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Sparse Contour Representations of Sound

Yoonseob Lim, Barbara Shinn-Cunningham, and Timothy J. Gardner

Abstract—Many signals are naturally described by continuous
contours in the time-frequency plane, but standard time-frequency
methods disassociate continuous structures into isolated “atoms”
of energy. Here we propose a method that represents any discrete
time-series as a set of time-frequency contours. The edges of the
contours are defined by fixed points of a generalized reassignment
algorithm. These edges are linked together by continuity such that
each contour represents a single phase-coherent region of the time-
frequency plane. By analyzing the signal across many time-scales,
an over-complete set of contours is generated, and from this redun-
dant set of shapes the simplest, most parsimonious forms may be
selected. The result is an adaptive time-frequency analysis that can
emphasize the continuity of long-range structure. The proposed
method is demonstrated with a few examples.

Index Terms—Adaptive filtering, kernel optimization, sparse
representation, time-frequency analysis.

I. INTRODUCTION

IME-FREQUENCY analysis takes many forms but es-
sentially involves the application of temporally localized
band-pass filters to a time-series x(¢). The resulting time-fre-
quency image is not unique since every function that localizes
the filters results in a distinct representation [1]. The uncertainty
principle dictates that the resolution in time A¢# and resolution
in frequency Aw are reciprocally related: AtAw > 1/2, and
the result of this trade-off is that fixed-filter methods cannot op-
timally represent signals with time-varying spectral content.
Various approaches have been developed for signal depen-
dent adaptation of filters [2]-[6]. Applications can be found
ranging from speech enhancement in noise [7] to radar target
analysis [8]. A common approach to adaptive time-frequency
analysis involves a search for minimum entropy decompositions
that concentrate power either in a small number of positions in
the time-frequency plane, or a small number of coefficients in
a multi-scale wavelet decomposition [9]. The criterion of max-
imal local concentration provides little information about the
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Fig. 1. Defining time-frequency contours; contours with angle selectivity § =
7/4 and 8 = —x/4 in green in (a) and (b) respectively, superimposed on a
gray-scale Gabor transform (|x|). The signal is a short sample of white noise
combined with a linear frequency sweep. Red dots highlight the zeros of |x|.
Territories corresponding to the contours in panels (a) and (b) are shown in (c)
and (d) respectively.

coherence of long-range structure in the time-frequency plane
since the “atoms” that represent long-range objects are not ex-
plicitly bound together. As a result, the simplicity of large-scale
shapes cannot easily inform an adaptive filtering based on stan-
dard time-frequency methods.

The focus of the present work is to propose a new contour-
based representation that links together associated points of the
time-frequency plane at the lowest levels of representation. The
method implies no constraints on the signal content and is ap-
plicable to any time-series. In this paper we outline the theory,
and provide a few examples. The auditory contour analysis sug-
gests a new framework for an old problem in signal processing:
among a set of over-complete time-frequency representations,
one can choose the parameters of analysis that will yield the
simplest contours.

II. DEFINING A CONTOUR REPRESENTATION FOR SOUND

The proposed analysis begins with the complex Gabor trans-
form,

x(t,w)= / 6—@,.,)2/,,';’ erw(t=T) (T)dr = |x (t,w)] JREIY
| ()

where x(t) is the input sound. The variable o, defines the
temporal resolution of analysis, A¢. For all calculations in this
paper, we use a discrete version of the Gabor transform with
1024 frequency bins, and signals sampled or synthesized at
44.1 or 48 kHz. For simplicity of exact resynthesis (but at high
computational cost) we take the number of time bins in the
discrete Gabor transform to be equivalent to the number of
samples in the original time-series. Matlab code to reproduce
Fig. 1(a) and (b) is included in the supplement.
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The original signal can be exactly resynthesized with the fol-
lowing standard definition and integral.

O(rtw)=¢(T,w) + wt — wr 2)

z(t) = // lx (T,w)|67(t7T)2/Ufeié(Tvt’“’)dew. 3)

A stationary phase approximation to (3) indicates that the inte-
gral is dominated by points where ¢ /07 = 0 and 9P /0w = 0
representing the local instantaneous frequency and points of
zero group delay respectively. Points that satisfy both ® /91 =
0 and 9® /0w = 0 are the fixed points of a method known as “re-
assignment” that concentrates power on the ridges of the Gabor
transform [10]-[14]. Reassigned spectrograms demonstrate en-
hanced precision for many signals, and provide the basis for
improved methods of separating signal components [15]. Like
the standard spectrograms, reassigned spectrograms consist of
separate pixels, and coherent signal objects are not intrinsically
associated together. However, it is possible to define a represen-
tation that does link together associated time-frequency points
as follows: first, we generalize the set of points defined by the
stationary phase positions ¢ /9w = 0 and 9®/Jd7 = 0. These
points are particular cases (# = 0 and # = 7/2) of an expres-
sion that generalizes to all angles:

n(tw) = 03 / (t—1) e (=) ol piw(t=T), (r)dr
' @)
()
X

where 6 defines a contour preference angle in the time-fre-
quency plane and & (f) is the imaginary component of . The
points that satisfy (5) are equivalent to the fixed points of the
standard reassignment method [16], subject to the constraint
that reassignment operate only in the direction defined by the
angle 6 4+ /2. The points that satisfy (5) for some choice #
form extended contours in the time-frequency plane that follow
the ridges, valleys and saddle points of x (7, w) (Fig. 1). These
contours do not branch, but terminate on the borders of the
time-frequency axes, or form closed loops — a constraint of
the analytic structure of x (7, w) [16]. Also due to this analytic
structure, the phase along a contour varies smoothly until it
passes through a singularity on the zeros of x (7,w). After
defining contours by linking together the points that satisfy (5),
the method then segments the contours whenever they cross
the zeros of the Gabor transform. Splitting contours at the zeros
ensures smooth continuity of phase derivatives along every
contour segment. This process of linking edges into contours
and segmenting at the zeros is the essential basis of the method.
The relationship between contours and the analytic structure
of the Gabor transform implies that a simple waveform can be
assigned to each contour as described next.

III. RESYNTHESIS OF THE CONTOUR REPRESENTATION

The definition of the contours can be motivated from a sta-
tionary phase approximation to integral (3), and this approxi-
mation is produced by simply integrating (3) along the contours,
for any choice of angle 4. The accuracy of this approximation
needs to be analyzed quantitatively, but in the human speech
sample provided in supplement, readers will find near percep-
tual equivalence of resynthesized sound. In cases where exact
resynthesis is needed, a distinct process can assign waveforms
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to all contours such that the sum of all waveforms is equiva-
lent to the original signal. The exact method proceeds as fol-
lows: we first note that contours track the ridges and valleys
of x (r,w) (Fig. 1). For § = 0 and 6§ = /2, S ((n/x) ")
provides the frequency and time “displacement vectors” used
in the reassignment method to concentrate spectrogram power
from the valley to the ridges of x (7.w) [10]. By extension,
for arbitrary #, & ((n/x) ¢?) defines a local slope in direc-
tion § + 7 /2 perpendicular to a nearby contour at angle §. The
“watershed” structure of this function defines a segmentation
of the time-frequency plane. That is, the territory for each con-
tour is the set of all points that would “flow” onto the contour,
following the slope defined by < ((n/x) e). This is similar
to applying the standard reassignment method iteratively, until
all time-frequency points reach their fixed points, and then as-
signing a waveform to each fixed point by integrating (3) over
the basin of attraction that flows to that fixed point. The only
difference is that here we force every point to move along angle
#+7 /2 resulting in fixed points that form continuous lines — our
contours. In practice, iterative reassignment is not needed to as-
sign a territory to a contour segment- one need only observe the
sign of S ((n/x) €’} at each point in the time-frequency plane
and the nearest contour in the vector direction 8 4+ w/2 “owns”
the point. Fig. 1(c),(d) demonstrates the arrangement of these
contour territories in the time-frequency plane for the contours
illustrated in Fig. 1(a),(b). Once the territory for a given contour
is found, the corresponding waveform is derived by computing
the resynthesis integral in (3), over the territory specific to that
contour (i.e., integrating over one color zone in Fig. 1(c),or (d).)
There are no gaps or overlaps in the territories, and this is true for
all signals, so integral (3) remains exact, just computed piece-
wise for each contour territory. As a result, a complete set of
contour waveforms that sum to the original signal is derived for
any signal and for any single choice of o; and §. By construc-
tion, no contour territory contains an analytic zero of 3, so the
phase varies continuously within a contour territory. A quantita-
tive assessment of contour waveforms is needed, but the absence
of analytic zeros in each territory implies that these waveforms
will all be simple.

IV. GESTALT PRINCIPLES FOR THE DISCOVERY
OF SPARSE REPRESENTATIONS

The method defined here provides a family of contour repre-
sentations of a signal, parameterized by angle and time-scale.
The complexity of this representation will depend on how well
the angle and time-scale parameters are matched to the signal
content. Fig. 2 illustrates contour shapes derived for a simple
signal, analyzed atangles # = 0 and# = 7 /2 (This choice of an-
gles is arbitrary and the following analysis would apply equally
to other angles.) The signal consists of two closely spaced, par-
allel frequency sweeps. Although contour sets from each time-
scale and angle produce a complete representation of the signal
(Section III), a time scale of 2 ms, for this signal, yields the
simplest contours and the most coherent long-range form. The
underlying principle is simple: at a 2 ms time scale, each compo-
nent is spaced by more than the resolution of the time-frequency
uncertainty: Af in time and Aw in frequency. Therefore, at this
time scale, the signal components are separable in the time-fre-
quency plane [13].

This example suggests that contour simplicity could vary
systematically with the parameters of the analysis, for a given
signal. To quantify contour simplicity, we first rank contours
by power (power is defined by the integral of yx (7,w) along
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Fig. 2. Contour representations of a signal vary with the time-scale of analysis. Simple and complex contour representations of a double chirp, calculated for three
different time-scales. If analyzed in the optimal time scale (2 ms), the chirp signal is represented with the simplest contours.
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Fig. 3. Optimal time-scale selection is achieved through a quantitative measure of contour shapes. (a) The “optimal” time scale for analysis of the double chirp
signal (shown in Fig. 2), as a function of chirp slope. (b) The spread of contour-shape eigenvectors for the double chirp signal, at different time-scales. Only the
first eigenvector is shown. For reference, the red line shows the first eigenvector calculated for a straight line. (c) Contour simplicity, based on standard deviation

of the first eigenvector, as a function of o, for three different signals.

the contour), then select as many of the top contours as needed
to account for 95% of the signal power. A variety of objective
shape-based measures could be applied to the collection of con-
tours that remains. (Example measures include the quality of
polynomial fits of a given order, contour persistence length, or
average curvature.) In Fig. 3(a), we employ a measure designed
for comparison of contour shapes in visual object recognition
[17]. This measure is insensitive to scale and rotation. A matrix
describing the shape of each contour is defined by the Euclidean
distance between pairs of evenly spaced points along the con-
tour; 100 points are sampled for each contour. Eigenvectors of
this distance matrix are calculated for each contour. The spread
of the eigenvector shapes provides a measure of the diversity
of forms present in the population. Fig. 3(b) illustrates the
spread of shapes for the frequency sweep analyzed in Fig. 2.
In this example, we define the “optimal” time scale as the
time-scale where the spread of contour shapes (based on the
first eigenvector) is minimal.

The optimal time-scale depends on the signal. Changing the
slope of the frequency sweep shifts the optimal time-scale of
analysis as illustrated in Fig. 3(a). Steeper frequency sweeps
require shorter filter time-scales. Fig. 3(c) demonstrates an ex-
ample involving a sample of human speech, a zebra finch bird
song, and a double chirp signal. The time-scale of analysis that
produces the simplest contours, on average, differs for the three
signal types.

This discussion has highlighted how contour simplicity varies
with the time scale of analysis. A complementary discussion
could focus on how contour simplicity varies with angle of anal-
ysis, for a fixed time-scale. As illustrated in Fig. 1(c), the orange
contour at angle # = 7 /4 is matched to the angle of the rising
frequency sweep, and tracks the signal content well. In Fig. 1(d),
the angle of analysis is mismatched to the signal content and no
contour follows the frequency sweep. A systematic analysis is
needed, but we suggest that the search for parameters that yield

the simplest representations should consider the contours as
cross-sections of high dimensional manifolds in the four dimen-
sional space of time, frequency, time-scale and angle. Smooth
three-dimensional manifolds would indicate parameter regions
where the shape of contours is simple and not sensitively depen-
dent on the choice of time-scale or angle of analysis. A practical
method to optimize the contour representation that takes into
account both time-scale and angle remains to be defined.

In Fig. 3, we examined how contour shape depends on time-
scale, on average, for an entire signal. The more powerful ap-
proach would combine contours from multiple time scales and
angles in a single image. An example of a multi-band analysis is
shown in Fig. 4. The signal consists of a mixture of a zebra finch
bird song and a double-frequency sweep. In the figure, we dis-
play only those contours whose power exceeds a bandwidth —
dependent threshold, and whose shapes are simpler than a care-
fully chosen cutoff, as measured by eigenvector spread. The top
contours from the 5 ms time-scale, shown in red, exclusively
pertain to the frequency sweep. The top contours in the 2 ms
time-scale exclusively pertain to the zebra finch sound. Sep-
arating contours from the two time-scales and resynthesizing
produces a perceptually clean separation of the mixture (Sounds
are provided in supplement.) This separation is simple given the
length and power of the double chirp signal. It remains to be
seen whether this approach to signal separation is applicable to
more complex mixtures.

V. CONCLUSION

In standard time-frequency representations, the division of
a signal into “atoms” of localized power makes it difficult to
infer associations between distant regions of the time-frequency
plane. The key element of this proposal is the process of building
a time-frequency representation based on extended shapes that
are linked together by continuity. In the present method, con-
tour edges are equivalent to the fixed points of a reassignment
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Fig. 4. Separating sound mixtures based on contour statistics. (a) A signal consisting of a zebra finch bird song syllable superimposed on a double chirp is split into
separate components. Short time-scale contours pertain to the bird song syllable, (panel b, 2 ms, black) and long time scale contours correspond to the frequency
sweep (panel b, 5 ms, red). By setting thresholds for power and contour complexity appropriately, the mixed signal can be cleanly separated.

process, constrained to move along a specific angle. Contour seg-
mentations are derived from the analytic structure of the Gabor
transform resulting in a number of useful properties; every
contour represents a zone of coherent phase derivatives in the
time-frequency plane, and the waveform associated with each
contour is simple because the territory that defines the waveform
contains no analytic zeros. Exact resynthesis is achieved by
taking the direct sum of all contour waveforms.

By computing contours for multiple filter-banks and multiple
angles 4, an overcomplete set of shapes is found. From this set,
the simplicity of contours in each time scale and at each angle
# can be explicitly examined to inform an adaptive time-fre-
quency analysis. The potential benefit of this approach is the
representation of sub-components of a sound in their own sim-
plest forms.

The practical utility of the approach remains hypothetical,
and a quantitative analysis is needed, particularly for the quality
of the stationary phase resynthesis based on integrating (3)
along the contours. In certain obvious examples, the contour
representation is lacking: for instance, overtones of a harmonic
stack can be represented by separate contours and the method
will not bind these separate components into a single object,
based on their harmonic relationships.

In closing, we note the connection between this representa-
tion of sound and the theories of the “Gestalt” psychologists
who maintained that every sensory percept is represented in
its own most parsimonious form. In early stages of vision,
this principle can be seen in the perceptual enhancement of
forms demonstrating good continuity and low curvature along
the boundaries of objects. Human auditory processing also
introduces a bias toward the perception of continuity in sound
streams [18]. The method described here provides one means
of enhancing the continuity of time-frequency representations.
Each stage in the contour analysis is a plausible operation for
neural systems: computation of parallel and redundant early
auditory streams, binding together of phase-coherent channels,
and linking groups together through time by continuity.
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