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Selective auditory attention is essential for human listeners to be able to communicate
in multi-source environments. Selective attention is known to modulate the neural
representation of the auditory scene, boosting the representation of a target sound
relative to the background, but the strength of this modulation, and the mechanisms
contributing to it, are not well understood. Here, listeners performed a behavioral
experiment demanding sustained, focused spatial auditory attention while we measured
cortical responses using electroencephalography (EEG). We presented three concurrent
melodic streams; listeners were asked to attend and analyze the melodic contour of one
of the streams, randomly selected from trial to trial. In a control task, listeners heard the
same sound mixtures, but performed the contour judgment task on a series of visual
arrows, ignoring all auditory streams. We found that the cortical responses could be
fit as weighted sum of event-related potentials evoked by the stimulus onsets in the
competing streams. The weighting to a given stream was roughly 10 dB higher when
it was attended compared to when another auditory stream was attended; during the
visual task, the auditory gains were intermediate. We then used a template-matching
classification scheme to classify single-trial EEG results. We found that in all subjects,
we could determine which stream the subject was attending significantly better than
by chance. By directly quantifying the effect of selective attention on auditory cortical
responses, these results reveal that focused auditory attention both suppresses the
response to an unattended stream and enhances the response to an attended stream.
The single-trial classification results add to the growing body of literature suggesting that
auditory attentional modulation is sufficiently robust that it could be used as a control
mechanism in brain–computer interfaces (BCIs).
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INTRODUCTION
Most human listeners are able to selectively attend to a target
sound in a complex scene with relative ease. This ability depends
on both sensory and cognitive processes, which interact to enable
us to segregate competing streams, focus selective attention on an
important target source, and recognize the target sound’s content
(Bregman, 1990; Wrigley and Brown, 2004; Shinn-Cunningham
and Best, 2008; Lee et al., 2013). Though the specific mecha-
nisms supporting these processes are not well understood, gross
changes in neural activity due to attention can be observed in
auditory-evoked event related potentials (ERPs) measured using
electroencephalography (EEG; e.g., Hillyard et al., 1973; Hansen
and Hillyard, 1980; Woldorff et al., 1987). Such studies find
changes in the amplitude and shape of ERPs, suggesting that selec-
tive attention acts as a gain on neural activity, causing a relative
enhancement of the representation of attended sensory inputs
and a relative decrease in the representation of unattended or
ignored inputs (Hillyard et al., 1998). A particularly salient effect
of selective auditory attention is the enhancement of the N1 ERP
component evoked by an attended sound (e.g., Hillyard et al.,

1973), which, given its 100 ms latency (relative to stimulus onset)
suggests it is generated in early auditory sensory cortex (Scherg
et al., 1989). The idea that selective auditory attention strongly
modulates the neural representation of sound in sensory auditory
cortex is also supported by MEG studies (Woldorff et al., 1993;
Alho et al., 2012; Ding and Simon, 2012) and fMRI data (Grady
et al., 1997; Jäncke et al., 1999; Janata et al., 2002).

The current study explores how selective attention modulates
ERPs evoked by competing musical streams. Listeners performed
a “contour judgment” task that required them to focus atten-
tion on one of three simultaneous melodic contours and make
judgments about the shape of the attended contour. This task
mimics a real-world listening situation by requiring listeners to
focus and sustain attention on a stream in order to analyze its
content. We fit the EEG data as a scaled sum of the neural
responses elicited by the individual streams played in isolation,
allowing the scaling to depend on how a listener focuses atten-
tion. By finding the best scaling factors, or “attentional gains,” we
quantified the amount of attentional modulation of the cortical
response.
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A number of existing brain–computer interfaces (BCIs) track
changes in EEG signals corresponding to changes in how a user
directs attention to visual objects (Kelly et al., 2005; Allison et al.,
2010). Traditional ERP studies of auditory attention demonstrate
task-related changes in the morphology of ERPs averaged over
many trials (Hill et al., 2005). While such studies show that atten-
tion modulates the neural response, they do not test whether
effects are strong enough or consistent enough that single-trial
evoked responses can be used to deduce how attention is directed.
To the degree that single-trial EEG classification is possible, it
suggests that a BCI could be constructed that determines how a
user (such as a locked-in patient) is focusing attention and then
uses this information to navigate a command menu or control a
device. A few recent studies suggest that auditory attention can
modulate EEG responses sufficiently to be used in such a manner
(e.g., Kerlin et al., 2010; Hill and Schölkopf, 2012; Lopez-Gordo
et al., 2012). Because the modulation of attentional gain was pro-
nounced in our experimental paradigm, we tested whether our
single-trial EEG results could be used to classify the direction to
which a listener was attending. We used a template-matching clas-
sification approach (Woody, 1967; Kerlin et al., 2010) to estimate
from single-trial epochs which source the listener had attended
on each trial. Classification rates were significantly above chance
for all subjects. Given this success using single-trial non-invasive
EEG, our results add to the growing body of literature demon-
strating the potential for auditory selective attention to be used
in EEG-based BCIs. Our approach models ERP waveforms as
templates and uses a cross-subject validation to test classification
performance; thus, our success suggests that an auditory atten-
tion BCI even could even be used successfully “out of the box,”
without user-specific training of the EEG classifier.

MATERIALS AND METHODS
SUBJECTS
Ten volunteers (two female, aged 21–34 years) participated in
the experiments. All were right handed and had normal hear-
ing. All provided written informed consent to an experimental
protocol approved by the Boston University Institutional Review
Board. Subjects were compensated at the rate $20/h for their
participation.

TASK DESCRIPTION
Subjects performed two types of trials: auditory-attention trials
and visual trials (used as a control). In all trials, listeners were
presented with three auditory streams, one from left of center,
one from midline, and one from right of center (see below). In
the auditory-attention trials, a visual cue presented at the start of
the trial instructed listeners to shift attention covertly to either the
left or right auditory stream (always ignoring the center stream)
while maintaining visual fixation on a fixed dot on the center of
the computer stream. At the end of the auditory-attention trial,
they were asked to identify whether the attended tone sequence
was ascending, descending, or zigzagging. In the visual trials, the
visual cue at the start of the trial indicated that listeners should
attend to a sequence of arrows presented at the fixation point.
Just as in the attend-auditory trials, subjects identified whether
the arrows changed direction from down to up, up to down, or

zigzagged. Subjects were instructed to ignore the auditory streams
during visual-trial presentations.

The acoustic streams were statistically identical in auditory-
attention and in visual trials; only the task of the subject differed
across trial types, and only the direction of the attended audi-
tory stream differed between attend-left and attend-right auditory
trials. In both auditory-attention and visual trials, subjects iden-
tified which kind of sequence was present by pressing one of three
buttons (thus equating the motor planning and execution in the
responses to the two trial types).

STIMULI
All auditory stimuli were generated and processed using Matlab
(Mathworks, Natick, MA). The auditory stimuli consisted of three
concurrent melodic streams, each of which was comprised of
multiple complex tones (henceforth referred to as “notes”). On
each trial, each of the three streams had a distinct isochronous
rhythm (three, four, or five notes), a distinct timbre (cello, clar-
inet, or oboe), a distinct pitch range that did not overlap with
that of the other streams (bottom, middle, top), and a distinct
lateral location (left, center, or right; see an example in Figure 1).
This redundant set of cues ensured that the competing streams
were easily segregated, perceptually, so that listeners could focus
attention on whichever stream was important on a given trial.

The center stream, which was never the focus of attention,
always consisted of three notes, each 1 s in duration; the left
stream always contained four notes, each 750 ms in duration;
and the right stream had five notes, each 600 ms in duration.
All streams started and ended together and had the same total
duration of 3 s. By design, although all three streams turned on
together, each of the subsequent note onsets in each of the streams
was distinct from the onsets in the other streams (see Figure 1).
To achieve a natural, gradual time course, cosine squared onset

FIGURE 1 | Auditory stimuli waveforms. Left, center, and right auditory
streams are each isochronous, and made up of four, three, and five notes,
respectively. All streams have a total duration of 3 s; however, except for
the first note, the streams were designed to have note onsets that are
temporally resolvable across streams note onsets are asynchronous.

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 115 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choi et al. Attentional modulation of auditory cortex

and offset ramps (duration 100 ms) and a slowly decaying expo-
nential curve (time constant 100 ms) were applied to each note.

The timbre and pitch range of the notes co-varied: the cello
was always in the bottom pitch range, the clarinet in the mid-
dle pitch range, and the oboe in the top pitch range. To simulate
the different timbres, we extracted the harmonic magnitudes of
cello, clarinet, and oboe sound samples from a publically avail-
able corpus (Electronic Music Studios, University of Iowa, http://
theremin.music.uiowa.edu/MIS.html) and applied these spec-
tral shapes to synthetized harmonic complexes of the desired
pitches (multiplying a broadband harmonic complex made up
of equal intensity partials by the spectral filter derived from the
appropriate instrument).

Each of the three instrument streams was made up of ran-
dom sequences of two different notes, a low pitch and a high
pitch, separated by roughly four semi-tones (a major third). The
bottom-range cello notes had fundamental frequencies (F0) of
either 240 or 300 Hz. The middle-range clarinet notes had F0s of
either 320 or 400 Hz. The top-range oboe notes had F0s of either
720 or 900 Hz. In addition, the oboe stream was always played
from the center (and hence was always to be ignored). In con-
trast, on each trial, the cello stream was randomly assigned to
come either from the left (four note melody) or the right (five
note melody), and the clarinet stream was assigned to come from
the side opposite the cello stream.

The spatial directions of each stream were manipulated using
head related transfer functions (HRTFs). HRTFs were recorded
at a distance of 0.66 m in the horizontal plane, 0◦ in eleva-
tion, and at −60◦ (left), 0◦ (center), and +60◦ (right) in the
azimuthal direction on a sample subject (methods described in
Shinn-Cunningham et al., 2005).

The simple melodies making up each stream were constructed
from the low and high notes of the associated instrument. On
each trial, each melody was randomly selected to be ascending,
descending, or zigzagging. For ascending trials, a transition point
was selected randomly to fall anywhere between two notes, and
then all notes prior to the transition were set to be low and all
notes after the transition to be high. Similarly, for descending
trials, a transition point was selected and all notes prior to the
transition were set to be high and all notes after the transition
to be low. Finally, zigzagging melodies was created by randomly
selecting two transition points, then randomly setting all notes
before the first transition to be either low or high, all notes
between the transition points to be the opposite value (high or
low) and all notes after the final transition point to be the same
as the initial notes (e.g., valid five-note-long zigzagging melodies
include L-L-H-H-L and H-L-H-H-H).

We were initially interested in whether attentional modulation
could be observed in an auditory steady state response (ASSR)
time locked to amplitude modulation of the notes in the streams,
since the visual steady state response (VSSR) is a very effective
marker of visual attention (Morgan et al., 1996; Müller et al.,
1998, 2003; Ding et al., 2006). Therefore, the competing streams
were also amplitude modulated at frequencies to which the EEG
signal is known to phase lock in response to an isolated, mod-
ulated auditory stream (Rees et al., 1986; Linden et al., 1987;
Ross et al., 2000). We added a modest, low-alpha-range sinusoidal

amplitude modulation (5 or 8 Hz, 50% amplitude depth) as well
as a gamma-range sinusoidal amplitude modulation (37 or 43 Hz,
100% amplitude depth) to both the left and right streams (the
streams that could be the target of attention). Specifically, one of
the two streams was modulated at 5 and 37 Hz, and the other
at 8 and 43 Hz (randomly selected from trial to trial). The cen-
ter stream was always amplitude modulated at 40 Hz with 100%
depth. This modulation made the notes sound somewhat dif-
ferent from their original timbres, but did not interfere with
either pitch perception or with the perceptual segregation of
the competing streams. The ASSR in the raw EEG responses
was statistically significant (i.e., the phase-locking to the ASSR
frequencies was above the noise floor for most subjects and condi-
tions); however, the strength of the ASSR proved to be unreliable
as a marker of attention (the ASSR increased with attentional
focus in some subjects, did not change significantly in some sub-
jects, and decreased in some subjects). Therefore, we did not
consider the ASSR further.

In visual control trials, a visual stream of arrows was pre-
sented from the center fixation point. Each of the visual streams
consisted of an isochronous sequence of six down (∨) and up
(∧) arrows. Because there was no visual gap between frames,
only transitions from down to up or from up to down were
perceived as new events. On each visual-task trial, one of ten
possible visual sequences was randomly selected and presented.
Three of the visual streams had a single transition of down to
up (DDDDUU; DDDUUU; DDUUUU), three had a single tran-
sition of up to down (UUUUDD; UUUDDD; UUDDDD), and
four had two transitions (DDDDUD; DDUUUD; UUUUDU;
UUDDDU). Note that none of the visual sequences had a tran-
sition between the first and second arrows. Given the stimulus
timings, 40% of the visual trials had a visual transition between
the second and third arrows (which temporally aligned with the
onset of second note in the center auditory stream), 20% had a
visual transition between the third and fourth arrows (which tem-
porally aligned with the onset of third note in the left auditory
stream), 40% had a visual transition between the fourth and fifth
arrows (which temporally aligned with the onset of third note in
the center auditory stream), and 40% had a transition between
the fifth and sixth arrows.

STIMULUS PRESENTATION AND TRIAL STRUCTURE
The experimental flow (illustrated in Figure 2) was controlled
using Matlab with the Psychtoolbox 3 extension to present the
visual cues and visual stimuli (Brainard, 1997; Pelli, 1997; Kleiner
et al., 2007). Sound stimuli were presented using Etymotic (Elk
Grove Village, IL) ER-1 insert headphones connected to a Tucker-
Davis Technologies (Alachua, FL) System 3 unit. Software inter-
faced with the TDT hardware to play back the sound stimuli
and to provide timing signals for EEG recordings. The stim-
ulus sound level was fixed to 70 dB SPL, calibrated based on
root-mean-squared values.

On each trial, subjects were instructed to fix their gaze to a
dot presented at the center of the screen. After 200 ms, a visual
cue appeared next to the dot and stayed on for 500 ms. This
visual cue was either a single arrow (either “<” or “>”) indicating
which auditory stream subjects should attend (auditory-attention
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FIGURE 2 | Structure of an attend-auditory trial. Trials begin with a visual
fixation point presented for 200 ms, after which a 500-ms-long visual cue
appears to instruct the subject as to what stream to attend (“<” to attend to
the left auditory stream; “>,” as above, to attend to the right auditory stream;
“<>” to attend to visual arrows appearing at the fixation point). There is a

700-ms-long gap before the sound (and, on attend-visual trials, arrow)
streams begin to play. After the end of the streams, listeners have 1 s during
which a circle surrounds the fixation point, instructing listeners to identify the
kind of contour (“1” for ascending, as in the above example; “2” for
descending; and “3” for zigzagging).

trials) or two arrows facing opposite directions (“<>”) indicating
a visual trial. 700 ms after the visual cue disappeared, the audi-
tory stimuli described above were presented (duration 3 s). At the
end of the sounds, a circle appeared around the fixation dot to
indicate that the user should enter a response using a button box,
either “1,” “2,” or “3” (corresponding to ascending, descending, or
zigzagging). This response period lasted 1 s; answers made either
before the sound finished playing or after the response period
expired were marked as incorrect.

Subjects repeated training blocks of 20 auditory-attention tri-
als until they achieved 80% or higher accuracy in labeling the
melodies. Nine subjects were easily trained and achieved this
threshold performance level within three demo sessions, but one
subject failed to reach the 80% criterion even after repeated
training blocks and was dismissed from further participation.

For the main portion of the experiment, a total of 480 trials
were presented (12 blocks, each of 40 trials), with 320 auditory-
attention trials (160 each for attend left and attend right), and
160 visual trials. Each of the 12 blocks contained roughly equal
numbers of attend-left, attend-right, and visual trials, randomly
ordered within a block.

PASSIVE SINGLE-NOTE ERP MEASUREMENT
To fit the cortical responses measured during the attend-auditory
task, we used a single-note ERP elicited by the presentation of
isolated complex tones. These results were used both in an ERP
prediction model, and to compute weighting factors used in
single-trial EEG classifications. Three of the 9 subjects partici-
pated in the single-note EEG measurement. Subjects watched a
silent movie while listening to 100-ms long notes presented once

a second for approximately 5 min, for a total of about 300 pre-
sentations per subject. The notes were comprised of the first 10
harmonics of 400 Hz, and had 5-ms-long cosine-squared on and
off ramps.

EEG DATA ACQUISITION AND ANALYSIS
EEG data was collected in all blocks of the behavioral task, as
well as during the passive single-note ERP measurement. EEG
data was collected using a Biosemi ActiveTwo system to record at
2048 Hz from 32 scalp electrode positions in the standard 10/20
configuration. Four additional electrodes monitored vertical and
horizontal EOG, and two electrodes were placed on the mastoids
for reference. Timing signals sent from the TDT to mark stimu-
lus events were recorded in an additional channel. The recordings
were re-referenced to the average of the two mastoid electrode
responses, then bandpass filtered from 2 to 10 Hz using a 2048
point FIR filter applied offline.

For each trial, measurements from each electrode were base-
line corrected using the mean value from −100 to 0 ms relative to
stimulus onset. The raw data were down-sampled to a 64 Hz sam-
pling rate prior to analysis. Any trials contaminated by artifacts
(a signal exceeding a threshold of ±70 μV) were rejected from
further analyses.

In the behavioral task, epochs from −100 to 3000 ms rela-
tive to the start of the first note were extracted. Each epoch
was baseline to the mean of the pre-stimulus response (−100
to 0 ms). Any trials in which the subject responded incorrectly
were removed from further EEG analysis. After removing trials
with EEG artifact and with incorrect responses, there were a min-
imum of 244 (76%) trials and a maximum of 305 (95%) trials

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 115 | 4

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choi et al. Attentional modulation of auditory cortex

of each type of trial (attend-left, attend-right, visual task) for
each of the subjects. ERPs for a given condition were first aver-
aged for each subject, then averaged across subjects to yield the
grand-average ERP.

Single-note ERP measurements were analyzed in epochs
from −0.1 s to +0.5 s relative to the onset of the isolated
note. After artifact rejection, the remaining data (714 tri-
als, combined across the three subjects) was averaged to esti-
mate a stereotypical single-note ERP. As discussed in the
results, this single-note ERP estimate was used to model
the ERPs evoked by individual notes in each stream during the
attend-auditory task.

RESULTS
BEHAVIORAL RESULTS
In general, subjects performed well on the behavioral task.
Across subjects, mean performance was 95.9, 92.7, and 94.8%
for attend-visual, attend-left, and attend-right conditions, respec-
tively. Individual subject performance ranged from 99.1% cor-
rect (subject 8) down to 81.9% (subject 9) correct across the
9 subjects tested. There was no statistically significant differ-
ence in performance when listeners attended to the left (four-
note) stream and when they attended to the right (five-note)
stream (t-test, p = 0.21). Across subjects, performance in the
attend-visual condition was significantly correlated with perfor-
mance in the attend-auditory conditions (Pearson correlation
coefficient r = 0.88, p = 0.0018). However, these differences
in behavioral performance across subjects were not signifi-
cantly correlated with any of the differences in the strength
of attentional modulation that we found, discussed below
(e.g., compared to the individual differences in the clas-
sification accuracy achieved, shown in Figure 9D, r = 0.52,
p = 0.15).

SINGLE-NOTE ERP
In order to model the effects of attention, we fit the ERPs in
response to the three different attention conditions using approx-
imations of the single-note ERP. Specifically, we first fit the
single-note ERP with a simple, parameterized model, as described
here, which we then used to model the full attend-auditory ERPs
(see below).

The single-note ERP, shown in Figure 3A for all of
the electrodes (different color traces), had prominent posi-
tive and negative deflections corresponding to a stereotypical
ERP. The largest and most consistent of these deflections
were the P1 (the first prominent positive reflection, around
50–80 ms post-onset), the N1 (the first negative deflec-
tion, around 100 ms post-onset), and the P2 (the positive
deflection around 150–200 ms post-onset). Both the absolute
magnitudes of these deflections and their relative strengths var-
ied across electrodes, but tended to be strongest over frontal
electrodes. Later negative and positive deflections were also
present, but were smaller and more variable across elec-
trodes.

At each electrode we approximated the first 250 ms of the
single-note ERP using a three-component fit that had peaks
corresponding to P1, N1, P2, each of which was modeled as

a Gaussian function. Specifically, the 3-component fit of the
single-note ERP for EEG channel k was given by:

h
single3
k (t) = ak,P1e

− (t − bk,P1)
2

2ck,P1
2 − ak,N1e

− (t − bk,N1)
2

2ck,N1
2

+ ak,P2e
− (t − bk,P2)

2

2ck,P2
2

, k = {1, 2, . . . , 32} (1)

Here, t represents time, while the parameters ak,i, bk,i, and
ck,i (i = P1, N1, P2) respectively determine the magnitude, peak
response time (post-single-note onset), and duration of each of
the three early ERP components measured at channel k. These
parameters were fit using a non-linear least-squares method
that iterated to find the best fit (based on the mean squared
error) using the trust-region-reflective algorithm (Coleman and
Li, 1996), with upper and lower bound constraints on bk,i and ck,i

parameters. The upper and lower bounds were manually assigned
based on the single-note ERP shown in Figure 3A; the lower
bounds of bk,i were 0, 73.2, and 161.1 ms and the upper bounds
were 83.0, 156.3, and 244.1 ms for i = P1, N1, P2, respectively.

Figure 3B shows the resulting h
single3
k (t), while Figure 3C shows

the three constituent Gaussian components. As these results show,
the dominant early features in the single-note ERP were well
approximated by this simple fitting procedure.

ATTENTIONAL MODULATION OF AVERAGE ERPs
Figure 4 shows grand-average ERPs for the visual-task, attend-
left, and attend-right trials in three panels (top to bottom, respec-
tively; within each panel, different colors correspond to different
electrodes). At the top of each panel, the events in the attended
stream are illustrated (six arrows, gray in top panel; four notes
on left, blue in middle panel; five notes on right, red in bot-
tom panel). For the stimulus mixture presented, the N1 responses
evoked by visual-arrow transitions or acoustic note onsets should
occur approximately 100 ms after the stimulus change, with a pre-
ceding positive deflection (P1) and a subsequent positive deflec-
tion (P2). Note that because the auditory stimuli were ramped to
up with a 100-ms-onset window, the effective onset time to audi-
tory events was shifted slightly later than the nominal onset of the
stimulus.

At the expected time after the beginning of the trial, there was
a very large ERP in all three attentional conditions. Importantly,
this ERP had a noticeably different scalp distribution in the
attend-visual and two attend-auditory conditions. In the attend-
visual trials, the occipital electrodes, which typically respond
strongly to visual stimuli (yellow-green traces; see legend),
revealed large negative deflections prior to the large negative
deflections in the frontal electrodes, which are known to respond
robustly to auditory stimuli (red-blue electrodes; this temporal
offset) between the visual and the auditory evoked responses
likely reflects the above-mentioned shift in the effective onset
times of the auditory stimuli caused by our time windowing.
In the two types of attend-auditory responses, where there were
no visual arrows, the occipital electrodes had a very small mag-
nitude response that was temporally aligned with the dominant
frontal-electrode (auditory) ERP. This can be seen clearly in
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FIGURE 3 | Observed and modeled single-note ERPs. (A) Observed
single-note ERPs, averaged across three subjects (714 trials in total). Each
trace shows responses from one of the 32 channels (see legend for
electrode locations). (B) Three-component model of the single-note ERPs,

fitted as a sum of three, scaled Gaussians (corresponding to P1, N1, and P2
components), with gains fit to the individual electrodes. (C) The three
Gaussian components making up the 3-component model in (B) are shown
separately, along with their scalp topographies.

the scalp distribution of the ERPs taken at time points roughly
corresponding to the P1, N1, and P2 peaks in response to the
evoked auditory response at the stimulus onset (times A, B, and
C; see the scalp plots corresponding to the appropriate dashed
vertical lines at the bottom of Figure 4 for the three different
attention conditions). These distributions were similar for attend-
left and attend-right conditions (middle and bottom rows of scalp
distributions at times A, B, and C), with maximal magnitudes
in the frontal electrodes; the attend-visual distribution showed
additional activity over occipital electrodes, corresponding to a
slightly earlier visual ERP evoked by the initial arrow (top row of
scalp plots at times A, B, and C). Since the onsets to all streams
were roughly aligned in time at the start of the trial, it is impos-
sible to separate responses to the different auditory streams from
these results. Therefore, all subsequent analysis ignores this initial
onset response.

We next focused on the ERPs in response to later visual
transitions (changes in arrows), which are only present in the
attend-visual condition. Importantly, the visual streams had only
1–2 perceivable transitions in a given trial, and these transitions
occurred at different time points in different trials (0, 40, 20,
40, and 40% between the pairs of adjacent arrows, as discussed
above). This explains why subsequent visual ERPs corresponding
to arrow transitions were small in magnitude; their magnitudes
reflect the percentage of trials in which a given transition was per-
ceivable (none for transition 1–2; small for 3–4; and moderate for
2–3, 4–5, and 5–6). In addition, these visually evoked ERPs were

strongest over the occipital electrodes (yellow-green traces in the
top of Figure 4).

Finally, we considered the ERPs in response to notes in the left
and right auditory streams. In all conditions, the same auditory
stimuli were presented; however, the magnitudes of the note-
onset-driven ERPs depended dramatically on the attentional con-
dition. In general, responses to a given note onset were large when
listeners attended to the stream containing that note, small when
they attended to the opposite stream, and intermediate when they
attended to the visual stream (ignoring both auditory streams).
This can be seen most clearly in the grand-average ERPs in the two
auditory-attention conditions. There were only three prominent
ERPs after stimulus onset when listeners attend the left, four-note
stream, each of which aligned with one of the note onsets in the
left stream (see dashed blue boxes in Figure 4). Similarly, in the
attend-right grand-average ERP, there were four prominent ERPS
after stimulus onset, corresponding to the onsets in the right,
five-note stream (see dashed red boxes in Figure 4). Another
key point is that the most robust portion of the evoked ERPs is
the N1 component; within each condition, the positive compo-
nents, although present, were often smaller and more variable in
magnitude than the corresponding N1 component.

The scalp distributions at key points in time further demon-
strate that attention strongly modulates responses to note onsets.
At time D, which corresponds to the expected time of an N1
response to a note from the right, responses were strongly neg-
ative in frontal electrodes during attend-right trials (bottom
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FIGURE 4 | Grand average ERP waveforms and topographies. Average
EEG waveforms evoked by the stimulus are plotted for each of the 32
electrodes (see legend for electrode location) in each of the attentional
conditions (top: attend-visual, middle: attend-left, bottom: attend-right). At the
top of each panel, the events in the attended stream are shown (gray, top
panel: visual arrows; blue, middle panel: four notes of the left auditory
stream; red, bottom panel: five notes of the right auditory stream). For
attend-left and attend-right conditions, onset responses are seen following
the note onsets of the attended stream (see dashed blue and red boxes in
middle and bottom panels, respectively). The scalp topographies in each of
the attentional conditions are shown for six key times, marked (A–F) by
vertical dashed lines, that correspond to strong evoked responses in one or
more conditions. (A–C) Times corresponding to auditory-evoked P1, N1, and
P2 to the stimulus onset, respectively. Attend-left and attend-right conditions
have nearly identical topographic patterns, with maximum amplitudes in

frontal electrodes; in the attend-visual condition, occipital electrodes show a
separate P1-N1-P2 pattern that leads the auditory responses. (D) Time of the
N1 response to the third note of the right stream. Frontal electrodes show
strong negative activity in the attend-right condition, moderate negative
activity in the attend-visual condition, and weak activity in the attend-left
condition. (E) Time of the N1 response to the fourth note of the left stream.
Frontal electrodes show strong negative activity in the attend-left condition,
moderate negative activity in the attend-visual condition, and weak activity in
the attend-right condition. (F) Time of the N1 response to the fifth note of the
right stream, as well as the response to the sixth arrow in the visual stream
(only presented during attend-visual trials). The scalp distributions in the
attend-right and attend-left conditions are similar to those from time point
(D). In the attend-visual condition, the strongest activity is over the occipital
electrodes. EEGLAB (Delorme and Makeig, 2004) was used to generate the
topographies.

distribution at time D), nearly absent in attend-left trials (middle
distribution at time D), and intermediate in attend-visual trials
(top distribution at time D). At time E, which corresponds to the
expected time of an N1 response to a note from the left, responses

were strongly negative in frontal electrodes during attend-left tri-
als (middle distribution at time E), nearly absent in attend-right
trials (bottom distribution at time E), and intermediate in attend-
visual trials (top distribution at time E). Finally, time F aligns
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with the expected time of an N1 response to a note from the right
and is close to the expected time of an N1 response to the visual
transition for arrows 5–6, perceptible on 40% of the attend-visual
trials. At time F, the attend-right ERPs were similar to those at
time D (compare bottom distributions at times D and F), reveal-
ing a strong response to the attended, right-stream auditory note;
however, there was almost no response to the same stimuli dur-
ing the attend-left condition (middle distribution at time F is
similar to that at time D). In the attend-visual condition (top
distribution at time F), the greatest activity was over the occip-
ital electrodes, corresponding to visual transitions in some of the
trials near that time.

Because stimuli were identical in the attend-left and attend-
right conditions, another way to visualize the effects of attention
is to subtract the ERPs in these two conditions. Figure 5A shows
the difference in the ERPs for the two different auditory con-
ditions, computed as the attend-left ERP–the attend-right ERP,
averaged across subjects (note that if attention has no effect on
the ERP, then this difference should be near zero; however, if
attention to a stream leads to larger magnitude N1 deflections for
onsets in that stream, this difference is expected to be positive at
times corresponding to right-stream N1s and negative at times
corresponding to the left-stream N1s). As expected, there were
prominent positive peaks in this difference waveform at times
corresponding to right-stream N1s (filled red in Figure 5A) and
prominent negative peaks at times corresponding to left-stream
N1s (filled blue in Figure 5A). To quantify the effects on the N1,
Figure 5B plots the mean difference (error bars show the standard
deviation across subjects) at the expected N1 position for notes 2,
3, and 4 in the left, four-note stream (blue bars) and for notes 2, 3,
4, and 5 for the right, five-note stream. These results confirm that
the N1 had a significantly larger magnitude for the onsets in the
attended stream than in the unattended stream (two-tailed t-tests
on the values at these time points confirm that blue bars are all
significantly smaller than zero and red bars are all significantly
greater than zero, p < 0.01).

Consistent with this observation, both the attend-left and
attend-right grand-average ERPs showed a periodic structure cor-
responding to the note onsets in the attended isochronous stream.
To quantify this, we computed the auto-correlation function
(ACF) of the attend-visual, attend-left, and attend-right grand-
average ERPs, shown in Figure 5C (gray, blue, and red solid lines,
respectively). For comparison, the ACFs of the stimuli envelopes
of the left and right streams are shown as blue and red dashed lines
in the same figure; the green dashed line shows the ACF for the
center stream. Local ACF peaks occurred at 0.75 s for the attend-
left condition and 0.6 s for the attend-right condition, which
matched the inter-note repetition periods for the left stream and
the right stream, respectively (shown by the blue and red vertical
arrows at the top of Figure 5C); in these auditory-attention con-
ditions, there was no prominent peak in the ACF at the repetition
rates of unattended streams. Indeed, the peaks in the stimulus
ACFs aligned closely with the peaks of the stimulus ACF when
listeners were attending to that stream (compare dashed and solid
lines of the same color in Figure 5C). Interestingly, in the attend-
visual condition (gray solid line), there was a clear peak at the
repetition period of the center stream, as well as peaks at the

repetition periods of the left and right auditory streams (green,
blue, and red vertical arrows, respectively).

FITTING AVERAGE ERPs AND SINGLE-TRIAL ERPs
The single-note ERP h

single3
k (t) (described above) were used to

fit the average attend-auditory ERPs for each subject by assum-
ing that (1) the average attend-auditory ERP is a weighted sum of
ERPs corresponding to each stream, (2) the ERP corresponding
to a given stream is a superposition of single-note ERP evoked by
the onsets of each of the notes in that stream, and (3) the rela-
tive strength of the ERP evoked by each stream is modulated by
attention (see Figure 6 for a summary of the model). With these
assumptions, each stream has a raw, unweighted contribution to
the total ERP at electrode k that can be expressed as:

rk,i (t) = h
single3
k (t) × di (t) , i = {L, C, R} (2)

where di (t) is a train of impulse functions representing the note
onset times for stream i (L for left, C for center, and R for right).
To account for the ramped onset of the notes, the impulse func-
tion corresponding to each note in di (t) was positioned 62.5 ms
after the note onset. The raw stream ERPs rk,i (t) were then
weighted, depending on the attention condition, to yield their
contributions to the total attend-auditory ERP when attending
the stream in direction a:

sa
k,i (t) = ga

k,irk,i (t) , a = {L, R} and i = {L, C, R} (3)

Then, the estimated total attend-auditory ERP at electrode k
when attending to the stream in direction a can be written as:

ŷa
k (t) =

∑
i = L,R,C

sa
k,i (t)

= −→−→g
a

k × −→−→r
T

k (t)

where
−→−→g

a

k = [
ga

k,L, ga
k,C, ga

k,R

]
and

−→−→r
T

k (t)

= [
rk,L (t) , rk,C (t) , rk,R (t)

]
(4)

The “attentional gains” in
−→−→g

a

k were fit by minimizing the mean
square difference between the predicted total ERP and the
measured ERP:

min{
ga

k,i

}
∥∥ŷa

k (t) − ya
k (t)

∥∥ , ga
k,i ≥ 0 for a = {L, R} and i = {L, C, R}

(5)

where ‖·‖ denotes the L2 norm, and yL
k (t) and yR

k (t) are the
measured ERPs in the attend-left and attend-right conditions,

respectively. Note that the attentional gains
{

ga
k,i

}
were con-

strained to be non-negative (see in Chen and Plemmons, 2007 for
details of the method to add a non-negativity constraint to least
square analysis).

For each subject, the mean attend-left ERP and the mean
attend-right ERPs were fit (averaged over all correct-response,

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 115 | 8

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choi et al. Attentional modulation of auditory cortex

FIGURE 5 | Attentional modulation on averaged ERPs. (A) Difference in
the grand average ERP waveforms at Fz between attend-left (blue) and
attend-right (red) conditions (attend left–attend right). Thin gray lines show the
differences computed for each individual subject average ERPs, while black
line shows the across-subject average. Deflections around the expected
times of the N1 response to notes in the right stream are colored in red;
deflections around the expected times of the N1 response to notes in the left
stream are colored in blue. Results are consistent with attention accentuating
the N1 response to notes in the attended stream relative to when that
stream is ignored. (B) Across-subject means (± standard deviation) of the

amplitudes of the difference waveform from (A) in electrode Fz, evaluated at
the expected times of N1 responses to notes in the left stream (blue bar
graph) and to notes in the right stream (red bar graph). (C) Auto-correlation
functions (ACFs) of the grand average ERP waveforms measured at Fz (solid
lines) and of the stimulus envelopes (dashed lines). The attend-left ERP ACF
has a peak at 0.75 s, the inter-note interval in the left stream (red downward
arrow); the attend-right ERP ACF has a peak at 0.60 s, the inter-note interval
in the right stream (blue downward arrow); the attend-visual ERP ACF has
peaks at the inter-note intervals of all three streams, including the center
stream (green downward arrow).

artifact-free trials) from 0.4 to 3.0 s after the onset of the first
notes in the three streams. This fitting procedure ignored the first
onset of the total ERP because (1) the model includes no adap-
tation effects, which cause the response to the first sound in a
sequence of sounds to be larger than any subsequent sounds, and
(2) the first onset is common to all streams, so it cannot isolate
the response to each stream individually.

The pattern of results was very similar across subjects, so
we focused on across-subject average results. The fitted average
total ERPs closely corresponded to the measured ERPs at elec-
trodes that respond robustly to auditory inputs. Figure 7A plot
the across-subject average ERP at the Fz electrode (as an exam-
ple), along with the average of the fitted ERP using Equation
4, for the attend-visual, attend-left, and attend-right conditions
(top to bottom in left of Figure 7A, respectively). At the Fz
electrode, correlation coefficients between the fitted waveforms

averaged across all subjects and the measured grand-average ERPs
were 0.66, 0.78, and 0.84 for the attend-visual, attend-left, and
attend-right conditions, respectively. Conversely, at sensors where
the response is not strongly driven by auditory stimuli, the fit-
ted ERPs did not fit the measured responses as well. This can
be seen in the left panels of Figure 7B, which show the corre-
lation coefficients between the measured grand-averaged ERPs
and the three-component model fit for all 32-channel electrode
positions (the size of the circle over each electrode position
denotes the size of the correlation coefficient). The correlations,
averaged across subjects, ranged from 0.87 (at electrode F8 in
the attend-right condition) down to 0.00 (at electrode P8 in
the attend-left condition). In general, responses in the occip-
ital electrodes, which tend to encode visual sensory responses
robustly, were poorly fit by Equation 4, while the majority of
the responses in more frontal electrodes were fit relatively well
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FIGURE 6 | Modeling ERPs. Each stream is assumed to generate a
sequence of onset responses corresponding to each note in the
stream, the shape of which is equal to a modeled single-note ERP. The
resulting signal from each stream is then scaled by a gain factor that

depends on how attention is directed. These three stream-evoked
signals are then summed to predict the total response in the three
conditions (gray: attend visual; blue: attend left auditory stream; red:
attend right auditory stream).

(in the left panels of Figure 7B, symbols are large in the frontal
electrode positions, but small over the occipital positions at the
bottom of the plots). Leaving out the occipital electrodes (show
by open symbols in Figure 7B), the average correlation coeffi-
cients between modeled and observed ERPs (averaged over the

remaining electrodes in each subject, and then averaged across all
subjects) were 0.60, 0.74, and 0.81 for attend-visual, attend-left,
and attend-right conditions, respectively. Standard deviations of
the correlation coefficients across subjects were very small (0.03,
0.05, and 0.02 for attend-visual, attend-left, and attend-right,
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FIGURE 7 | Comparing observed and modeled ERPs. (A) Observed (gray
solid curve) and modeled (red dashed) ERP waveforms at the Fz electrode.
Numbers in parentheses give the correlations coefficient between the
observed and modeled ERPs. Top panels: attend-visual condition; middle
panels: attend-left condition; bottom panels: attend-right condition. Left
panels show the 3-component model fits; right panels show the N1-only
model fits. Overall fits are better for the 3-component model than the N1-only

model. Fits are generally better in attend-left and attend-right conditions than
the attend-visual condition. (B) Correlation coefficients between observed
ERPs and models at each of the 32 electrodes, represented by the diameter
of the plotted circle. Correlations between observed and modeled responses
are generally low over occipital electrodes (see open circles). Numbers in
each panel give the average of the correlation coefficients over all electrodes
except the occipital electrodes.

respectively), showing that the model captured similar effects in
all subjects.

As already noted, the N1 response, the most prominent part
of the total ERP, has previously been shown to be modulated
by attention. To see how well an even simpler, N1-only model
accounted for results, we reran all of the above analyses with ak,P1

and ak,P2 set to zero (only fitting the negative N1 deflection in
the total ERP). Of course, the resulting fits captured fewer details

in the total response. Even so, the simple fits still accounted for a
significant portion of the variance in the responses. Specifically,
at Fz, the correlations between these fits and the grand-average
ERPs were 0.56, 0.67, and 0.74 for the attend-visual, attend-left,
and attend-auditory conditions (see right panels of Figure 7A).
Looking across all frontal electrodes (averaged across all sub-
jects), the N1-only model of the ERPs yielded poorer overall fits
than did the 3-component model, with correlation coefficients,
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from 0.77 (at electrode F4 in the attend-left condition) down to
0.06 (at electrode Oz in the attend-right condition). The aver-
age correlations across all frontal electrodes were 0.56, 0.71, and
0.73 for attend-visual, attend-left, and attend-right conditions,
respectively. Again, standard deviations across subjects were very
small (0.04, 0.03, and 0.02 for attend-visual, attend-left, and
attend-right, respectively).

ANALYSIS OF ATTENTION GAINS
To quantify how attention modulated responses, we analyzed
the gains produced by the fitting procedure and compared
them across conditions. Since the gains across the nine subjects
were not Gaussian distributed (Shapiro-Wilk test rejected the
hypothesis of normality), we computed the across-subject median
(instead of the mean) and the root-mean-square-differences from
the median (instead of the standard deviation). Figure 8A shows
gain fits for the three-component model (left panels) and the N1-
only model (right panels), computed both for across-trial-average
ERPs, combined over subjects (top row) and the single-trial ERPs,
combined over subjects and trials (bottom row). In each panel,
each cluster of three adjacent blue, gray, and red bars represents
the gains fit to one stream (left, center and right, from left to
right). The color of each bar within a triplet denotes which atten-
tion condition these gains were derived from (blue: attend left,
gray: attend visual, red: attend right).

The attentional focus had a statistically significant effect on
the gains fit to the across-trial averaged ERPs. Specifically, the
gain to the left stream was greatest when listeners attended
that stream and smallest when they attended the right stream
(the leftmost blue bar, gL

L, is taller than the leftmost red bar,
gR

L , within each of the top two panels of Figure 8A; Wilcoxon
rank sum test, p = 1.65 × 10−4 for the 3-component model and
p = 0.0027 for the N1-only model). Similarly, the gain for the
right stream was significantly greater when subjects attended to
the right stream than when they attended to the left stream
(gR

R > gL
R, the rightmost red bar is taller than the rightmost

blue bar in the top two panels of Figure 8A; Wilcoxon rank
sum test, p = 4.11 × 10−5 for the 3-component model and p =
1.65 × 10−4 for the N1-only model). The gains were interme-
diate when subjects attended the visual arrows; for instance,
using the N1-only model fits, the gain to the right stream was
1.45 times smaller (about −3 dB) in the attend-visual condition
than in the attend-right condition and 1.8 times greater (about
+5 dB) than in the attend-left condition. In the average-ERP
results, the gain to the center stream, which is never the focus
of attention, was larger during the attend-visual condition than
the attend-left or attend-right conditions (in the center triplets
of the top row of Figure 8A, the gray bars are taller than either
the blue or red bars), although this difference was not statis-
tically significant. Although the results were far more variable
when the gain fit was done to single trial epochs, rather than
to within-subject average ERPs, the same pattern of results was
clear, showing that the attentional changes on ERPs is robust
and strong (gL

L > gR
L ; Wilcoxon rank sum test, p << 0.001 for

both the 3-component model and the N1-only model. gR
R > gL

R;
p << 0.001 both for the 3-component model and the N1-only
model).

Another way to examine the effect of attention is to directly
compare the gain of the left and right streams for the same
attention condition, rather than testing how attentional condi-
tion affected the gain to a given stream. This is done in Figure 8B,
which plots ga

R against ga
L for attend-left, attend-visual, and

attend-right conditions (a = L, blue points; a = V , gray points;
and a = R, red points), both for the within-subject average ERPs
(top panels; each subject contributes one point to each condi-
tion) and single trials (bottom panels; each subject contributes
hundreds of individual trial points in each condition). Results
are shown both the 3-component model fit (left panels) and the
N1-only model fit (right panels).

In general, when fitting the within-subject average ERP, the
gain for the attended auditory stream was greater than the gain
for the ignored auditory stream (for both models, 8 out of 9 blue
points fall above the diagonal and 9 out of 9 points fall below the
diagonal in the top two panels of Figure 8B); results when listen-
ers ignored both streams (gray) were intermediate to the other
conditions. These results suggest that the estimated left and right
stream gains that fit the total ERP can be directly compared to
determine which stream a listener is attending (i.e., on average a
subject is likely attending the stream whose gain is greater).

Of course, for such an approach to be useful for BCI, it would
have to be reliable on a single-trial basis. The bottom panels of
Figure 8B show that when attending the left stream, the gain fit
to the left stream on an individual trial was generally greater than
the gain fit the right stream (the majority of the single-trial blue
points in Figure 8B fall above the diagonal, showing that gL

L tends
to be greater than gL

R). Similarly, when attending the right stream,
the gain fit to the right stream on an individual trial was generally
greater than the gain fit the left stream (the majority of the red
points in Figure 8B fall below the diagonal, showing that gR

R tends
to be greater than gR

L ). In the attend-visual condition, the left-
stream and right stream gains were roughly equal, and roughly
half of the points fell above the diagonal. Perhaps more impor-
tantly, among the trials that had at least one non-zero gain (92%
of all trials), 65.0% of all trials fit using the 3-component model
could be correctly classified into “attend-left” and “attend-right”
categories by simply comparing the fitted gains to each trial’s raw
ERP (i.e., in the bottom-left panel of Figure 8B, 64.4% of the
non-zero blue “attend left” trial results fall above the diagonal and
65.6% of the non-zero red “attend right” trial results fall below the
diagonal). If anything, the N1-only model yielded slightly better
classification; 66.5% of the single trials would be classified cor-
rectly based only on determining whether the left fitted gain or
the right fitted gain was greater.

TEMPLATE MATCHING FOR SINGLE-TRIAL CLASSIFICATION
As another test of whether auditory attentional modulation could
be used to drive an EEG-based BCI, we performed template-
matching classification of single trials (Woody, 1967; Kutas et al.,
1977; Kerlin et al., 2010). This approach compares the ERP
elicited on each trial j to both an attend-left template and an
attend-right template [TL

k (t) and TR
k (t), respectively] and clas-

sifies the state of the subject based on which template is a
better match to the observed ERP for that trial. We first used
templates derived from the measured grand-average ERPs when
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FIGURE 8 | Attentional gains. (A) Attentional gains fit to Fz responses,
obtained from both individual-subject average ERPs (top row), and single
trials (bottom row). Left panels show gains fit using the 3-component model;
right panels show gains fit using the N1-only model. The median values
across subjects are plotted, with error-bars showing the root-mean-squared
deviation from the medians. Blue, red, and gray bars represent attend-left,
attend-right, and attend-visual conditions, respectively. Each triplet of adjacent
bars shows the gains for one of the auditory streams (left, center, and right,
going from left to right in a given panel). The gain to a given stream is

greatest when it is attended, and smallest when a competing auditory
stream is attended, and intermediate when the visual arrows are attended.
(B) Attentional gains fit to the left and right streams (gL and gR) obtained
from individual-subject averages (top panels) and single-trial ERPs (bottom
panels) in the three conditions (blue: attend left; gray: attend visual; red:
attend right). In the single-trial panels, the numbers give the percentage of
points falling above the diagonal. In general, the gain for the attended stream
is greater than the gain for the ignored stream (blue points tend to fall above
the diagonal and red points tend to fall below the diagonal).

listeners attend left and attend right (e.g., see Figure 4A). Given
the similarities across subjects, we decided to try a very con-
servative leave-one-out cross-subject validation technique, rather
than fitting individual subject results; we averaged the attend-left
ERPs and the attend-right ERPs from all subjects except those
of the subject whose data were to be classified, creating a tem-
plate that was independent of the data being classified and based
on patterns that were consistent across subjects, rather than fit

to idiosyncrasies of the listener whose data were to be classified.
(Note that fitting the templates to each individual subject might
yield even better results, but would require an interface that was
trained to the individual user before being deployed). In addition
to using the grand-average measured ERPs, we also tried the same
leave-one-out cross-subject validation approach using templates
based on modeled ERPs of attend-left and attend-right condi-
tions [ŷL

k (t) and ŷR
k (t), respectively, defined in Equation 4; i.e.,
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TL
k (t) = ŷL

k (t) and TR
k (t) = ŷR

k (t)], using both the 3-component
model and the N1-only model.

For trial j, we computed at each electrode k the normalized
cross-correlation function NCFL

k,j between the EEG response at

that electrode and the attend-left template, TL
k (t), over a time

range of 400–2800 ms). We also computed NCFR
k,j, the normal-

ized cross-correlation function (NCF) between the observed
response and the attend-right template, TR

k (t). These NCFs are
a measure of the match between the response on trial j and the
expected responses in the two attention conditions:

NCFi
k,j (τ)=

2800 ms
t = 400 ms mk,j (t) × Ti

k (t + τ)dt√∫ 2800 ms
t = 400 ms m2

k,j (t)dt × ∫ 2800 ms
t = 400 ms (Ti

k (t))
2
dt

, i = {L, R}

(6)

The first 400 ms were excluded in this computation because the
first note onsets were synchronous across streams and thus do
not provide strong information about which stream is attended.
Conversely, the final 200 ms (2800–3000 ms) contains little infor-
mation about note onsets and may also be contaminated by motor
planning activity not related to attention. At each electrode k, we
then found the maxima of the attend-left and attend-right NCFs
over the range −50 ms ≤ τ ≤ 50 ms (to allow for a small time
jitter in the responses compared to the templates), then took the
difference of these maxima:

xk,j = max
[
NCF L

k,j(τ)
]50 ms
τ = −50 ms − max

[
NCFR

k,j(τ)
]50 ms
τ = −50 ms

Finally, on each trial, we computed a weighted average of these
differences over the electrodes to come up with a single template-
matching decision variable:

Dj =
32∑

k = 1

wkxk,j

With this processing, a negative value of Dj indicates that the
attend-left template better matches the response on that trial
(suggesting that the subject was attending to the left stream),
while a positive value suggests that the subject was attending to
the right stream. The weights {wk} were found by applying prin-
cipal component analysis (PCA) to the single-note ERP results
in the spatial domain (i.e., electrodes were treated as variables
and the grand-average time domain data were treated as obser-
vations). The PCA produced a 32 × 32 matrix in which the rows
are factor loadings for each electrode and the columns corre-
sponded to the first 32 principal components, ordered based on
how much of the variance could be accounted for with a particu-
lar distribution of activity over electrodes. In turn, the 32 loadings
corresponding to a given principal component are weights reflect-
ing the relative importance of each electrode to the corresponding
principal component. The first principal component, which is the
single spatial distribution that accounts for the greatest variance
in the single-note ERP data, is shown in Figure 9A. The result-
ing weights were large for mid-frontal channels, where auditory

evoked electric fields tend to be strongest, and lower over occipital
channels.

Figure 9B shows the distributions of the Dj values for 1280
attending-left trials and 1343 attending-right trials, taken from
all nine subjects. Results are shown using templates from the
measured ERPs in attend-left and attend-right conditions (left
panels), the 3-component model fits of the ERPs (middle pan-
els), and the N1-only model fits (right panels). The top row
shows the distributions of the decision variable for trials when
listeners were attending the left; the bottom row shows the distri-
butions of the decision variable when listeners were attending to
the right. In general, the decision variable was more likely to be
negative in attend-left conditions and more likely to be positive
in attend-right conditions. The null hypothesis, that the distri-
bution of Dj has a mean of zero, was rejected for all six of the
distributions (two-sided T-tests; p < 0.001 for all six distribu-
tions). By comparing attend-left and attend-right distributions,
we can compute the likelihood of correctly classifying an individ-
ual trial, assuming it is equally likely, a priori, that listeners are
attending left or attending right. The corresponding classification
probabilities were 71.2, 69.1, and 71.9% using the measured ERP
templates, the 3-component model templates, and the N1-only
model templates, respectively.

Although these overall classification accuracies were similar,
we were interested in understanding whether the small observed
differences were significant. A bootstrapping test was performed
to compare these classification accuracies. (1) All 1280 + 1343
trials were randomly resampled with replacement (the Monte
Carlo algorithm for case resampling: Manly, 1997). (2) The
resampled trials were classified by using all the three templates
to derive three classification accuracies were derived. (3) This
process was repeated 2000 times to produce a bootstrap distri-
bution of 2000 classification accuracies for each of templates.
Figure 9C shows the resulting classification accuracy distribu-
tions using the three types of templates. The bootstrap means,
indicated by solid red vertical lines, were almost identical to
the observed means (71.1, 69.1, and 71.9% for the observed,
3-component model, and N1-only model ERPs, respectively). The
distributions all were confirmed to be symmetrical about their
means (Shapiro-Wilk test of composite normality; p-values are
0.31, 0.28, and 0.25 for the observed, 3-component model, and
N1-only model, respectively). Since the distributions were cen-
tered and symmetrical, a simple percentile bootstrap method
(Davison and Hinkley, 1997) was used to calculate the 95%
confidence intervals (CIs) of the estimated classification accura-
cies; these are shown by dashed red vertical lines in Figure 9C.
This analysis shows that classification performance using the N1-
only model was statistically better than classification performance
using the 3-component model (the means of each distribu-
tion fall outside the CIs of the other distributions). Similarly,
the performance using the observed-ERP templates was sta-
tistically better than that using the 3-component-model ERP
templates.

Finally, classification accuracies for the individual subjects are
shown in Figure 9D for the three types of templates. Performance
ranged from 82.9% (Subject 1 using the N1-only model ERP
templates) down to 58.9% (Subject 5 using measured ERPs as
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FIGURE 9 | Template-matching classification of single trials. (A) Weighting
factors for electrode locations obtained from principal component analysis on
the measured single-note ERPs. The relative magnitude of the loading of each
electrode is represented by the corresponding diameter of the circle. The
greatest weights are given to mid-frontal channels. (B) Distributions of the
template classification decision variable, D, for individual trials using templates
from observed ERPs (left), the 3-component model (middle), and the N1-only
model (right). Blue histograms plot the distributions for attend-left trials; red
histograms plot the distributions for attend-right trials. The ratio of correctly

classified trials (using zero as the decision boundary) is given within each panel.
(C) Bootstrap distributions of classification accuracies using the three
templates. Red solid lines represent the bootstrap means, while dashed lines
represent 95% confidence intervals (CIs). Templates based on the
3-component model yield statistically worse classification performance than
either templates equal to observed ERPs or templates based on the N1-only
model. (D) Classification accuracies for individual subjects. Bootstrap means
and 95% confidence intervals (CIs) are shown for each of the templates. For all
subjects, performance is better than chance for all three template types.

templates). For each subject, the same bootstrapping approach
was conducted to obtain distributions of classification accura-
cies for the three types of templates. For all subjects and all
classification templates, classification performance was signifi-
cantly greater than the 50% accuracy expected by chance (i.e.,
the lower bounds of the 95% CIs did not include 50%). Even
though across all subjects the observed-ERP templates and the
N1-only templates outperformed the 3-component templates,
when considering the individual subject results, only Subjects 3
and 8 showed statistically significant differences consistent with
the across-subject analysis.

DISCUSSION
QUANTIFYING AUDITORY ATTENTION
When listeners need to analyze the spectrotemporal content of a
sound source in the presence of simultaneous, competing sources,

they must sustain selective attention on the target source. Our
results show that in such situations, attention has a substantial
effect on the sensory representation of a sound mixture in cortex.
We quantified these effects by fitting gains to the ERP responses
to attended and unattended auditory streams. We found that,
on average, the best-fit gains to a stream changed by roughly
10 dB when that stream was attended vs. when it was ignored
(Figure 8A). Moreover, this attentional modulation was suffi-
ciently large and robust that the gains fit to single trial EEG
differentiate which of two sound streams a listener is attending
at rates better than chance (Figure 8B). These results show that
attention causes a reliable change in cortical responses to identical
sound stimuli that can be measured on the scalp using EEG.

Although a number of past studies have found that individual
differences in behavioral ability correlate with individual differ-
ences in BCI control (e.g., Hill and Schölkopf, 2012), we found
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no consistent relationship. While there were consistent across-
subject behavioral differences (e.g., performance on the visual
task correlated strongly with performance on the auditory task),
there was no consistent relationship between behavioral perfor-
mance on the auditory task and the ability of a classifier to
determine which acoustic stream a listener was attending. It may
be that this lack of a relationship comes about because the fac-
tor limiting auditory task performance had little to do with the
ability to direct selective auditory attention (which drives the
classification performance), but rather reflected some other cog-
nitive limitation common to the auditory and visual tasks. Of
course, in general, all subjects performed the behavioral tasks very
well. It may be that a behavioral task that is more sensitive to
differentiating good and bad listeners would reveal a consistent
relationship between behavioral ability and the ability to classify
subject intention from EEG responses.

One interesting result of our study is that the cortical response
to a particular auditory stream that a listener is ignoring were
larger when the listener was attending to a visual stream than
when he or she was attending to a competing auditory stream (for
the average-ERP results in the top row of Figure 8A, gray bars are
intermediate between blue and red bars for the left stream and
the right stream, and above both blue and red bars for the center
stream). This result suggests that focused auditory spatial atten-
tion not only enhances the representation of an attended auditory
stream, but also suppresses the representation of an ignored audi-
tory stream. Specifically, when a listener is focused on processing
information in the visual modality, all of the auditory responses
were greater than when listeners had to pick out one auditory
stream from the acoustic mixture. Many psychophysical stud-
ies have suggested that there are both sensory-modality-specific
resources as well as shared central resources when observers deal
with competing sensory inputs (e.g., Alais et al., 2006; van Ee
et al., 2009). Our results support the idea that when listeners
are engaged in a visual task, they do not have to suppress the
representation of incoming auditory streams in sensory auditory
cortex, a modality-specific resource. However, in order to analyze
one auditory stream in the presence of a simultaneous, competing
auditory stream, they suppress the representation of the to-be-
ignored stream, which is vying for representation in the same
neural area.

CLASSIFYING OBSERVER INTENTION FROM EEG
The attentional modulation of EEG responses was modeled effec-
tively by assuming the ERP response to a mixture of sound
streams is a weighted sum of responses to the onsets of the
elements in the various streams. Specifically, we modeled the
responses to onsets of tones in our sound mixture using ERPs
elicited by a single tone presented in quiet, multiplied by a scaling
factor that depended on the subject’s attention focus. The result-
ing ERP waveforms accounted for many of the basic features of
the total ERP in the selective attention task and much of the vari-
ance in the ERP waveform. By comparing the best-fit gains for the
left and right streams, we could classify which stream a listener
was attending on a single trial basis with an accuracy of 61%
(see Figure 8B). Using a more sophisticated cross-correlation
template-matching algorithm that weighted the contribution of

each electrode based on the variation in ERPs observed during
single-note presentations of sound, we were able to achieve even
better single-trial classification of attentional focus, near 70%, on
average (see Figure 9B).

Our ERP templates were not adapted to individual subject EEG
responses; all of our classification results were obtained without
taking into account user-specific neural measures (either through
cross-subject validation with the measured ERPs, or by assuming
that each note in the mixture evoked a stereotypical single-tone
ERP when using the 3-component or N1-only component mod-
els). Thus, these results demonstrate the feasibility of developing
a general-purpose auditory BCI that requires no user-specific
training.

SOME CAVEATS AND CONSIDERATIONS FOR FUTURE WORK
Although our attention-modulated ERP model fits many aspects
of the observed ERPs, we made a number of simplifying assump-
tions. This simplicity may have allowed us to get robust results,
rather than over-fitting our data. Nonetheless, it is important to
acknowledge some of the known limitations of our approach.

We did not model the first onset portion of the ERP, since it is a
mixture of responses to onsets in all streams, making it impossible
to tease apart how each individual stream contributed to the ERP.
It is well known that for a single stream in isolation, the first onset
is larger than subsequent onsets, something we did not attempt to
model here. A more complete model would have to account for
stimulus adaptation.

In our analyses, we bandpass filtered the EEG signals and
considered signals only in the 2–10 Hz range (delta–theta–alpha
band), the frequencies in which the late auditory evoked potential
components are strong (P1, N1, and P2). Some past studies sug-
gest that attentional effects are very robust in the theta band (Luo
and Poeppel, 2007; Kerlin et al., 2010; Peelle and Davis, 2012).
Based on the current results, modulation of onset responses may
be a major contributor to these strong attentional effects in the
theta frequency region. Indeed, when we modeled the attentional
modulation of the N1 response alone, we captured a great deal
of the variation in the total ERPs in response to our stimulus
mixture. This may be one reason why the N1-only model out-
performed the 3-component model. However, there is another
alternative explanation; in modeling the total response to our
sound stream mixture, we assumed that each note in a given
stream (following the initial onset) caused an identical response,
of identical magnitude; we then scaled our model single-tone ERP
identically for all notes in a given stream. In our 3-component
model, this implicitly assumes that attentional modulation scales
the P1, N1, and P2 components identically. If the N1 component
is modulated more strongly by attention than the other positive
components, the N1-only model, which is less able to account
for the overall shape of the responses to our 3-s-long stimuli,
may nonetheless be better at classifying what stream a listener is
attending.

In our modeling, we used the measured ERP to a single tone
presented in isolation as the basis for the total ERP in response to
every tone onset in every stream. Specifically, we assumed that the
onset of every note, from every stream, caused the same stereo-
typical response, modulo a gain that depended on attention.
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However, not all stimuli are equally salient, perceptually, some-
thing for which the current “onset” model alone cannot account.
One might be able to predict differences in stimulus salience by
including a more physiologically realistic peripheral processing
model (e.g., Rønne et al., 2012) and a computational model of
saliency (e.g., Itti and Koch, 2001; Kayser et al., 2005; Kalinli
and Narayanan, 2009). Even for stimuli that have similar saliency,
different aspects of the ERP (e.g., the latency of the various com-
ponents) can vary with the stimuli frequency and other aspects
of stimulus content (e.g., Scherg et al., 1989). Still, for the limited
set of stimuli we used here, our simple model did a good job of
capturing key aspects of the EEG response and quantifying how
attention modulates this response.

When measuring the single-note ERP, we used a tone com-
plex with 400 Hz fundamental frequency, which was in the middle
of the range of fundamental frequencies of the stimuli presented
in the main experiment (which had F0s ranging from 240 to
900 Hz). Given that auditory ERPs depend on the spectral con-
tent of the sound evoking them (particularly the latency of the
N1-component; Roberts et al., 2000; Lütkenhöner et al., 2003),
different notes might yield different model parameters when used
for the single-note ERP measurement. However, in past reports,
latency differences for narrowband notes were on the order of
only 10 ms or less, even when the stimulus frequency changed
over the range of 200–1000 Hz (Roberts et al., 2000; Lütkenhöner
et al., 2003). These small differences are less than one sample
for the stimulus sampling rate that we used. In addition, all of
our tones were broadband, although they did have different tem-
poral envelopes, as well. While the ERPs might be better fit by
accounting for differences in the stimulus notes, we suspect these
differences are small.

In the current study, three competing streams were presented,
but listeners were only ever asked to attend to the left or right
stream. This was done to ensure that the two potential target
streams were equally well resolvable in the sensory representa-
tion of the stimuli and similar in perceptual saliency. The center
stream was included to make the task difficult, thereby making it
more likely that listeners would have to sustain attention on the
target stream throughout the trial in order to perform the task. We
found that the attentional gain to the center stream was uniformly
low. Anecdotally, after the end of the experiment, many of our
subjects reported that they were completely unaware that there
were three streams present; on any given trial, they were conscious
of the attended stream, and aware that there was competition
from other sounds. While it is not clear from the current study
whether listeners could successfully attend to and analyze the cen-
ter stream in our mixture, pilot experiments show that it is easy to
do so. However, further study is needed to explore whether atten-
tional modulation is as strong when listeners are asked to attend
to a center stream surrounded by competitors on either side as
when they attend streams from the side. Other experiments could
be undertaken to map out how many competing simultaneous
sources a listener can resolve. It is also not clear how the strength
of the attentional modulation that a listener achieves will depend
on the spatial position and spectrotemporal content of competing
streams (which can affect the ability to segregate sound sources
from one another).

Finally, it is worth noting that visual stimuli were only
presented during the control (“attend-visual”) condition. It
may be that visual-evoked potentials (VEPs) contaminated the
observed auditory responses in these trials. Even though the visual
arrow onset times were designed to minimize overlap with audi-
tory events (e.g., visual transitions at a given time instant only
occurred on some trials, not on every trial, and were themselves
temporally isolated from most auditory onsets, etc.), this issue
needs to be further clarified by observing VEPs with the visual
stimuli presented by themselves.

RELEVANCE FOR NON-INVASIVE, AUDITORY BRAIN−COMPUTER
INTERFACES
In the current study, we purposefully designed the competing
streams to have events whose onset responses were temporally
resolvable. Moreover, we used the knowledge of the timing of the
note onsets in the different streams to fit attentional gains and
classify which stream a listener was attending. Having such perfect
knowledge about the content and structure of individual streams
initially may appear to be a major limitation on how this kind of
approach might be implemented in a BCI. However, there are at
least a handful of past studies that showed that auditory selective
attention can modulate EEG signals enough to allow classifi-
cation of attentional focus using relatively brief epochs of data
(e.g., Kerlin et al., 2010; Hill and Schölkopf, 2012; Lopez-Gordo
et al., 2012). These studies typically used competing streams
with uncorrelated envelopes (for instance, by using independent
streams of ongoing speech; Kerlin et al., 2010; Zion Golumbic
et al., 2012). Nearly all BCIs present the human operator with
stimuli that are carefully designed to maximize information trans-
fer about the operator’s intentions. The current results provide
insight into how competing auditory streams might be designed
to achieve good single-trial classification, by ensuring that events
within each competing stream have onsets that are temporally
separated from onsets in the other streams.

Our approach ignored all late components of the ERP, which
are associated with higher cognitive processes and decision-
making. This may have worked in our study because we designed
our behavioral task to force our listeners to wait to make a final
judgment about the contour of an attended stream until near the
end of the presentation (depending on the stimulus). This likely
suppressed later ERP components (like the P3) during the ongo-
ing portion of our stimuli. However, it is worth noting that some
recent work using running speech suggests that later components
of the EEG response (between 200–220 ms) may be informative
about how auditory attention is directed (Power et al., 2012).
In addition, many existing EEG BCI systems focus on late ERP
components; for instance, there are a number of systems that use
the P3 component in response to target and non-target letters to
enable users to spell out words (e.g., Farwell and Donchin, 1988;
Krusienski et al., 2006; Käthner et al., 2013).

Our approach shows that by carefully designing acoustic stim-
uli, so that ERPs to events in competing streams can be temporally
resolved, attentional modulation of early ERP components is
strong and reliable. Given the strength of attentional modulation,
our approach should be extendable to track ongoing responses to
streams that have temporally uncorrelated structure, rather than
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requiring events to be completely isolated in time, as long as the
competing streams are perceptually segregated (so that the brain
can up-regulate the response to the attended stream and suppress
the response to ignored streams). Such an approach could lead to
a robust, user-friendly auditory-attention driven BCI.
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