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Summary

Anecdotally, middle-aged listeners report difficulty con-
versing insocial settings, evenwhen theyhavenormalaudio-

metric thresholds [1–3]. Moreover, young adult listenerswith
‘‘normal’’ hearing vary in their ability to selectively attend to

speech amid similar streams of speech. Ignoring age, these
individual differences correlate with physiological differ-

ences in temporal coding precision present in the auditory
brainstem, suggesting that the fidelity of encoding of supra-

threshold sound helps explain individual differences [4].
Here, we revisit the conundrum of whether early aging influ-

ences an individual’s ability to communicate in everyday
settings. Although absolute selective attention ability is not

predicted by age, reverberant energy interferes more with
selective attention as age increases. Breaking the brainstem

response down into components corresponding to coding
of stimulus fine structure and envelope, we find that age

alters which brainstem component predicts performance.
Specifically, middle-aged listeners appear to rely heavily on

temporal fine structure, which is more disrupted by rever-

berant energy than temporal envelope structure is. In con-
trast, the fidelity of envelope cues predicts performance in

younger adults. These results hint that temporal envelope
cues influence spatial hearing in reverberant settings more

than is commonly appreciated and help explain why
middle-aged listeners have particular difficulty communi-

cating in daily life.

Results and Discussion

Selective attention is essential for coping with the bewildering
swirl of voices, noises, and reflected sound energy we en-
counter daily. Acoustic features (onsets, offsets, harmonicity,
etc.) enable the auditory system to group related sound
components into perceptual objects, each an estimate of
one common, physical source [5–7] to which listeners can
direct selective attention [7–9]. Although sound segregation
cues are sometimes redundant [10, 11], many are degraded
by reverberant energy [4, 12–14]. Thus, in everyday settings,
listeners may require multiple segregation cues to support
selective attention even in cases when a single cue is sufficient
in an anechoic setting.

Motivated by these observations, we hypothesized that
reverberant energy may reveal perceptual differences not
observed in anechoic conditions. Specifically, we reasoned
that reverberation might expose effects of early aging,
which could help explain why middle-aged listeners report
*Correspondence: shinn@cns.bu.edu
difficulties in challenging listening conditions [2, 15, 16]. In an
initial study with young adult to middle-aged normal-hearing
listeners (designed to emphasize sensory effects andminimize
cognitive factors), we found that reverberant energy interferes
with the ability to selectively attend to a speech stream amid
similar competing streams [4]. However, we found no effect
of age on performance. Instead, even though all listeners
had clinically normal hearing thresholds, we found large differ-
ences in performance, even among young adult listeners.
Consistent with past studies reporting correlations between

the fidelity of brainstem encoding and perceptual ability
[17–19], a follow-up study using a subset of the original
listeners (recruited from the top and bottom quartiles of the
original group) revealed that the overall strength of the
frequency following response (FFR, a measure of the sus-
tained brainstem response to a periodic acoustic input
measured via scalp electrodes; see [20]) correlates with how
well listeners perform in our spatial selective attention task,
which requires listeners to use interaural timing differences
(ITDs, differences in the timing of the left- and right-ear signals)
to focus spatial attention on the center, target speech stream
[21]. These results suggest that the fidelity of coding of
temporal information in suprathreshold sound impacts the
ability to direct attention to understand one sound source
amid other sources.
Here, we revisited whether early aging affects selective

attention in realistic settings. We recruited five additional
middle-aged listeners (total of 22 listeners, age 20.9–54.7
years) and measured selective attention performance and
FFR responses for these additional listeners. Previously [21],
we analyzed only the overall strength of the FFR at the funda-
mental frequency (F0) of the input stimulus (the syllable /dah/
with F0 = 100 Hz [20]). Here, we broke down the FFR into
orthogonal components representing contributions from
neural phase locking to the periodic stimulus envelope
(FFRENV) and from phase locking to the carrier (FFRCAR; see
also [17, 22–24]), analyzing responses both at F0 and at its
harmonics.
As reported previously [4, 21], performance decreased as

reverberant energy increased, reaching chance levels for the
majority of listeners in the highest tested reverberation level
(Figure 1A; in the high reverberation condition, only five
subjects performed significantly above the 33.3% probability
of guessing digits correctly from among the three streams
[4, 21]). Henceforth, we consider only anechoic and interme-
diate reverberation results.

Different FFR Components Dominate at Different

Frequencies
The envelope component dominates FFR responses at F0 and
lower harmonics, whereas the carrier component dominates at
higher harmonics (Figure 2). Computational models [25, 26]
suggest that the envelope component at F0 (FFRENV-100)
reflects a sum of responses from peripheral auditory channels
tuned to w1,000 Hz and above, which are excited by multiple
harmonics and thus driven by a periodic signal (100 Hz fun-
damental). Conversely, the strength of FFRCAR at a given
frequency likely reflects phase locking to temporal fine
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Figure 1. The Ability to Direct Spatial Selective

Auditory Attention Is Not Related Directly to

Age, but the Impact of Reverberation Increases

with Age

(A) Percentage of target digits correctly reported

as a function of individual listener age for the

three room conditions. Dashed vertical lines

denote ‘‘young adult’’ and ‘‘middle-aged’’ cutoffs

used in visualizing age interactions (see Figures

3A and 3B). In the high reverberation condition,

the majority of listeners performed no better

than chance, based on calculations of the 95%

confidence interval for a binomial distribution of

600 independent trials.

(B) Change in performance from anechoic to

intermediate reverberation conditions (in ratio-

nalized arcsine units [RAUs]) as a function of

age. The cost of adding reverberant energy

increases as age increases.

(C) Change in performance from anechoic to

intermediate reverberation conditions (in RAUs)

as a function of the threshold of hearing in the

worse ear at 8 kHz. The effect of reverberant

energy on selective attention performance

is unrelated to high-frequency thresholds of

audibility.
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structure (TFS) in the narrow range of auditory peripheral
channels tuned to that same acoustic frequency. Here, we
used FFRENV-100 to quantify individual differences in envelope
coding and the average of FFRCAR for four harmonics
(600–900 Hz, where FFRCAR dominates the response) to quan-
tify coding of carrier temporal structure (FFRCAR-AVE). Impor-
tantly, FFRENV-100 and FFRCAR-AVE were not significantly corre-
lated (r = 0.03, p = 0.905, n = 22), supporting the idea that they
reflect different aspects of temporal coding precision driven
by different tonotopic portions of the auditory pathway.

Effects of Reverberation Increase with Age
We performed a multiway, repeated-measure ANOVA on the
selective attention behavioral results with factors of reverber-
ation level, age, FFRENV-100, and FFRCAR-AVE (treating reverber-
ation level as categorical and all other factors as continuous).
To alleviate floor and ceiling effects, we first transformed
the percent correct scores into rationalized arcsine units
(RAUs; see Experimental Procedures) [27]. Although we
found no statistically significant effect of age on selective
attention performance [Figure 1A; F(1,16) = 1.42, p = 0.251],
there was a statistically significant interaction between age
and reverberation level [F(1,16) = 5.88, p = 0.025] and a signifi-
cant main effect of reverberation level [F(1,16) = 155.17,
p = 7.01 3 10211]. Although age did not predict how well
individual listeners performed, the toll
that reverberation took on performance
of individual listeners increased with
age (Figure 1B; ANOVA result confirmed
by regression: r = 0.48, p = 0.025, n = 22).

Age Influences which FFR

Component Predicts Selective

Attention Ability
We found previously that the total FFR
strength at 100 Hz (a measure domi-
nated by envelope phase locking; see
Figure 2) predicted selective attention
ability [21]. Consistent with this, the main effect of FFRENV-100

was significant [F(1,16) = 5.03, p = 0.040]; however, the impor-
tance of this effect was superseded by a significant interaction
between age and FFRENV-100 [F(1,16) = 4.64, p = 0.048].We also
found a significant interaction between age and FFRCAR-AVE

[F(1,16) = 4.64, p = 0.047], with no main effect of FFRCAR-AVE

[F(1,16) = 0.216, p = 0.649]. The ANOVA regression coefficients
revealed that FFRENV-100 was a better predictor of selective
attention performance the younger a listener was, whereas
FFRCAR-AVE was a better predictor the older the listener was.
These results suggest that FFRENV-100 and FFRCAR-AVE reflect
different perceptual cues for directing auditory attention that
are weighted differently as listeners age.
We visualized the significant interactions between age

and the two FFR components by plotting intermediate rever-
beration performance for a ‘‘young adult’’ group (nine
listeners < 31 years) and a ‘‘middle-aged’’ group (nine
listeners > 39 years, omitting four listeners in their mid-30s)
as a function of FFRENV-100 and of FFRCAR-AVE. (This division
into younger and middle-aged groups was arbitrary, under-
taken to illustrate the significant interactions uncovered by
the ANOVA.) Consistent with the ANOVA, FFRENV-100 (Fig-
ure 3A) predicted performance for young adults (r = 0.81, p =
0.008, n = 9), but was low for all but one of the middle-aged
listeners and was not predictive of their selective attention
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Figure 2. Physiological Measures of Brainstem Temporal Coding Correlate

with Behavior

Phase locking in the brainstem FFR envelope (FFRENV) and carrier (FFRCAR)

are significant only at stimulus harmonics. Mean phase-locking value (PLV)

is shown as a function of frequency, averaged across the 22 subjects. Aster-

isks mark frequencies for which the mean of the PLV distribution at a given

frequency is significantly greater than zero (single-tailed t test: p < 0.05,

corrected for multiple comparisons), based on bootstrapping (see Experi-

mental Procedures).

(A) FFRENV is largest at the lowest harmonics and is significant at all stimulus

harmonics up to 800 Hz.

(B) FFRCAR is significant for stimulus harmonics from 400 Hz to 900 Hz.
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ability (r =20.15, p = 0.708, n = 9). Conversely, FFRCAR-AVE (Fig-
ure 3B) was not statistically related to performance in young
adults (r = 20.43, p = 0.243, n = 9) but was for our middle-
aged listeners (r = 0.69, p = 0.039, n = 9).

Weak Envelope Coding Does Not Explain Age Effects

These results raised the possibility that any listeners with weak
FFRENV-100 rely on FFRCAR-AVE to direct spatial attention—that
is, ‘‘age’’ effects could simply reflect a decrease in FFRENV-100

with age [28]. To test this, we selected all subjects whose
FFRENV-100 was similar to the values of the majority of our
middle-aged listeners (FFRENV-100 < 0.3; dashed vertical lines
in Figure 3A). In contrast to the significant correlation found
when considering listeners over age 39 (right panel of Fig-
ure 3B), there was no significant correlation between selective
attention performance and FFRCAR-AVE for listeners with low
FFRENV-100, ignoring age (r = 0.20, p = 0.47, n = 15; see Fig-
ure 3C). This result suggests that younger listeners obligatorily
rely on mid-to-high-frequency information, so that the fidelity
of temporal envelope coding predicts selective attention
ability; in contrast, middle-aged listeners seem to rely on
lower-frequency components to direct spatial attention.

A weak FFRENV-100 could arise from a generally feeble neural
response to mid-to-high-frequency inputs, a robust but
temporally imprecise response to those acoustic frequencies,
or any combination thereof. We thus wondered whether
younger and older listeners had weak FFRENV-100 responses
for different reasons. Specifically, we hypothesized that the
strength of the auditory response to suprathreshold sound in
mid-to-high frequencies decreases by middle age, reducing
the influence of envelope ITD and increasing the influence of
carrier ITD on spatial perception. In contrast, younger lis-
teners may generally have salient responses to mid-to-high-
frequency stimulus content, which therefore have a strong
influence on spatial judgments (whether temporally precise,
yielding strong FFRENV-100 and good performance, or impre-
cise, producing weak FFRENV-100 and poor performance).

Elevated High-Frequency Thresholds Do Not Explain Age

Effects
The strength of neural responses to suprathreshold mid-to-
high-frequency sounds might be related to high-frequency
audiometric thresholds. Moreover, aging is known to affect
audiometric thresholds. Thus, high-frequency audiometric
thresholds might be an even more direct predictor of which
FFR cues correlate with selective attention ability than age
is. Previously, we found no significant difference in hearing
thresholds between younger and older listener groups [4].
However, here, treating age as a continuum, we found a signif-
icant correlation between age and the worse ear audiometric
thresholds at 8 kHz (8kHzWORSE; r = 0.67, p = 5.9 3 1024,
n = 22).
To determine whether the significant interactions of agewith

reverberation level, FFRENV-100, and FFRCAR-AVE were related
to high-frequency thresholds, we redid the main ANOVA with
factors of reverberation level, FFRENV-100, and FFRCAR-AVE,
but with 8kHzWORSE as a main factor instead of age. The only
significant effect or interaction was the main effect of
FFRENV-100 [F(1,16) = 5.210, p = 0.036 (again consistent with
[21])]. Importantly, none of the significant interactions found
when age was a factor were significant here [8kHzWORSE

and reverberation level: F(1,16) = 2.42, p = 0.135; 8kHzWORSE

and FFRENV-100: F(1,16) = 0.554, p = 0.467; 8kHzWORSE and
FFRCAR-AVE: F(1,16) = 0.938, p = 0.3472]. In contrast to the
significant age interaction that we found (Figure 1B), there
was no significant correlation between 8kHzWORSE and the
decrement in performance causedby reverberation (Figure 1C;
r = 0.33, p = 0.135, n = 22). Thus, if our hypothesis is correct and
age decreases the overall strength of neural responses to
suprathreshold sounds, this effect is not strongly related to
age effects on hearing threshold.

Implications

Previous studies found that aging reduces FFR strength [28];
however, not all studies found group age effects [29]. More-
over, even studies that found age-related group differences
in brainstem responses have not consistently found corre-
sponding differences in perceptual abilities [28]. The current
study helps explain these discrepant findings. Brainstem
response strength varies greatly even among young adults;
by examining individual subjects and considering different
components of the FFR, we find reliable interactions between
age, behavioral performance, and specific components of
the FFR.
We show that by early middle age, the FFR envelope

component at the fundamental frequency of the stimulus
tends to be weak, possibly because the neural response to
suprathreshold sound in mid-to-high acoustic frequencies is
reduced in overall strength. These changes may be an early
indicator of hearing disability that is more sensitive than
(and not strongly correlated with) age-related changes in
hearing threshold. Physiological results hint at this: noise
exposure that does not alter hearing threshold can still
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Figure 3. The Orthogonal Components of FFR Envelope and FFR Carrier Are Related to Selective Auditory Attention Performance Di�erently in Young Adult
and Middle-Aged Listeners

(A) FFR ENV-100 is significantly correlated with performance in young adult but not middle-aged listeners. Moreover, the envelope component of the FFR at
the stimulus fundamental frequency (F0) is low for all but one of the middle-aged listeners. Dashed vertical lines show the cuto�used to define a ‘‘low
FFR CAR-AVE ’’ subject group (see C).
(B) FFR CAR-AVE is statistically unrelated to performance in young adult listeners; however, in middle-aged listeners, FFR CAR-AVE is positively correlated with
selective attention performance.
(C) FFR CAR-AVE is statistically unrelated to performance in all listeners with low FFR ENV-100 ; thus, the interaction of age 3 FFR component seen in (A) and (B) is
not due solely to the fact that most middle-aged listeners have low FFR CAR-AVE .
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Corrected �gure published as
erratum; see end of �le.
reduce the magnitude of suprathreshold neural responses
[30]. These changes may come about because low-sponta-
neous-rate auditory nerve fibers, recruited as sound level
increases, are particularly vulnerable to damage [ 31]. Addi-
tional experiments are needed to test this explanation for
the early aging e�ects we see.

Many recent studies have addressed the impact of aging
and hearing loss on TFS and its importance for understanding
speech in noise [ 32–34 ]. Our results suggest that temporal
coding of envelope information is also important for communi-
cating in everyday environments and is also a�ected by age,
consistent with previous reports that aging alters envelope
temporal coding [ 35–37 ].

In our task, performance is primarily limited by the ability to
extract source location and direct spatial auditory attention,
which may help explain why here, performance depends on
the fidelity of envelope temporal coding. Envelope ITD cues
in high-frequency sounds carry spatial information [ 38, 39 ];
however, classic laboratory experiments have established
that for wideband, anechoic sounds, low-frequency carrier
ITDs perceptually dominate over high-frequency cues
[38, 40, 41 ]. Our results suggest that in reverberant settings,
high-frequency ITD cues, encoded in signal envelopes, may
be more important for spatial perception than past laboratory
studies suggest. In anechoic conditions, TFS and temporal
envelope cues both provide reliable information for directing
spatial selective auditory attention. Although reverberant
energy disrupts both cues, envelope ITD is less a�ected ( Fig-
ure 4 ). Reverberation causes moment-to-moment fluctuations
in carrier ITD, decreasing the interaural correlation and inter-
fering with localization; in contrast, although reverberation
decreases the depth of envelope modulations, the impact on
high-frequency envelope ITDs is relatively modest.
Our results hint that in reverberant settings, relatively reli-

able high-frequency envelope ITDs play a significant role
in sound localization, at least for listeners who have a robust
response to suprathreshold mid-to-high-frequency sound.
This possibility points to the importance of high-frequency
amplification in assistive listening devices [ 43], which typically
consider only frequencies directly a�ecting speech intelligi-
bility (below 8 kHz) [ 44]. If envelope ITD cues prove to be
more important for spatial hearing in common acoustic
settings than is currently appreciated, this also has implica-
tions for bilateral cochlear implants, which typically do not
provide reliable TFS information. We conclude that middle-
aged listeners rely on TFS cues, which are relatively fragile in
ordinary listening environments, to direct selective auditory
attention; this makes these listeners more vulnerable to the
degrading e�ects of reverberation. In contrast, younger
listeners depend more on envelope ITD cues, which are
more robust in reverberation, protecting them from some of
the communication difficulties that older listeners experience.
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Figure 4. Reverberant Energy Has a Greater Effect on Low-Frequency Carrier ITD Than on High-Frequency Envelope ITD

(A) Reverberation reduces but does not destroy the temporal envelope structure of a sample digit (a token of the digit ‘‘eight’’).

(B) Reverberation causes a greater disruption in average interaural coherence when computing low-frequency carrier interaural timing difference (ITD)

than when computing high-frequency envelope ITD. Here, we analyzed the left- and right-ear signals generated from the sample token ‘‘eight’’ shown in

(A), simulated from straight ahead (see Experimental Procedures). We used the Slaney MATLAB toolbox [42] (functions ERBSpace, MakeERBFilters,

and ERBFilterBank) to simulate the signals driving 40 auditory nerve fibers (100–12,000 Hz). Using the Hilbert transform, we extracted the carrier compo-

nents of the left- and right-ear signals in the 21 lowest-frequency fibers (100–1,840 Hz) and the envelope components of the signals in the 19 highest-

frequency fibers (2.04–12 kHz). For each left/right auditory fiber pair, we then computed the normalized cross-correlation function and found the peak falling

within the natural ITD range, from 21 to +1 ms. We computed the averages (points) and standard deviations (error bars) of both the peak heights (the

interaural coherence) and the ITDs at which these peaks occurred (the primary left/right direction cue) for the population of low-frequency fibers (left,

computed from the carrier waveforms in each ear) and the population of high-frequency fibers (right, computed from the envelope waveforms in each ear).
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Experimental Procedures

Subjects

All subjects had average audiometric hearing thresholds of 20 dB hearing

level (HL) or better for frequencies from 250 to 8,000 Hz and relatively

symmetric hearing (left/right ear asymmetry of 15 dB or less at all frequen-

cies). (Note that at 8 kHz, one 45-year-old listener had a threshold of 25 dB

HL in one ear and 10 dB HL in the other ear; all other thresholds were

20 dB HL or better in both ears of every subject.) Of the 22 subjects, 17

were participants in earlier studies [4, 21]; the remaining 5 were recruited

from the over-40 age group specifically for this study. All subjects gave

informed consent as overseen by the Charles River Institutional Review

Board.

Spatial Attention Task

All subjects performed the spatial selective attention task described in [4], in

which they reported a sequence of four spoken digits simulated from

directly in front while ignoring two competing digit streams, spoken by

the same talker, simulated from 15� to the left and 15� to the right (all at

eye level). (Note that the data from the 17 original subjects were previously

reported in [4].) Three rectangular rooms were simulated, differing in wall

absorption [4]. As discussed previously [4, 21], the primary cues for focusing

spatial selective attention are interaural time differences, either in the stim-

ulus carrier (at frequencies beloww1,000Hz) or in the stimulus envelope (for

frequencies above w1,000 Hz). Moreover, listeners rarely guessed a digit

that was not physically present in one of the target or masker streams [4],

a result showing that performance is not limited by the ability to recall digits

but by the ability to isolate and attend to the digits in the target stream

coming from straight ahead.

Prior to any statistical analyses, all percent correct scores were trans-

formed into rationalized arcsine units (RAUs) to reduce the impact of floor

and ceiling effects on the data [27]. Because chance performance on our

selective attention taskwas determined by the likelihood of correctly guess-

ing the target from among the three spoken digits, raw scores in the range

0.33–1.0 were linearly transformed to the range 0–1.0 (with scores below

0.33 set to 0) prior to applying the RAU transform.
Brainstem Measurement

FFRs were measured in response to a /dah/ syllable presented in positive

polarity for 2,000 trials and in inverted polarity for 2,000 trials [21]. As in

our previous study, noisy trials were removed, leaving at least 1,800 clean

trials for each subject, condition, and stimulus polarity. The time series

from each trial was windowed with a first-order Slepian taper [45] and the

Fourier transform was computed. We generated distributions of phase-

locking values (PLVs) for different conditions using a bootstrapping proce-

dure to produce 200 independent PLVs, each computed from a draw (with

replacement) of 800 trials for a given subject and condition [21]. Unlike

our previous analysis, here we broke the PLV into orthogonal envelope

and carrier components (FFRENV and FFRCAR) at every frequency from

30 Hz to 3,000 Hz. FFRENV was calculated with equal draws from responses

to each polarity, treating positive- and negative-polarity trials identically.

FFRCAR was determined with equal draws from responses to each polarity,

but inverting the phase of negative-polarity trials (see also [17, 22–24]).
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Figure 3. The Orthogonal Components of FFR Envelope and FFR Carrier Are Related to Selective Auditory Attention Performance Differently in Young

Adult and Middle-Aged Listeners

(A) FFRENV-100 is significantly correlated with performance in young adult but not middle-aged listeners. Moreover, the envelope component of the FFR at

the stimulus fundamental frequency (F0) is low for all but one of the middle-aged listeners. Dashed vertical lines show the cutoff used to define a ‘‘low

FFRENV-100’’ subject group (see C).

(B) FFRCAR-AVE is statistically unrelated to performance in young adult listeners; however, in middle-aged listeners, FFRCAR-AVE is positively correlated with

selective attention performance.

(C) FFRCAR-AVE is statistically unrelated to performance in all listeners with low FFRENV-100; thus, the interaction of age 3 FFR component seen in (A) and

(B) is not due solely to the fact that most middle-aged listeners have low FFRCAR-AVE.
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