each

of the four stimulus conditions in Experiment 2.

In order to focus analysis on the quasi steady-state por-

tion of the responses, the time-domain signals were time

windowed with a 170-ms-long window (Slepian taper,

achieving 5.9 Hz frequency resolution while minimizing

spectral leakage; Thomson, 1982) that started 10 ms after the

onset of the complex tone. The resulting time-domain wave-

forms from individual trials were then combined either by

first averaging them and then analyzing the frequency con-

tent of this average (spectral analysis), or by analyzing the

consistency of the phase of the individual trials’ responses

at each frequency (PLV analysis), as described further in

Secs. II F and II G.

F. Spectral analysis

Spectral analysis was undertaken separately for each

subject, for each condition, in Experiment 1. The Appendix

provides details of the processing stages undertaken; these

steps are briefly summarized below.

Interpreting the raw magnitude spectrum of FFRENV is

challenging because the absolute strength of the noise floor

varies with frequency roughly as 1/f (e.g., see Buzsaki, 2006)

and also contains some electrical line noise at multiples of

60 Hz (particularly at the odd harmonics, based on experience

in our laboratory). Therefore, in order to determine which fre-

quencies in the magnitude spectra were significantly driven

by the stimuli, we employed a bootstrapping approach to esti-

mate the noise floor as a function of frequency. We first com-

puted a distribution of 100 raw FFRENV magnitude spectrum

estimates of the responses for each subject by averaging

together 400 random samples (drawn with replacement) of

the discrete Fourier transforms (DFTs) of the FFR waveform

taken from individual positive and negative polarity trials.

The average value of this distribution, which is roughly

Gaussian distributed, was used as the estimate of the individ-

ual subject’s raw magnitude spectrum response in a given

condition. The standard deviation of these 100 estimates was

used to estimate the variability in the Gaussian-distributed

magnitude spectrum estimate of FFRENV.

We then estimated the raw noise floor spectral magni-

tude separately for each subject and condition as a function

of frequency, using an identical procedure except randomiz-

ing the phase of the 400 independent observations prior to

averaging (i.e., assuming that the phase of the input signal is

unrelated to the phase of any noise). This is a conservative

null model, as it assumes that the magnitude of the response

of each trial is dominated by noise, with a negligible incre-

ment due to the signal. However, the approach accounts for

both 1/f and line noise equally well.
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By normalizing the raw magnitude responses by the

estimated noise floor, we computed the spectral magnitude

of FFRENV in units of dB SNR (signal-to-noise ratio), indi-

vidualized for each subject. These magnitude responses in

dB SNR can be understood readily and can be fairly com-

bined across subject. We then could also compute the z-score

separating the distribution of the data and the spectral magni-

tude expected by chance.

Figure 1 shows, for one typical subject, the estimated

noise floor as well as the raw and normalized magnitude

spectra. The raw magnitude response (thin red lines) varies

dramatically, and similarly, with frequency for both quiet

and noise conditions (left and right columns, respectively).

The estimated noise floor, shown by the thin blue lines, also

varies with frequency in a manner grossly like the raw mag-

nitude responses. However, these large variations in magni-

tude are partially taken into account when the response is

shown in dB SNR (bold black lines in Fig. 1); this analysis

directly reveals the spectral components of FFRENV that

arise at the stimulus F0 and its integer multiples.

To test whether the spectral magnitude of each harmonic

was significantly greater than expected in the absence of a

signal, we determined whether the observed spectral magni-

tude estimate was likely to be observed by chance, given the

variability in the metric (see the Appendix). In order to sum-

marize the results, we computed the across-subject means of

the magnitude spectra in dB SNR (across 16 subjects,

Experiment 1).

G. PLV analysis

The same raw trial results were also analyzed by calcu-

lating PLVs as a function of frequency separately for each

subject and condition. As with the spectral analysis, we com-

puted the mean across 100 independent, random, identically

distributed estimates of the PLV (each calculated from 400

randomly selected trials, with replacement). We also com-

puted the standard deviation of these estimates, enabling us

to compute the z-score between the data distribution and the

expected mean under the null model. Bootstrapping was

used to estimate the noise floor in the PLV values. However,

because the distribution of PLVs depends only on the phase

of individual trials and the number of trials averaged, inde-

pendent of magnitude, the null model is identical for all

subjects, conditions, and stimuli used. Therefore, we com-

puted only one distribution of mean PLV statistics under the

null hypothesis, assuming a random phase distribution from

trial to trial (see the Appendix for details of the processing),

and computed the across-subject means (16 in Experiment 1;

20 in Experiment 2).

III. RESULTS

A. Experiment 1

The first experiment measured FFRENV in response to a

100-Hz F0 harmonic complex tone containing harmonics

1–8 to characterize the relative strength and robustness of

the subcortical measure as a function of neural signal fre-

quency. We present the basic results, analyzed first using the

more traditional, spectral magnitude approach and then by

using the PLV method. To test whether there are any advan-

tages when undertaking a PLV analysis of FFRENV data

rather than spectral analysis, we then perform statistical tests

of the relationships across analysis methods and stimulus

conditions.

1. Spectral magnitudes in quiet and noise

FFRENV spectral magnitude responses are summarized

in Fig. 2, which plots the across-subject mean of FFRENV in

both the quiet and noise conditions (left and right columns,

respectively) in units of dB SNR.

FFRENV is most robust at 100 Hz (the stimulus F0) and

tends to decrease with increasing harmonic frequency.

Adding external noise to the input stimulus reduces the

FFRENV response, in general, as expected. However, the

effect of the noise is not uniform. In particular, FFRENV at

100 Hz, which is the largest response to begin with, is hardly

affected by the addition of the noise. In contrast, the other

FFRENV components all decrease in average magnitude.

2. Phase-locking values in quiet and noise

PLVs are shown in Fig. 3 in the same format as the

magnitude responses in Fig. 2. Because the threshold for sig-

nificance is independent of frequency and condition, the

range of individual subject’s PLVs that are not significantly

greater than expected by chance is shown in light gray in

each panel.

FIG. 1. Spectral magnitude results as a function of neural response frequency for one example subject (Experiment 1) in response to a complex tone consisting

of harmonics 1–8 of a 100 Hz fundamental frequency. In order to calculate the response in units of dB SNR, the noise floor must be estimated and responses

normalized by the frequency-dependent spectral content of the noise. The noise had both strong components at odd multiples of 60 Hz due to line noise and 1/f
magnitude noise from other sources.
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The only frequencies with PLVs significantly above the

noise floor occur at harmonics of the input stimulus, as

expected. The general trends described in the spectral mag-

nitude analysis are also seen in the PLV results. In quiet,

FFRENV is robust at F0, and decreases in strength as har-

monic number increases. The effect of the additive acoustic

noise is negligible at 100 Hz, but is more evident for 200 Hz

and above.

3. Comparison of spectral magnitude and PLV
analyses

Theoretically, the spectral magnitude and PLV results

should be closely related; both focus on extracting the com-

ponent of the measured response that is consistent across

trials (the spectral magnitude analysis, by averaging

responses in the time domain; the PLV analysis, by examin-

ing the consistency of the phase response of individual trials

across the distribution of trials). Here, we directly compare

the two analyses methods to test whether this prediction

holds up in practice. In particular, we explore whether (i)

PLV analysis is more sensitive at revealing brainstem

responses than spectral magnitude analysis by comparing the

statistical power of the two analyses, and (ii) whether, aside

from any differences in sensitivity, the two approaches pro-

duce results that are closely correlated.

To compare the relative sensitivity of the spectral mag-

nitude analysis and the PLV analysis, we converted both raw

measures to z-scores (statistical separation between the

obtained results and a null-model distribution). Figure 4(a)

presents the z-scores (averaged across subjects) for the PLV

analysis and the spectral magnitude analysis (squares and

circles, respectively) both in quiet and in noise (left and right

panels, respectively). In quiet, the mean PLV z-scores are

slightly higher than are the spectral analysis z-scores of the

same data at the low harmonics [squares are above circles in

the left half of the left panel of Fig. 4(a)], but this modest dif-

ference disappears as frequency increases beyond 500 Hz

and both metrics have low values. A similar pattern is seen

in noise: at F0 and the lower harmonics, the mean z-scores

for the PLV analysis are greater than the spectral magnitude

z-scores; for harmonics from 600–800, the average z-scores

are less than 1.0, near the floor.

Inter-subject variability in FFRENV is large compared to

the small differences in the mean z-scores, which can visu-

ally obscure consistent pairwise differences. In order to illus-

trate the main effect of method, we therefore generated a

scatter plot contrasting the z-scores obtained from the PLV

and from the spectral magnitude, with each point represent-

ing one subject, condition, and frequency [Fig. 4(b)]. In this

plot, only z-scores exceeding 4 in both methods were

included to avoid floor effects. The identity line (diagonal

where the z-scores calculated from the two methods are

exactly equal) is plotted as a reference. Consistent with the

repeated-methods analysis of variance (ANOVA) result

showing a main effect of method, the majority of these

points lie above the diagonal, showing that the z-scores

obtained from the PLV method are greater than the z-scores

obtained from the same raw data using spectral magnitude

analysis.

The z-scores were subjected to repeated-measures

ANOVA with main factors of method (spectral vs PLV),

frequency (100–800 Hz), and condition (quiet vs noise), as

well as their interactions. The residual error strata were parti-

tioned. All main factors were statistically significant [method:

F(1,15)¼ 16.3, p< 0.01; frequency: F(7,105)¼ 42.7,

p< 0.001; condition: F(1,15)¼ 57.0, p< 0.001]. Respectively,

these results support the observations that (1) PLV is a more

sensitive measure than is spectral magnitude, (2) FFRENV

strength decreases with frequency, and (3) additive acoustic

noise degrades FFRENV. The interaction of method� condition

was not significant [F(1,15)¼ 1.2, p¼ 0.285]; however, the

interaction of method� frequency [F(7,105)¼ 3.1, p< 0.01]

was significant, supporting the observation that the PLV z-
scores are greater than the corresponding spectral magnitude z-
scores as long as floor effects are not in play. The interaction

between frequency� condition was also significant [F(7, 105)

¼ 5.8, p< 0.001], supporting the observation that the z-scores

decrease more gradually with frequency in quiet than they do

in noise.

The results in Fig. 4(b) suggest that although the PLV is

more statistically sensitive than spectral analysis when

FFRENV values are above the noise floor, the pattern of

results may be quantitatively similar for the two methods. To

test this prediction, we computed the across-subject Pearson

correlation coefficients between the obtained spectral magni-

tude values and PLV values in quiet and in noise. Because

FIG. 2. Normalized spectral magnitude (in units of dB SNR) of FFRENV

averaged across subjects as a function of neural response frequency

(Experiment 1). The left panel shows results in quiet, while the right panel

shows results in noise. Significant energy is present at multiples of the

100 Hz fundamental frequency of the input complex tone.

FIG. 3. Phase-locking value, averaged across subjects, as a function of

neural response frequency (Experiment 1). PLVs are significant at multiples

of the 100 Hz fundamental frequency of the input complex tone.
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only results that are significantly above the noise floor of a

given metric should have a value that reflects the signal,

rather than the noise, we included in the analysis only those

values that were statistically above the noise floor using both

the spectral magnitude analysis and the PLV analysis for a

given condition, harmonic, and subject. While this yielded

16 subjects for FFRENV at 100 Hz, for other harmonics, the

number of points was lower; at some of the highest harmon-

ics, there were not enough subjects with responses that were

above the noise floor to allow a meaningful comparison. We

found that for every harmonic and condition that contained

enough data points to allow a direct assessment, spectral

magnitude values and PLVs are very strongly correlated (see

Table I).

Together, these results show that the PLV analysis is

more sensitive than the spectral magnitude analysis at reveal-

ing FFRENV responses that are above the noise floor, but that

the two approaches yield comparable patterns of results.

Therefore, from this point on, we focus on PLV results.

4. Statistical effects of additive acoustic noise

To assess the effect of additive noise, we directly com-

pared the across-subject average PLVs. First we found those

FFRENV components that were statistically above the noise

floor in both conditions (based on a Tukey’s post hoc test;

harmonics 100, 200, 300, 400, 500 Hz), and computed the

difference (the mean PLV in quiet� the mean PLV in noise).

We then found the harmonics that were above the noise floor

in the quiet condition, but below the noise floor in the noise

condition (harmonics 600, 700, 800 Hz); for these harmonics,

we computed the difference between the measured value in

quiet and the noise floor (the mean PLV in quiet� the PLV

at the noise floor; the latter is a generous estimate of the

phase locking evoked by the stimulus in noise). As seen in

Table II, the noise caused a significant decrease in FFRENV at

harmonic frequencies of 200,300,…,800. However, the noise

did not cause a statistically significant change in the PLV at

100 Hz.

FIG. 4. Comparison of PLV and spectral

magnitude responses in quiet and in noise as

a function of neural response frequency

(Experiment 1). (a) Across-subject average

PLV (squares) and spectral magnitude

(circles) as z-scores (relative to expected

chance levels). Error bars show the across-

subject standard deviation, which is large,

obscuring consistent differences between the

two analysis methods. (b) The relationship

between PLV and spectral magnitude z-

scores (relative to expected chance levels)

for z-scores exceeding a value of 4, pooling

over subjects, noise conditions, and frequen-

cies. For a given subject and experimental

condition, PLV z-scores are generally greater

than spectral magnitude z-scores.

TABLE I. Correlations between spectral magnitude (dB SNR) and PLV

measures across subjects in Experiment 1 for each harmonic of the stimulus

fundamental frequency. To be included in the analysis, a subject had to have

both a spectral magnitude and PLV measure that was statistically significant;

a dash indicates that there were too few data points to conduct the particular

analysis (most of the time, when a particular measure was in the noise floor

using one method, it also was not significant using the other analysis

approach). Here, L is the number of subjects for whom both spectral magni-

tude and PLV are significant at the given harmonic, and r is the linear corre-

lation coefficient. For all comparisons with enough data points to address

the question, the two metrics are highly correlated.

Quiet Noise

Harmonics (Hz) r p L r p L

100 0.9069 1.3� 10�6 16 0.9295 1.9� 10�7 16

200 0.8709 2.4� 10�5 15 0.9599 7.6� 10�7 12

300 0.9145 <1.0� 10�7 16 0.9669 1.6� 10�3 8

400 0.9423 <1.0� 10�7 15 0.9041 1.3� 10�2 6

500 0.9305 <1.0� 10�7 13 0.8329 1.6� 10�1 4

600 0.9854 <1.0� 10�7 7 — — 0

700 0.9701 1.0� 10�4 8 0.9840 1.1� 10�1 3

800 0.8337 3.9� 10�2 6 — — 1
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B. Experiment 2

Experiment 2 measured FFRENV responses to four dif-

ferent acoustic input signals, each consisting of different

combinations of harmonics of 100 Hz. Figure 5 shows the

across-subject average PLV of FFRENV in response to the

four complex tones (rows).

As in Experiment 1, FFRENV tends to be strongest at F0

and the lowest harmonics of the input stimulus—even for

stimuli that contain no acoustic energy at those frequen-

cies—both in terms of the magnitude of the PLV and the

number of subjects with a significant PLV. The FFRENV

components at low harmonics of F0 can be driven strongly

by activity from many different peripheral channels, span-

ning a range of input acoustic frequencies; the envelope

response in the lowest harmonics tends to be weakest for the

LOW stimulus.

To directly compare the strength of FFRENV across the

different stimuli, we examined the average PLV at 100 Hz in

the different conditions (see Fig. 6). The LOW stimulus

produced a much lower average PLV than the other three

stimuli; the MID, HIGH, and BROAD stimuli all produced

very similar values. To test these observations we performed

paired t-tests with Bonferroni correction (p< 0.05/6

¼ 0.0083) on all possible pairings of stimuli. These tests

confirm that (i) the strength of FFRENV at F0 is significantly

smaller for the LOW stimulus than for HIGH and BROAD

stimuli [t(1, 19)¼�4.0, p¼ 0.001 and t(1, 19)¼�3.2,

p¼ 0.005, respectively], and trends toward being smaller for

the LOW stimulus than for the MID stimulus [t(1,19)

¼�2.9, p¼ 0.009, which just misses reaching significance

with the strict Bonferroni correction]; but that (ii), no pairs

of PLV values are statistically significantly different from

one another among the MID, HIGH, or BROAD stimuli

[MID vs HIGH: t(1, 19)¼ 0.5, p¼ 0.632; MID vs BROAD:

t(1, 19)¼ 0.6, p¼ 0.544; HIGH vs BROAD: t(1, 19)¼ 0.1,

p¼ 0.891].

IV. DISCUSSION

A. Advantages of PLV analysis

In our study, PLVs estimated from FFRENV data were

statistically more sensitive (had larger z-scores) than did the

corresponding magnitude spectra, both in quiet and in noise,

as long as the z-scores were moderately sized. To confirm

that the PLV is more sensitive than spectral magnitude for

detecting a periodic signal embedded in electroencephalog-

raphy (EEG) noise and to determine how this might vary

with the number of trials available for analysis, we did a

TABLE II. Effects of additive acoustic noise on PLV strength at harmonic

frequencies of F0 in Experiment 1. Bold frequencies had PLV values that

were significantly smaller in noise than in quiet. The noise had a statistically

significant effect on FFRENV at harmonics 200–800 Hz, but not at the funda-

mental frequency.

Harmonic (Hz) Change in PLV Sign test p value

100 þ0.0103 0.7174

200 10.0623 0.0011

300 10.0883 0.0004

400 10.0756 0.0004

500 10.0491 0.0009

600 10.0191 0.0151

700 10.0128 0.0097

800 10.0070 0.0299

FIG. 5. Phase-locking value averaged across subjects as a function of neural

response frequency for the four different acoustic input stimuli, all with fun-

damental frequency of 100 Hz (Experiment 2). For all stimuli, the envelope-

related components of the FFR are greatest at F0 and low-order harmonics

of the fundamental, even for stimuli that do not contain acoustic energy

at F0.

FIG. 6. Phase-locking value, averaged across subjects, at the fundamental

frequency of 100 Hz for each of the four input stimuli. The LOW input stim-

ulus produced a significantly lower FFR at 100 Hz than the other three stim-

uli (see the text).
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simple simulation. We took resting-state EEG (measured in

the absence of stimuli or task), extracted N 300-ms-long

epochs (trials), and used this to simulate the noise in our sim-

ulations. We used these N noise-only epochs to compute the

PLV and spectral magnitude at the “target” frequency (250

Hz, which is near the middle of the range of FFRENV fre-

quencies that were strong in the current experiments) using

the bootstrapping method described in the Appendix. This

produced the null-model distributions of the two metrics.

We then added a 200 nV, 250-Hz sinusoid (a typical size for

FFR components, using our system) to the N epochs and

recomputed the PLV and spectral magnitude for these sig-

nal-plus-noise trials. We calculated z-scores for the signal-

plus-noise vs noise-only distributions for both PLV and

spectral magnitude. We repeated this whole process 20

times, so that we could evaluate the variability in the z-score

estimates. We compared the z-scores for the PLV and spec-

tral magnitude analyses for values of N¼ 50, 100, 150, and

200 (see Fig. 7). With only 50 trials, the z-scores have a

value near one, and are equal for the two analyses. As more

trials are analyzed, the z-scores increase using both analysis

methods; however, the increase is more rapid with N for the

PLV analysis than for the spectral magnitude analysis (in

Fig. 7, triangles are above squares). This result confirms

what we observed in the actual FFRENV data, that when try-

ing to detect a weak sinusoidal signal embedded in EEG

noise, PLV analysis is statistically more sensitive than is

spectral magnitude analysis.

Nonetheless, across subjects and conditions, spectral

magnitude and PLVs produce tightly correlated results.

Together, these results suggest that as long as the number of

trials is sufficient to reveal the signal, either spectral magni-

tude or PLV analysis can be applied successfully to FFRENV

data to quantify differences in the brainstem response across

subjects, conditions, or other factors. However, given that

the PLV analysis is more sensitive, statistically, than the

spectral magnitude analysis, it is likely to yield better results

for conditions where information is just on the cusp of being

statistically reliable using spectral magnitude analysis.

PLVs have another distinct advantage over spectral

analysis methods in that they are unit-less, with values rang-

ing from 0–1. PLVs have the property that when making sta-

tistical inferences and testing hypotheses, the raw PLVs can

be directly compared across conditions, as long as the num-

ber of trials being analyzed is the same in the different con-

ditions (see Bokil et al., 2007 for a consideration of how to

compare conditions with different numbers of trials). This is

in direct contrast with analysis of the average spectral mag-

nitude. The magnitude of the measured signal depends not

only on the power of the signal, but also on the frequency

content and the power of noise sources unrelated to the stim-

ulus that are present in the measures. For brainstem poten-

tials measured on the scalp, the noise has a number of

components, including electrical line noise, muscle artifacts,

eye movement, and background EEG (unrelated to the stim-

ulus) that, together, have power that is typically proportional

to 1/f. Because the noise measures can depend on the imped-

ance of the electrodes on a given day and other factors that

are difficult to control, rational analysis requires the noise

floor to be estimated directly, and results interpreted relative

to the noise in the measure. While this can be done in a num-

ber of ways (e.g., by estimating the noise from baseline

measures that are analyzed in the same way as the signal-

driven epochs), here, we adopted a bootstrapping method to

normalize the spectral magnitude measures and transform

them into units of dB SNR. Using this kind of metric, data

can be compared across frequencies, or even across subjects.

However, this kind of normalization requires extra stages of

processing to quantify the noise as a function of frequency, a

step that is unnecessary when considering the PLV. Thus,

when analyzing FFRENV, PLVs not only provide a more sen-

sitive measure, statistically, than spectral magnitude, but

also are easily interpretable and provide meaningful data

with fewer processing steps.

B. Acoustic generators of FFR harmonics

Because the auditory periphery is nonlinear, the rela-

tionship between the acoustic frequencies present in an input

stimulus and the frequency content of the resulting neural

signal is complex. In Experiment 2, we considered PLVs in

response to harmonic complex tones with the same F0 but

different harmonics, to begin to determine how different

acoustic frequencies contribute to FFRENV.

The LOW stimulus (harmonics 100–500 Hz) contained

five individual frequency components that each should be

well resolved by the auditory periphery (Moore, 2003).

Because the acoustic harmonics are resolved into separate

channels, the responses should be closely related to the raw

stimulus components and thus very sensitive to stimulus

polarity. When the responses to opposite polarity signals are

averaged together, the negative and positive polarities will

tend to cancel, resulting in a relatively weak FFRENV in

FIG. 7. z-scores for detection of a low-amplitude sinusoid embedded in

EEG epochs taken during resting state for one volunteer subject, plotted as a

function of the number of 300-ms-long epochs used. Error bars show the

standard error of the mean over the 20 repetitions of the simulation. PLV

analysis produces a larger z-score than the spectral magnitude analysis once

the number of trials is sufficient to detect the signal.
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response to the LOW stimulus. Of course, the frequency

content of the resulting electrical signal will not be purely si-

nusoidal; the auditory nerve response is half-wave rectified,

and often includes a significant DC component (Pickles,

1982). Moreover, this activity is transformed as it progresses

through the brainstem; our FFRENV measure is a sum of

activity along this pathway. As a result, there may be a

measureable FFRENV in response to the LOW stimulus, even

though the dominant auditory nerve response is phase locked

with opposite phase to positive and negative polarity trials.

Consistent with these ideas, the LOW stimulus produced a

significantly weaker response at F0 than all of the other stim-

uli, but one that was nonetheless statistically significant.

The MID stimulus (harmonics 600–1000 Hz) should be

partially resolved in the cochlea (Moore, 2003). The periph-

eral channels excited by the MID stimulus will both phase-

lock to the temporal fine structure of the input signal and to

envelope fluctuations that occur at the acoustic stimulus fun-

damental frequency and its harmonics (e.g., Javel, 1980;

Palmer, 1982; Joris and Yin, 1992). Therefore, the MID

stimulus is likely to evoke stronger FFRENV responses at

low-order harmonics of the acoustic input than those evoked

by the LOW stimulus. The FFRENV response to the MID

stimulus was consistent with this prediction, producing an

average PLV at F0 that was significantly larger than for the

LOW stimulus.

The acoustic components making up the HIGH stimulus

(harmonics 1200–1600 Hz) should not be well resolved by

the auditory periphery (Moore, 2003). Moreover, as acoustic

carrier frequency increases, there should be an increase in

the proportion of the total response of a peripheral channel

that responds to the driving function envelope, rather than

the carrier oscillations, both because the numbers of harmon-

ics falling within the critical band will increase with increas-

ing frequency and because the degree to which a channel

phase-locks to the envelope, rather than only the carrier, of

the driving signal increases with increasing frequency

(Pickles, 1982). Indeed, the HIGH stimulus produced a

strong FFRENV at the acoustic stimulus fundamental and its

harmonics.

Finally, the BROAD stimulus (harmonics 100–2000 Hz)

contains the sum of the LOW, MID, and HIGH stimuli

(although it also contains a few harmonics not present in any

of the other stimuli). Therefore, the peripheral channels

tuned to the frequencies of the acoustic components in the

LOW, MID, and HIGH frequency ranges should be excited

by essentially the same inputs as they were for these individ-

ual narrowband inputs. To a first order, the FFRENV in

response to the BROAD stimulus might equal the sum of the

responses to the three narrowband signals plus the responses

to those harmonics not present in any of the narrowband sig-

nals (1100 and 1700–2000 Hz). Of course, this approxima-

tion ignores nonlinearities in the auditory pathway, from

cochlear mechanics and cross-frequency-channel neural

processes to the far-field potentials produced by the popula-

tion of neurons. Moreover, even if the system is quasi-linear

and the response to the sum of these inputs is the sum of the

elicited responses, at any given harmonic, the phases of the

contributions from the different frequency regions may

differ, and can either add constructively or destructively.

Indeed, the magnitude of FFRENV at F0 in response to the

BROAD stimulus is much less than the sum of the magni-

tudes of the responses to the LOW, MID, and HIGH inputs,

either because the phases of the responses elicited by the

LOW, MID, and HIGH inputs differ, or due to system nonli-

nearities. This result illustrates how difficult it can be to

understand what kind of FFRENV a particular input signal

will evoke, and the importance of developing quantitative

models of how the FFRENV is generated along the auditory

pathway in order to predict and interpret these subcortical

measures. Only with the advance of such models can the fre-

quency following response be related to physiological mech-

anisms and perceptual function.

C. Contrasting the neural response at F0 to other
neural components

Past studies have demonstrated that FFRENV is strongest

at the fundamental frequency of the driving acoustic stimu-

lus, even when the acoustic input does not contain energy at

F0 (e.g., Greenberg et al., 1987; Wile and Balaban, 2007;

Aiken and Picton, 2006). Results of both Experiment 1 and

Experiment 2 confirm that the neural response at the funda-

mental frequency of the input stimulus is both quantitatively

and qualitatively different from the other frequency compo-

nents of FFRENV. Quantitatively, at F0 FFRENV is larger than

at the other harmonics (Experiments 1 and 2). Qualitatively,

FFRENV at F0 is more robust than the other components, as

evidenced by the fact that additive noise has a greater impact

on the responses at the second and higher-order harmonics

than at F0 (Experiment 1).

In contrast to our results, some past studies have demon-

strated that additive acoustic noise degrades the FFRENV

response, including at F0 (e.g., Anderson et al., 2011); how-

ever, the size of the effect of additive noise on FFRENV

appears to depend not only on the acoustic properties of the

signal and noise, but also on other factors, such as perceptual

abilities that can vary across listeners (e.g., see Cunningham

et al., 2001; Song et al., 2011). We do not know of any stud-

ies of the effects of additive acoustic noise on FFRENV that

used exactly the same stimuli as we employed here (har-

monic complexes consisting of the first eight harmonics of

100 Hz, at equal intensity; broadband Gaussian noise).

Further work is necessary to determine if the robustness of

FFRENV at the fundamental frequency is idiosyncratic to the

stimuli we used here, or a result that will generalize to other

stimuli.

V. CONCLUSIONS

FFRENV responses from the scalp can be effectively ana-

lyzed by computing either the spectral magnitude or the

phase-locking value at F0 of the acoustic input stimulus and

its integer multiples. While these two measures produce met-

rics that are very strongly correlated, for the same inputs the

PLV can be more sensitive, statistically, at least when floor

effects are not at issue. In addition, the PLV can be directly

interpreted and compared across conditions as long as the

number of trials is the same in the conditions; in contrast,
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interpreting the spectral magnitude requires more sophisti-

cated statistical analyses to estimate the frequency-specific

noise in the measurements.

For harmonic complex tones, high-frequency auditory

peripheral channels respond to multiple harmonics of the

input, generating cochlear-induced envelopes that contribute

to FFRENV components at the fundamental frequency of the

input stimulus, as well as to low-order harmonics of this F0.

The FFRENV response at the fundamental frequency of a per-

iodic input stimulus is less affected by additive noise than

other higher-frequency components.
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APPENDIX: ANALYSIS METHODS

As noted in Sec. II F, the noise floor in raw magnitude

measures varies with frequency. We used each subjects’ data

to estimate the expected distribution of the noise floor. Using

this distribution, we estimated the magnitude responses in

dB SNR as a function of frequency. We also used the noise

floor distribution to compute the probability of observing a

given magnitude response by chance in order to test the sta-

tistical significance of the observed magnitude response.

Finally, we analyzed the phase-locking values of the same

data with similar methods.

1. Raw spectral magnitudes

To compute the magnitude responses, we took the fol-

lowing steps:

(1) For each subject s, draw N¼ 400 trials at random from

positive and negative polarities in condition x (quiet/

noise in Experiment 1; the four different stimuli in

Experiment 2), pooled together (on average, 200 each of

positive and negative polarity). Of these trials, the num-

ber of positive polarity trials, Npos, and negative polarity

trials, Nneg, are random, but sum to 400. Define POSi and

NEGi as the random sets of selected positive and nega-

tive trials, respectively, for this random draw (i).
(2) Calculate the DFT for each of the selected time-domain

trials, Ss
n;xðf Þ, where n is the trial number, x is condition,

and f is frequency.

(3) For subject s, draw i, and condition x, calculate the mean

raw spectral magnitude of FFRENV for the N sampled tri-

als, Ms
ENV;x;iðf Þ (in dB, relative to the raw magnitudes of

the readings in voltage) by averaging the complex-

valued spectra of the individual trials over positive and

negative polarity trials

MS
ENV;x;iðf Þ

¼ 20 log
1

400

X
n2POSi

SS
n;xðf Þ þ

X
m2NEGi

SS
m;xðf Þ

 !�����
�����:

(4) Repeat steps 1 through 3 each 100 times to generate dis-

tributions of the raw spectral magnitudes of FFRENV

(i¼ 1 to 100).

(5) Calculate the means of the raw spectral magnitudes for

each subject and condition

M̂
s;raw

ENV;xðf Þ ¼
1

100

X100

i¼1

MS
ENV;x;iðf Þ:

Because these means are computed by averaging identi-

cally distributed random variables, they are well

approximated as Gaussian, allowing us to use standard

parametric statistical tests. The raw spectral magnitude

as a function of frequency is shown by the dashed, thin

lines in Fig. 1 for one example subject.

2. Spectral noise floor

To estimate the individualized estimate of the spectral mag-

nitude noise floor, we repeated steps 1–5 from Sec. A (in

Appendix) exactly 1000 times for each subject, but with the

phases of the spectra set to random values in step 3,

N̂
s;raw;k

ENV;x ðf Þ ¼
1

100

X100

i¼1

20 log
1

N

X
n2POSi

jSS
n;xðf Þjexn

 �����
þ

X
m2NEGi

jSS
m;xðf Þjejxm

!�����;
where xn and xm are random values, uniformly distributed

between 0 and 2p, selected independently for each positive

polarity trial, negative polarity trial, repetition i, and distri-

bution sample 1� k� 1000. The mean of this distribution

was our estimate of the expected noise floor in the measures.

This estimate is shown in Fig. 1 by the thin blue lines plotted

in each panel for one example subject.

3. Normalized spectral magnitudes

The estimated noise floor can be used to calculate the

mean magnitude spectra in units of dB SNR for each subject

and condition. In particular, we normalized the mean raw

magnitude spectra by the sample mean of the distribution of

the raw noise magnitude spectra estimates to find the magni-

tude spectrum of the FFR in units of dB SNR, shown in

Fig. 1 as the solid, thick lines,

M̂
s

ENV;xðf Þ ¼ M̂
s;raw

ENV;xðf Þ �
1

1000

X1000

k¼1

N̂
s;raw;k

ENV;x ðf Þ:

As Fig. 1 illustrates, this normalization of the raw magnitude

spectra, while computationally expensive, takes into account

differences in absolute spectral magnitude of the responses

that are not due to the neural response, but rather arise

because of differences in the noise characteristics.
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4. Statistical significance of spectral magnitude
results

For each subject, we then determined whether the

observed spectral magnitudes, M̂
s

ENV;xðf Þ, evaluated at each

harmonic of 100 Hz ðf ¼ h � 100Þ, were significantly greater

than would be expected by chance, based on the estimated

noise floor distribution generated from the raw measures.

Specifically, we compared M̂
s;raw

ENV;xðf Þ to the null hypothesis

distribution fN̂ s;raw;k

ENV;x ðf Þg1�k�1000. For each relevant har-

monic, we estimated the probability of observing the

observed spectral magnitude by chance by finding the per-

centage of the samples of fN̂s;raw;k

ENV;x ðf Þg1�k�1000 that were

equal to or larger than the observed value M̂
s;raw

ENV;xðf Þ. Results

were Bonferroni corrected for multiple comparisons; a spec-

tral magnitude value was deemed significant if our estimate

of the probability of observing it by chance was less than

p< 0.05/M, where M is the number of harmonics examined

(M¼ 8 in Experiment 1 and M¼ 20 in Experiment 2, yield-

ing threshold probabilities of 0.00625 in Experiment 1 and

0.0025 in Experiment 2).

5. Phase-lock value computations

The steps used to estimate the PLVs for each subject

and condition were

(1) For each subject s, randomly draw 400 trials from posi-

tive and negative polarities in condition� (quiet/noise in

Experiment 1; the four different stimuli in Experiment

2), pooled together. Of these trials, the number of posi-

tive polarity trials, Npos, and negative polarity trials,

Nneg, are random, but sum to 400. Define POSi and NEGi

as the random sets of selected positive and negative tri-

als, respectively, for this random draw (i).
(2) Calculate the phases of the DFTs of the selected time-

domain trials, Ss
n;xðf Þ, defined above, where n is the trial

number, x is condition, and f is frequency,

/s
n;xðf Þ ¼6< Ss

n;xðf Þ:

(3) For subject s, draw i, and condition x, calculate the PLV

of FFRENV,

Ps
ENV;x;iðf Þ ¼

1

400

X
n2POSi

ej/s
n;xðf Þ þ

X
m2NEGi

ej/s
m;xðf Þ

 !�����
�����:

(4) Repeat steps 1 through 3 each 100 times to generate dis-

tributions of the PLVs (i¼ 1 to 100).

(5) Calculate the means of the PLVs for each subject and

condition,

P̂
s

ENV;xðf Þ ¼
1

100

X100

i¼1

Ps
ENV;x;iðf Þ:

Because these means are computed by averaging

identically distributed random variables, they are well

approximated as Gaussian, allowing us to use standard

parametric statistical tests.

6. Statistical significance of PLV results

For each subject, we then determined whether the

observed PLVs, P̂
s

ENV;xðf Þ, evaluated at specific harmonics

of 100 Hz ðf ¼ h � 100Þ, were significantly larger than would

be expected by chance. Since the null model is the same for

all conditions, subjects, and frequencies, we generated only

one random distribution of PLVs fR̂kg1�k�1000, computed by

repeating steps 1–5 1000 times, but with the phase in step 3

of Sec. E set to be random (uniformly distributed, from 0 to

2p, selected independently for each trial and repetition i).

We then compared P̂
s

ENV;xðf Þ to this distribution to estimate

the probability of observing that PLV by chance as the per-

centage of the samples of fR̂kg1�k�1000 that were equal to or

larger than the observed value P̂
s

ENV;xðf Þ. As with the spec-

tral magnitude analysis, results were Bonferroni corrected

for multiple comparisons; a PLV was deemed significant if

our estimate of the probability of observing it by chance was

less than p< 0.05/M (M¼ 8 in Experiment 1 and M¼ 20 in

Experiment 2).
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