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Abstract We recently showed that listeners with normal hearing thresholds vary 
in their ability to direct spatial attention and that ability is related to the fidelity of 
temporal coding in the brainstem. Here, we recruited additional middle-aged lis-
teners and extended our analysis of the brainstem response, measured using the 
frequency-following response (FFR). We found that even though age does not pre-
dict overall selective attention ability, middle-aged listeners are more susceptible to 
the detrimental effects of reverberant energy than young adults. We separated the 
overall FFR into orthogonal envelope and carrier components and used an existing 
model to predict which auditory channels drive each component. We find that 
responses in mid- to high-frequency auditory channels dominate envelope FFR, 
while lower-frequency channels dominate the carrier FFR. Importantly, we find 
that which component of the FFR predicts selective attention performance changes 
with age. We suggest that early aging degrades peripheral temporal coding in mid-
to-high frequencies, interfering with the coding of envelope interaural time differ-
ences. We argue that, compared to young adults, middle-aged listeners, who do not 
have strong temporal envelope coding, have more trouble following a conversation 
in a reverberant room because they are forced to rely on fragile carrier ITDs that 
are susceptible to the degrading effects of reverberation.
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1  Introduction

The cacophony of voices, noises, and other sounds that bombards our ears in 
many social settings makes it challenging to focus selective auditory attention. 
Various acoustic cues allow us to group sound components into perceptual objects 
to which we can direct attention (Darwin 1997; Shinn-Cunningham 2008; Shamma 
and Micheyl 2010; Shamma et al. 2011). In most common settings, reflected 
sound energy intensifies the problem of separating sound sources and selecting 
the source of interest by blurring the sound features that support source segrega-
tion and selection.

Many listeners report difficulties in everyday situations demanding selective 
attention, especially as they age (Leigh-Paffenroth and Elangovan 2011; Noble 
et al. 2012). We wondered if these problems are most evident when reverberant 
energy challenges the auditory system. We designed a task in which listeners 
had to focus spatial attention on a center, target speech stream in a mixture of 
three otherwise identical streams of spoken digits, and then varied the level of 
reverberation (Ruggles et al. 2011; Ruggles and Shinn-Cunningham 2011). By 
design, listeners are likely to rely on interaural timing differences (ITDs) to 
perform this task (Ruggles et al. 2011). Since reverberant energy causes inter-
aural decorrelation, we found, as expected, that selective attention performance 
got worse with reverberation. We also found that individual ability on our task 
was correlated both with perceptual sensitivity to frequency modulation (FM) 
and overall strength of the frequency-following response (FFR; see also Strelcyk 
and Dau 2009). However, we had too few middle-aged listeners to explore age 
effects.

Here, we recruited additional middle-aged listeners so that we could look for aging 
effects. We extended our analysis of the FFR by separating the response into the portion 
phase locking to the stimulus envelope (FFR

ENV
) and that phase locking to the stimulus 

carrier (FFR
CAR

; similar to approaches described in Aiken and Picton 2008; Gockel et al. 
2011). We used existing brainstem response models (Dau 2003; Harte et al. 2010) to 
investigate which acoustic frequencies contribute to FFR

ENV
 and FFR

CAR
.

2  Methods

2.1  Subjects

A total of 22 listeners ranging in age from 20.9 to 54.7 years participated in the 
experiments. All listeners had average audiometric hearing thresholds of 20-dB HL 
or better for frequencies from 250 to 8,000 Hz and left-right ear asymmetry of 15 dB 
or less at all frequencies. Of the 22 listeners, 17 were participants in earlier studies; 
the newly recruited five all were over 40 years of age. All gave informed consent 
and were paid for their participation.
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50355 How Early Aging and Environment Interact in Everyday Listening

2.2  FFR Measurement

FFRs were measured in response to a /dah/syllable presented in positive polarity for 
2,000 trials and in inverted polarity for 2,000 trials (Ruggles et al. 2011). Trials con-
taining eyeblinks or other artifacts were removed, leaving at least 1,800 clean trials 
for each subject, condition, and stimulus polarity. The time series from each trial was 
windowed with a first-order Slepian taper (Thomson 1982) and the Fourier transform 
was computed. We generated distributions of phase-locking values (PLV) for differ-
ent conditions using a bootstrapping procedure to produce 200 independent PLVs, 
each computed from a draw (with replacement) of 800 trials (Ruggles et al. 2011). 
We broke the PLV into orthogonal envelope and carrier components (FFR

ENV
 and 

FFR
CAR

) at every frequency from 30 to 3,000 Hz. FFR
ENV

 was calculated with equal 
draws from responses to each polarity, treating positive- and negative-polarity trials 
identically. FFR

CAR
 was determined with equal draws from responses to each polarity 

but inverting the phase of negative-polarity trials (see also Aiken and Picton 2008; 
Gockel et al. 2011). For each harmonic of 100 Hz, we computed the proportion of the 
total FFR in FFR

ENV
 and in FFR

CAR
.

2.3  FFR Modeling

We used an existing model of brainstem responses (Dau 2003; Harte et al. 2010) to 
analyze the sources of the different components of the FFR. We presented the model 
with our /dah/ syllable, then calculated the FFR by summing model outputs across 
peripheral channels with CFs spanning the range from 100 up to 10,000 Hz. At each 
harmonic (multiple of 100 Hz), we then computed the proportion of the total FFR 
phase locked to the envelope and the proportion phase locked to the carrier (FFR

ENV
 

and FFR
CAR

). We then considered the output of each peripheral channel to explore 
which acoustic frequencies contributed to which components of the FFR. Finally, 
we analyzed the relative strength of the contribution of each peripheral channel to 
FFR

ENV
 at the fundamental frequency (100 Hz).

2.4  Spatial Attention Task

Subjects were asked to report a sequence of four digits appearing to come from in 
front while ignoring two competing digit streams, spoken by the same talker, from 
+15° to −15° azimuth (Ruggles and Shinn-Cunningham 2011). Spatial cues were 
simulated using a rectangular-room model with three different wall characteristics 
(Ruggles and Shinn-Cunningham 2011). Prior to statistical analyses, percent cor-
rect scores were transformed using a rationalized arcsine unit (RAU; Studebaker 
1985). In the task, listeners report one of the three presented words nearly 95 % of 

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
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the time; errors arise because of failures of selective attention, rather than memory 
limitations (Ruggles and Shinn-Cunningham 2011). Therefore, percent scores in 
the range 0.33–1.0 were linearly transformed to 0–1.0 (scores < 0.33 set to 0) prior 
to applying the transform.

2.5  FM Detection Task

Listeners indicated which of three 750-Hz tones (interstimulus interval 750 ms) 
contained 2-Hz frequency modulation (Strelcyk and Dau 2009). A two-down, 
one-up adaptive procedure (step size 1 Hz) estimated the 70.7 % correct FM thresh-
old. Individual thresholds were computed by averaging the last 12 reversals per run, 
then averaging across six runs.

3  Results

3.1  Generators of FFR
ENV

 and FFR
CAR

Figure 55.1 compares measurements and model predictions of the relative strengths 
of FFR

ENV
 and FFR

CAR
 at harmonics of a periodic input (F0 = 100 Hz). The lowest 

frequencies of the FFR are dominated by FFR
ENV

 and the higher harmonics are 
dominated by FFR

CAR
. Both FFR components approach the noise floor in the empir-

ical measurements by 800–900 Hz, which may help explain why the percentages of 
FFR

ENV
 and FFR

CAR
 in the total FFR both asymptote to 0.5 as frequency increases 
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and why the measured FFR
ENV

 does not drop as completely or as rapidly as the mod-
eled FFR

ENV
 as frequency increases.

Modeling results also suggest that different acoustic frequencies contribute to FFR
ENV

 
and FFR

CAR
. In the model, peripheral channels with the lowest characteristic frequencies 

(CFs) tend to contribute to FFR
CAR

 and peripheral channels with the highest CFs contrib-
ute to FFR

ENV
, with a crossover point of about 2 kHz (Fig. 55.2a). The model also pre-

dicts that the channels that contribute the most to the 100-Hz FFR
ENV

 for our /dah/ 
syllable have CFs in the mid-to-high frequency range, around 1 kHz (Fig. 55.2a).

3.2  Effects of Reverberation and Age on Selective Attention

Selective attention performance decreases as reverberant energy increases, reach-
ing chance levels for all but five listeners in the highest reverberation level 
(Fig. 55.3; chance performance is one-third; modeling performance as a binomial 
distribution of 600 independent trials, we computed the 95 % confidence interval 
around this level).

We quantified the fidelity of envelope temporal structure encoding for each lis-
tener as the FFR

ENV
 at 100 Hz. To quantify coding of the temporal fine structure in 

the input stimulus, we took the average of FFR
CAR

 for four harmonics (600–900 Hz, 
henceforth denoted FFR

CAR-AV
). Importantly, these two statistics are not significantly 

correlated (r = 0.03, p = 0.905, N = 22), supporting the modeling prediction that each 
component reflects different aspects of temporal coding precision driven by differ-
ent tonotopic portions of the auditory pathway.
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We performed a multi-way, repeated-measures ANOVA on the selective atten-
tion results with factors of reverberation, age, FFR

ENV-100
, and FFR

CAR-AV
 (treating 

reverberation as categorical and all other factors as continuous). Although there is 
no statistically significant effect of age on selective attention performance 
(Fig. 55.1a; F(1, 16) = 1.42, p = 0.251), there is a significant interaction between 
age and reverberation (F(1, 16) = 5.88, p = 0.025) and a significant main effect of 
reverberation (F(1, 16) = 155.17, p = 7.01 × 10−11). Although age does not predict 
how well an individual performs overall, the toll that reverberation takes increases 
with age.

3.3  Relationship Between FFR Components and Performance

Consistent with previous results showing that the total FFR strength at 100 Hz (a 
measure dominated by envelope phase locking; see Fig. 55.1) predicted selective 
attention ability (Ruggles et al. 2011), we find a significant main effect of FFR

ENV-100
 

on performance (F(1, 16) = 5.03, p = 0.040). Importantly, however, there is a 
significant interaction between age and FFR

ENV-100
 (F(1, 16) = 4.64, p = 0.048). There 

is also a significant interaction between age and FFR
CAR-AVE

 (F(1, 16) = 4.64, 
p = 0.047), with no main effect of FFR

CAR-AVE
 (F(1, 16) = 0.216, p = 0.649). The 

regression coefficients of the ANOVA analysis reveal that the younger a listener is, 
the better FFR

ENV-100
 is in predicting selective attention, whereas FFR

CAR-AVE
 is a bet-

ter predictor the older the listener. These results suggest that FFR
ENV-100

 and  
FFR 

CAR-AVE
 reflect different perceptual cues that each aid in selective auditory 

 attention but that are weighted differently as listeners age.
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3.4  Individual Differences in FFR

Figure 55.4 plots FFR
ENV-100

 and FFR
CAR-AVE

 as a function of age. While both compo-
nents tend to decrease as age increases, age is not significantly correlated with either 
FFR

ENV-100
 or with FFR

CAR-AVE
. Notably, a good percentage of the younger adult lis-

teners have strong FFRs (particularly for FFR
ENV-100

), whereas nearly all the older 
listeners have weak FFRs. Thus, most of the variance in the FFRs is from the 
younger listeners and cannot be explained by age alone.

3.5  Relationship Between FM Detection Threshold  
and Performance

We previously found that FM detection threshold, a measure thought to reflect cod-
ing fidelity of temporal fine structure (Moore and Sek 1996), was also related to 
attention performance (Ruggles et al. 2011). This relationship remains significant 
with our additional subjects, as shown in Fig. 55.5.

4  Discussion

Some previous studies have found that aging reduces FFR strength (Clinard et al. 
2010); however, not all studies have found group age effects (Vander Werff and 
Burns 2011). Moreover, even studies that find age-related group differences have 
not consistently found corresponding age-related differences in auditory perceptual 
abilities (Clinard et al. 2010). The current study helps explain these discrepant 
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findings, in that there is a large variation in brainstem responses even among young 
adults. By looking at individual subjects and considering different components of 
the FFR, we find reliable interactions between aging, perceptual ability, and specific 
components of the FFR.

Our results suggest that the FFR envelope component at the fundamental fre-
quency of the stimulus tends to become weak as listeners reach middle age, 
possibly because the neural response to suprathreshold sound at acoustic fre-
quencies in the mid-to-high frequency range (e.g., around 1,000 Hz) is reduced 
in overall strength. Physiological results show that noise exposure can reduce 
the magnitude of neural responses that are suprathreshold, even when thresh-
olds are “normal” (Kujawa and Liberman 2009). These changes may come about 
because low-spontaneous-rate nerve fibers are particularly vulnerable to damage 
(Schmiedt et al. 1996).

In our task, performance is primarily limited by the ability to successfully direct 
spatial auditory attention, which may help explain why performance depends on the 
fidelity of envelope temporal coding. Envelope ITD cues in high-frequency sounds 
are known to carry spatial information; however, a number of classic laboratory 
experiments establish that for wideband, anechoic sounds, low-frequency carrier 
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ITDs perceptually dominate over high-frequency spatial cues (Wightman and 
Kistler 1992; Macpherson and Middlebrooks 2002). The current results suggest that 
in reverberant settings, high-frequency ITD cues, encoded in signal envelopes, may 
be more important for spatial perception of wideband sounds than past laboratory 
studies suggest.

In anechoic conditions, temporal fine structure cues and temporal envelope cues 
both provide reliable information for directing selective spatial auditory attention. 
However, in reverberant settings, interaural decorrelation of temporal fine structure 
is more severe than interaural decorrelation of envelope structure; thus, high- 
frequency envelope ITD cues may be crucial to spatial perception in everyday set-
tings. This possibility points to the importance of providing high-frequency 
amplification in assistive listening devices, which have typically focused on audibil-
ity of frequencies below 8 kHz.

Our results hint that middle-aged listeners, who have generally weak encoding of 
mid- to high-frequency temporal cues, rely on temporal fine structure cues to direct 
selective spatial auditory attention. This reliance on carrier ITD cues, which are 
relatively fragile in ordinary listening environments, may explain why middle-aged 
listeners report difficulty when trying to converse in everyday social settings. In 
contrast, younger listeners appear to give great perceptual weight to envelope ITD 
cues when directing selective attention, providing them with a more reliable cue for 
selective spatial auditory attention.
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