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ABSTRACT 

We consider how the continuity of form in natural sounds may be 

used to discover sparse time-frequency representations. To pro-

ceed, we describe a method to represent any sound as a collection 

of contours in the time-frequency plane. By analysing the signal 

in many time-scales, an over-complete set of shapes is generated 

for a given sound. From this redundant set of shapes the simplest, 

most parsimonious mathematical forms may be selected.  

Index Terms— time-frequency analysis, sparse repre-

sentation, kernel optimization, Gestalt principle 

1. INTRODUCTION 

Time-frequency analysis appears in fields ranging from speech 

recognition to radar analysis and the synthesis of electronic mu-

sic. However, most time-frequency representations are over-

determined since every time scale of band-pass filtering results in 

a distinct representation [1]. The uncertainty principle dictates 

that the resolution in time ∆t  and resolution in frequency ∆ω  

are reciprocally related: ∆t∆ω >1 2 . Therefore, analysis with 

high temporal resolution results in loss of spectral resolution, and 

vice-versa.  For a given signal, some choices of ∆t  can lead to 

complex time-frequency representations, and others to simple 

representations. Various approaches exist for optimizing ∆t . For 

example switched filter banks are used in MPEG AAC audio 

encoding, allowing for time-frequency representation that adapts 

to local signal content [2]. However, in most cases, computation-

al optimization of ∆t  focuses on small patches of the time-

frequency plane [1,3,4] which can provide little information 

about long range correlations in time and frequency. This limita-

tion arises from that fact that standard time-frequency methods 

parcel the time-frequency plane into disconnected “atoms” of 

energy. Regions of the time-frequency plane that share-correlated 

phase derivatives are part of a single object – a tone, a click, or a 

frequency sweep, for example. However,  associated portions of 

the time-frequency plane are not bound together into a single 

object by standard time-frequency methods . One method of 

sound representation known as the sinusoidal representation of 

speech avoids the “atomic” representation by explicitly tracking 

continuity of spectral peaks across time.  The interpolated fre-

quency tracks, or “contours” found in this approach can be used 

to resynthesize a speech signal by adding together time-varying 

sinusoids that track the time-frequency lines. While providing an 

important departure from standard methods, the sinusoidal repre-

sentation of speech is a parameter dependent approximation that 

is applicable only to slowly changing sounds [5]. In particular, 

the method cannot efficiently represent sounds that may include 

fast transients or other broadband structure.  

The focus of the present work is to outline a new method for a 

contour-based representation of sound that links together associ-

ated points of the time-frequency plane at the lowest levels of the 

representation. By analysing the signal in many time-scales, an 

over-complete set of contours is generated for a given sound. 

From this redundant set of contours the simplest, most parsimo-

nious mathematical forms may be selected and form the basis of 

a practical method of signal analysis and synthesis. The method 

implies no constraints on the signal content and is applicable to 

any sound. The contour representation of sound provides new 

approaches to the problem of optimizing filter time-scales for a 

given signal. We propose the idea that representations built from 

the simplest shapes may prove to be useful in a variety of techno-

logical applications.  

2. DEFINING A CONTOUR REPRESENTATION FOR 

SOUND 

Our analysis starts with taking the Gabor transform of sound, 

 

χ t,ω( ) = e
− t−τ( )

2
σ
t

2

∫ e
iω t−τ( )

x τ( )dτ = χ t,ω( ) eiφ t,ω( )
                   (1) 

 

where !(t) is input sound. On the right side of this equation, the 

Gabor transform is written as an absolute magnitude (the ubiqui-

tous spectrogram is just the square of this term) and a phase 

term. This phase term is often ignored in time-frequency analy-

sis, but is important for the present method. For all calculations 

in this paper, we use a discrete version of the Gabor transform. 

For simplicity we take the number of time bins in the discrete 

Gabor transform to be equivalent to the number of samples in 

the original time-series. The variable σ
t
defines the temporal 

resolution ∆t  of the analysis, discussed in the introduction. 

 

The original signal can be exactly resynthesized with the follow-

ing definition and integral: 
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Φ τ , t,ω( ) =φ τ ,ω( )+ωt −ωτ                                                     (2) 

x(t) = χ τ ,ω( ) e
− t−τ( )
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e
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dτ dω∫∫                                   (3)       

                                  

A stationary phase approximation [5] indicates that the integral 

is dominated by points where ∂Φ ∂τ = 0 and ∂Φ ∂ω = 0 . We 

define auditory contours to be the set of points that satisfy either 

∂Φ ∂τ = 0  or ∂Φ ∂ω = 0 . The phase derivatives ∂φ ∂τ
 
and 

∂φ ∂ω
 
may be calculated in closed form by using a modified 

Gabor transform, defined as follows [3,4]: 
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2
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Taking the real and imaginary portions of the ratio, η χ , it can 

be shown that [4] 
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 Therefore, using equations (2,5,6), we see that the contours (

∂Φ ∂τ = 0 and ∂Φ ∂ω = 0 ) lie along the real or imaginary zeros 

of the ratio, η χ . The zeros of this ratio form extended closed 

loops in the time-frequency plane. These loops follow the ridges, 

valleys and saddle points of χ τ ,ω( )
 
(Fig. 1a). The constrained 

behavior of these contours result from the fact that a simple fac-

tor converts the Gabor transform into an analytic function [4,6]. 

 

The extended closed loops defined by these contours do not 

define coherent time-frequency structures. However, shorter 

fragments of the closed loop do form coherent objects in the 

following sense: Due to the analytic structure of the Gabor trans-

form, the phase along a contour varies continuously until the 

contour passes through a zero of the Gabor transform, at which 

point the phase is effectively randomized. By terminating con-

tours when they cross the zeros of the Gabor transform, we en-

sure smooth continuity of phase derivatives along the full length 

of every contour segment. (The zeros referred to here are the 

amplitude and phase singularities of the analytic Gabor function. 

In the spectrogram, these points appear to be black holes with no 

acoustic energy.)  After segmentation, each contour represents a 

sub-component of the sound defined by an extended region of 

coherent phase. 

 

As mentioned above, the stationary phase approximation [5] 

indicates that re-synthesis is dominated by points where 

∂Φ ∂τ = 0 and ∂Φ ∂ω = 0 . We find that a close approximation 

to the original sound is derived from integrating equation 3 only 

along the contours. ( See figure 1b, 1c for resynthesis of a song-

bird zebra finch syllable that is spectrally complex. For human 

speech, this approximation is perceptually equivalent.) 

 

In cases where exact resynthesis is required, it is possible to 

assign exact waveforms to each contour in the following man-

ner: We observe that ℜ η χ( )  and ℑ η χ( )  define two differ-

ent energy landscapes whose ridges separate distinct phase-

locked regions of the time-frequency plane. If we simulate the 

movement of every point in the time-frequency plane through 

the landscapes defined by either ℑ η χ( ) or ℜ η χ( ) , all points  

 

Figure 1: Contour representation. a. Blue and white 

lines are the zero-crossing points of and 

 
respectively. Background image is a sono-

gram of white noise represented in hot color scale; 

red and yellow show high values, and black shows 

zero. b. Sonogram of zebra finch analyzed at 

. c. Sonogram of zebra finch sound re-

synthesized with contours following the stationary 

phase approximation described in the text. 

 

 

Figure 2: Simple and complex contour representa-

tions of Gaussian double chirp in three different 

time-scales. If analyzed in the optimal time scale (5 

msec), the chirp signal is represented with simplest 
contours. 
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flow onto a contour – the energy minima. The “basin of attrac-

tion” for a contour is defined by the set of points that flow onto a 

given contour segment. For the contours defined by 

ℜ η χ( ) = 0 , the energy landscape is ℜ η χ( ) . For the con-

tours defined by ℑ η χ( ) = 0 , the energy landscape is ℑ η χ( ) . 

To define a waveform for each contour, we simply apply the 

standard resynthesis integral (eq. 3) but limit the range of the 

integral to cover only the basin of attraction for that contour. The 

original signal can be recovered exactly by adding all contour 

waveforms together.   

 

 In summary, the contour analysis described here converts a 

time-frequency image (the Gabor transform) into a set of contin-

uous contours. The original sound can be reproduced by exact or 

approximate means. Rather than a collection of time-frequency 

points, or “atoms,” this representation is built from shapes that 

can have a short range or long range extent in the time-frequency 

plane. The simplicity of these shapes depends on how well the 

time scale of features in the signal match the time scale of the 

analysis. In what follows we examine how measures of contour 

simplicity can be used to discover sparse representations for a 

given signal.  

3. GESTALT PRINCIPLES FOR THE DISCOVERY OF 

SPARSE REPRESENTATIONS  

 Figures 2,3a,3b Illustrate the contour shapes derived for a varie-

ty of signals, analyzed at different time scales. In Figure 2 the 

signal consists of two closely spaced, parallel frequency sweeps. 

For this simple signal, one particular time scale of analysis 

σ
t
= 5 msec( )  yields the simplest contours and the most coher-

ent visual form. Analyzed at other, less appropriate time scales, 

the representation consists of complex contours that have no 

coherent overall form. The underlying principle is simple: at a 

5ms time scale, each component is spaced by more than ∆t  in 

time, and more than ∆ω  in frequency, and the signal compo-

nents are separable in the time-frequency plane. We emphasize 

that all three representations are accurate time-frequency repre-

sentations of the signal--- the original sound can be resynthe-

sized from any of the three representations, not just the more 

parsimonious representation. 

For a more complex sound like a songbird (zebra finch) syllable, 

simple contours are common when analyzed at relatively short 

time scales σ
t
= 2 msec( ) , while analysis using a 10ms time 

scale yields complex contours (Fig. 3a,b). The complex contours 

often violate rules of physical causality by forming loops in time 

(e.g., see the panels of Fig. 3a,b).  

 

 To quantify contour simplicity, a variety of objective measures 

can be applied, including the quality of polynomial fits of a giv-

en order, contour persistence length, or average curvature. In 

Fig. 3c, we employ a measure of contour similarity designed for 

comparison of contour shapes in visual object recognition [7] 

that is insensitive to scale and rotation.. Using this measure, we 

observe that the collection of contours have the simplest overall 

shapes at intermediate time-scales of filtering, but that the opti-

mum time scale varies depending on the signal.  

 

These observations lead to a simple principle for optimizing a 

time-frequency representation: analyze contour shapes across a 

range of time scales, and then pick the time scale that leads to 

the simplest shapes. This principle can be applied globally to 

optimize the time scale on average for the entire signal, or it can 

 

Figure 3: a,b. Examples of simple (black) and com-

plex (red) contours of the zebra finch syllable. These 

contours are selected from the same sound, analyzed 

in optimal and non-optimal time-scales (2 and 10 

msec respectively). c. The optimal time scale for con-

tour simplicity depends on the details of the signal. 

Quantification of contour simplicity follows a con-
tour shape measure described previously [7]. 

 

Figure 4: Application of contour representation. a. 

Contour representation of speech signal with the ab-

solute value of contour amplitudes shown. b. Con-

tours after polynomial fitting. Frequency and ampli-

tude are fitted by low order polynomials (12th and 

8th order respectively). c. Three clicks and human 

speech reconstructed by 30 contours from two time-

scales (1msec and 10msec). Every click sound is rep-

resented by vertical contours at 1msec and speech is 

composed of horizontal contours at 10msec. d. 

Stretched (x2.37) sound by phase vocoder method. 

Fast transients are not preserved due to phase disper-

sion. e. Resynthesizing stretched contours preserves 

fast transients. 
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be separately applied locally in specific frequency bands or time 

epochs.  

4. APPLICATIONS: COMPRESSION, AND TIME 

DILATION. 

In what follows, we sketch two preliminary examples of possible 

applications 

 

 For sound compression, we observe that contours are smooth 

when the filter time-scale is locally well adapted to the signal. In 

a first test, we fit contours from a sample of voiced speech with 

12th order polynomials and achieved a 20 fold decrease in the 

number of bits required to store the sound while preserving high 

perceptual quality. (The choice of 12
th
 order was arbitrary, and 

we have not examined the sensitivity of the result to variations in 

this order. See figure. 4a,4b). Further compression could be 

achieved if we did not encode harmonics.independently. 

 

 A second sketch of an application is time dilation of a complex 

sound. The original phase-vocoder method for time-dilation of 

sound [8,9] does not meaningfully parse connected structures in 

the time-frequency plane, and relative phase between frequency 

bands are not preserved. As a result, the processed signals exhib-

it dispersion of phase coherence between bands which converts 

fast transients in the time-stretched signal into bursts of noise 

(Fig. 4e) A number of current methods address this phase disper-

sion and have improved on the original phase-vocoder algo-

rithms [10]. In the present method, transients are represented by 

lines with steep slopes. Modeling the contours with sinusoids 

and dilating the time axis preserves the phase relationships be-

tween points that are linked along the contour. After time-dilated 

re-synthesis of contours, fast transients are preserved while still 

accomplishing a perceptual stretching of harmonic sounds. 

5. CONCLUSION 

 Auditory contour analysis provides a new framework for an old 

problem in signal processing: how to optimize the time scale of 

analysis to produce the simplest, most efficient time-frequency 

representation. By generating contours from parallel filterbanks, 

each working at a distinct time scale, an over-complete represen-

tation is derived. The coherence or simplicity of long-range 

structures in each time scale can be explicitly examined and 

quantified. Using this approach, sounds can be represented in a 

manner that emphasizes each component in its own simplest 

form, retaining high precision in time and frequency estimates. 

As such, the method may be applicable to a range of time-

frequency analysis issues; denoising, compression, time dilation, 

and other signal manipulations for audio effects.  

  

 We note in closing that neural auditory processing could con-

ceivably involve a similar contour representation for sound. 

Each stage in the analysis is a plausible operation for neurons: 

parallel and redundant primary processing streams in multiple 

bandwidths, grouping neurons locally in time by phase coher-

ence, and linking groups together over extended times by conti-

nuity [11,12]. 
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