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Objective quality assessment methods have been used widely for evaluation of audio coding systems. However, even 
though many different competing multi-channel audio compression coding systems are being developed, most current 
quality assessment methods only predict results for monaural or stereo signals. In this paper, a prediction method is 
introduced that can be used for multi-channel audio compression coding systems. The method introduces three 
variables as measures of the degradations in spatial quality: interaural time difference distortion (ITD distortion), 
interaural level difference distortion (ILD distortion), and interaural cross-correlation coefficient distortion (IACC 
distortion). Simultaneously, ten Model Output Variables proposed in ITU-R recommendation BS.1387-1 are extracted 
from binaural signals that are synthesized using head related transfer functions. The prediction model is trained and 
verified using results from subjective listening tests of multi-channel audio compression coding systems that were 
performed by participants in the MPEG audio group. This new model, using the three interaural and ten non-spatial 
statistics, shows encouraging results in the prediction of perceived quality. 

INTRODUCTION 
Low bit-rate audio coding technology now is being used 
in multi-channel audio compression technologies that 
manipulate the spatial impressions of the listener. As the 
number of competing compression coding systems 
increases, reliable quality assessment becomes 
important for evaluating these systems. Because a good 
predictive or objective assessment model would enable 
easy comparison of the different compression schemes, 
numerous objective quality assessment methods, such as 
those described in [1-7], have been proposed. Thanks to 
the efforts of the participants in International 
Telecommunication Union Radiocommunication Sector 
(ITU-R) to combine those methods and develop a single 
best method, ITU-R Recommendation BS.1387-1 [8] 
has been established and widely used. However, 
because its scope is restricted to evaluating degradations 
caused by known coding artifacts, the method described 
in [8] cannot predict perceived quality of newly 
developed audio coding technologies that import novel 
coding schemes to accomplish extremely high 
efficiency in compression with intermediate sound 
quality [9]. Moreover, the recommendation cannot be 
used to objectively assess multi-channel audio coding 
systems because it was designed only for monaural and 
stereo sounds [9]. 

Two recent models for the objective assessment of 
quality of multi-channel sound sources have been 
proposed [10, 11]. However, to date, satisfactory 

predictions of perceptual quality of newly developed 
low bit-rate multi-channel coding systems have not been 
reported. In this paper, a prediction model is introduced 
that can be used for the objective quality assessment of 
multi-channel audio compression coding systems, 
focusing on recently introduced, efficient-compression 
coding technologies. 

An adequate predictive model for the perceived 
quality of multi-channel sound must satisfy the 
following conditions. First, the listening environment 
for the multi-channel audio reproduction system must 
be modelled. Second, not only timbral degradations but 
also spatial degradations, such as sound localization 
errors, must be quantified. Lastly, the model must be 
trained and verified with reliable judgments of sound 
quality taken from listening tests using a large ensemble 
of different kinds of degradations in spatial and timbral 
quality. 

In our method, multi-channel signals are first 
converted into binaural signals using head related 
transfer functions (HRTFs) to simulate the signals that a 
listener would hear using a full, standard layout, multi-
channel audio reproduction system. The binaural signals 
are processed to extract statistics thought to be 
important for spatial perception based on 
psychoacoustic principles. 

Degradations of spatial quality can come about from 
distortion of many different perceptual attributes, 
including changes in perceived source location, 
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perceived source width, diffuseness, etc. Of these 
possible spatial degradations, errors in perceived 
location and changes in perceived source width are 
taken into account in the current model. 

For the localization of a sound source, it is generally 
accepted that the most robust and important spatial 
auditory cues are differences between left and right ear 
signals [12]. In the field of audio engineering, there 
have been successful applications based on those 
interaural features such as the binaural cue coding [13] 
systems, one of which is the standard multi-channel 
audio compression coding system also known as 
“MPEG Surround [14].” There are two such interaural 
differences that are important perceptually: interaural 
time differences (ITDs) and interaural level differences 
(ILDs) [12, 15]. Both ITDs and ILDs are important in 
localization, although they have different and 
complementary roles [12]. Thus, in our model, 
estimations for perceived changes in both ITDs and 
ILDs are implemented in different methods with 
different target frequencies. 

The long-term IACC is another important spatial 
attribute, related to perceived source width, shose 
distortion is likely to be important in judging sound 
reproduction quality. The long-term IACC is influenced 
by the direction of incoming direct and reverberant 
sounds over a relatively long period of time, and thus 
will require computations that integrate over relatively 
long time frames. 

To summarize, the statistics extracted for the 
evaluation of spatial quality are interaural time 
difference distortion (ITD distortion), interaural level 
difference distortion (ILD distortion [16, 17, 18]), and 
interaural cross-correlation coefficient distortion (IACC 
distortion [17, 18]).  

Simultaneously, ten Model Output Variables (MOVs) 
in ITU-R BS.1387-1 are computed from the binaural 
signals for assessment of timbral quality. The prediction 
model based on these ten timbral features and three 
spatial features is trained and verified using results of 
listening tests with multi-channel audio compression 
coding systems that were performed by participants in 
the MPEG audio group [19, 20]. 

In Section 1, the implementation of the prediction 
model is illustrated. The prediction model is logically 
divided into three sequential parts: a binaural signal 
synthesis, a peripheral ear model, and a cognition model. 
Those three parts are described in the three sub-sections 
of Section 1, respectively. The procedures for training 
and verification of the model are described in Section 2. 
The listening test database used in training and 
verification are also described in detail in Section 2. The 
verification results and future directions for this work 
are discussed in Section 3. The proposed prediction 
model shows encouraging performance, with prediction- 
data correlation coefficients as large as 0.85. However, 
results suggest that prediction performance can be 

improved further by extending both coding analysis as 
well as signal analysis. Section 3 outlines a number of 
possible improvements and extensions, including the 
match between desired and realized high-frequency ITD 
cues for sounds with fluctuating high-frequency 
envelopes. Finally, conclusions are given in Section 4. 

1 MODEL IMPLEMENTATION  

1.1 Overall process 
In the field of perceived quality assessment for sound 
reproduction systems, Basic Audio Quality (BAQ) is 
commonly used [21]. The prediction model introduced 
in this paper also estimates BAQ, using a combination 
of interaural and spectral measures. BAQ is measured 
by presenting listeners with a pair of stimuli, a reference 
audio signal and the test signal (the reference signal 
processed by some coding scheme or other transmission 
channel) and asking them to report a single value that 
estimates the degradation of the test signal compared to 
its reference. In the database used for the training and 
verification of our model, the BAQ is represented by a 
‘Mean Opinion Score (MOS),’ a value ranging from 
zero to one hundred points [22]. The goal of our model 
is to predict the average MOS reported by listeners. In 
the current study, the input to the model is two multi-
channel signals representing the test and the reference 
signals. 

The overall structure of our prediction model is 
illustrated in Figure 1. 
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Figure 1: Overall structure of our prediction model 
 

The overall process consists of a binaural signal 
simulator, a peripheral ear model, and a cognition model. 
The binaural signal simulator synthesizes the signals 
that a listener would receive if the multi-channel signal 
was played back to the listener in a standard, multi-
speaker configuration in a standard listening space. The 
peripheral ear model transforms the binaural input 
signals into separate frequency channels, roughly 
approximating the excitation patterns that these signals 
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would cause on the basilar membrane [1]. Lastly, the 
cognition model processes the excitation patterns to 
extract multiple interaural and spectral features from 
which the MOS is predicted. Through these stages, 
acoustic information is serially processed – the 
information flow from the multi-channel sound 
reproduction systems to the judgment by the central 
nervous system of the sound quality occurs in sequential 
order. 

The implementations of above three parts are 
described in following three sub-sections, respectively. 

1.2 Simulation of binaural signals 
Most previous quality evaluation models, such as ITU-R 
BS 1387-1, are designed for monaural sound. When 
they are used to evaluate stereo signals, these systems 
separately compare the left and right channels of the test 
signal to the corresponding channels of the reference 
signal. The sound quality is objectively judged 
separately for the two channels, and these two 
judgments are averaged to estimate the perceived sound 
quality. However, that matching scheme is not 
appropriate for multi-channel signals, given that a 
listener hearing a multi-channel reproduction does not 
listen to the five signals in isolation, but rather to their 
combination. Multi-channel signals are generally played 
in multi-channel reproduction systems with multiple 
loudspeakers. Thus, the resulting total binaural signals 
should be compared when listeners judge sound quality. 

In typical multi-channel audio cases, both the 
reference and test signals consist of five signals for the 
five channels in the reproduction system. In our binaural 
signal simulator, binaural signals representing the total 
left and right signals reaching the listener for the test 
and reference inputs (denoted by subscript Test and Ref, 
respectively) are synthesized by convolving each of the 
relevant five channel inputs with the pair of head related 
impulse responses (HRIRs) corresponding to the 
appropriate loudspeaker location for that channel. The 
five resulting binaural signals then are summed to 
produce the total binaural signal that the listener would 
hear. Thus, the binaural test and reference signals are 
synthesized as shown in (1). 

Test Ref

RefTest
Test Ref LfL RfL CL LsL RsL

RefTest
LfR RfR CR LsR RsR

Test Ref
Test Ref

Test Ref

LF LF
RFRF

H H H H HL L CC
H H H H HR R LS LS

RS RS

Λ Λ

Λ Λ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

........ (1) 

HCL, HLfL, HRfL, HLsL, HRsL, HCR, HLfR, HRfR, HLsR, HRsR are 
the HRTFs representing ten sound paths, such as center 

channel to left ear, left-front channel to left ear, etc. L
Λ

 

and R
Λ

 are the left ear input signal and the right ear 
input signal, respectively. 

The HRTFs are recorded in a carefully designed 
listening chamber that satisfies the conditions of a 
reference listening room as recommended in the ITU-R 
BS.1116 [23], using high-quality sound reproduction 
systems that satisfy the conditions of the reference 
monitor loudspeakers, described in [23]. The directions 
of the ten HRTFs correspond to those of loudspeakers in 
a standard layout of multi-channel audio reproduction 
systems. The geometric configuration of the standard 
layout has the center channel loudspeaker located at 
zero degrees, the left-front channel and right-front 
channel loudspeakers at -30 degrees and +30 degrees, 
respectively, and the left-surround channel and the 
right-surround channel loudspeakers at -110 degrees and 
+110 degrees, respectively [23]. 

Whereas the listeners are free to move their head 
directions and positions during listening tests, the 
binaural signal simulator using a single set of HRTFs 
and assumes that the listener is at a fixed position with 
his/her head oriented forward It may be possible to 
extend the evaluation by simulating multiple listener 
positions and extracting multiple sets of quality 
measures from those various binaural signals. Such an 
approach will result in a large increase in the 
computation complexity of the model, and so is not yet 
included. However, recent studies have measured 
listeners’ head movement while listening to spatial 
sound sources [24], so it is possible to explore how head 
movements could be incorporated in the future. 

Timbral features – the MOVs – are also calculated 
from the simulated binaural signals. We have found that 
the MOVs of BS.1387-1 are only weakly correlated 
(correlation coefficients were in the range between 0.03 
and 0.40) with the subjective evaluation data when the 
sound quality for each of the five channels was 
measured separately and then averaged. However, when 
perceived quality of the total resultant binaural test 
signal is judged against the binaural reference signal, 
quality predictions are much better, with correlations as 
high as 0.68. This result demonstrates the importance of 
modeling the listening environment when evaluating 
spatial sound reproduction systems. 

1.3 Peripheral ear model 
Synthesized binaural signals are processed by a 
peripheral ear model. The peripheral ear model converts 
ear input signals into a representation like the signals 
exciting hair cells in the human basilar membrane, 
which translate mechanical vibrations from acoustic 
inputs into neural firing in the auditory nerve fibers. In 
our proposed method, the peripheral ear model includes 
computation units identical to those of BS.1387-1, since 
the MOVs are used as timbral features. However, for 
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the coding of excitation patterns for the computation of 
spatial – interaural – features, a different filter-bank 
structure is used to obtain different temporal and 
frequency resolutions against those of the peripheral ear 
model for the MOVs. 

1.3.1 Peripheral ear model for timbral features 
(MOVs) 
ITU-R BS.1387-1 introduces two peripheral ear models, 
“FFT-based ear model” and “filter bank-based ear 
model,” that fully take account of generally accepted 
concepts of psychoacoustics. The outputs of those two 
ear models are used to calculate different sets of MOVs. 
In our experiment, the MOVs obtained from the outputs 
of an FFT-based ear model (“the basic MOVs”) gave 
slightly better predictions of perceived quality than the 
MOVs from a filter-bank-based ear model (“the 
advanced MOVs”). Thus, the set of the basic MOVs 
was selected as timbral features. In other words, the 
peripheral ear model in the proposed method for the 
timbral features is identical to the FFT-based model of 
BS.1387-1. 

In the FFT-based ear model of ITU-R BS.1387-1, the 
peripheral ear outputs includes stages of 1) computation 
of the discrete time Fourier transform (DFT), 2) level 
scaling, 3) frequency weighting to simulate outer and 
middle ear transfer characteristics, 4) grouping into 
critical bands, 5) adding internal noise, and then 6) 
simulation of temporal and simultaneous masking in 
both the time and frequency domains. The DFT is 
computed using time frames of 21ms duration with 50% 
overlap (see [8, 25] for details). 

1.3.2 Peripheral ear model for spatial features 
For an appropriate computation of interaural features, 
temporal resolution must be increased over that of an 
FFT-based ear model. Moreover, because the perceptual 
sensitivity to temporal fluctuations in ITD, ILD, and 
IACC cues differs, these variables should be computed 
with different temporal resolution. Thus, an additional 
filter-bank structure is needed for the computation of 
interaural cues. 

The 4th-order Patterson-Holdsworth filter bank, also 
known as the Gammatone filter bank [26], is selected as 
the additional filter bank. Although a better temporal 
resolution also can be obtained by the modification of 
the DFT size or by the use of “filter bank-based ear 
model” in [8], the Gammatone filter bank brings some 
benefits, including low complexity, since it can be 
implemented by infinite impulse response filters, and 
relatively accurate simulation of the cochlea filter 
outputs. 

The filter bank has 24 bands with the center 
frequencies determined by the ERB scale [27, 28]. 
Binaural signals are converted into band-pass filtered 
signals by the filter banks, weighted by the outer and 

middle ear weighting factors, and divided into time 
segments. 

The peripheral ear outputs toward inputs to the ITD 
cognition model take 7/8 overlapping 20-ms rectangular 
windows. For the ILD distortion computation, the band-
pass filtered signals are segmented by 3/4 overlapping 
10-ms rectangular windows, while the signals are 
divided by 3/4 overlapping 50-ms rectangular windows 
for the IACC computation. 

1.4 Cognition model 
The cognition model extracts multiple factors that are 
strongly correlated with human judgments of sound 
quality. These factors are computed from the excitation 
pattern outputs of the peripheral ear models. For 
convenience, the factors are conceptually separated into 
spatial factors and timbral factors in the following sub-
sections. 

Even though the BAQ yields only a single value for 
one test signal, the sound quality itself has many 
attributes that contribute to the overall perceived sound 
quality. For this reason, most prediction models 
measure several features to quantify the relevant 
attributes that influence perceived quality. 
 

 
 

Figure 2: Conceptual illustration of Total Auditory 
Quality and MUlti-level auditoRy Assessment 

Language (MURAL) 
 

Figure 2 illustrates the attributes of sound quality 
used in the MUlti-level auditoRy Assessment Language 
(MURAL) [29] model. Attributes are divided into two 
groups, affecting either ‘timbre’ or ‘spatial impression.’ 
More recently, Berg and Rumsey [30] classified the 
attributes of sound quality into three categories: timbral 
quality, spatial quality, and technical quality. No matter 
what kinds of classification are considered, spatial 
quality is an important part of the perceived sound 
quality, especially for multi-channel coding systems. 

As mentioned in the introduction session, among the 
many different perceptual attributes related to the spatial 
quality, errors in perceived location based on ITD and 
ILD distortions and changes in perceived source width 
based on IACC distortions are taken into account in the 
current model. 

Although both ITDs and ILDs are important 
localization cues, they are processed in different brain 
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nuclei and play different and complementary roles in 
spatial perception [12, 31]. ITDs are computed by 
coincidence-detecting circuits with various interaural 
time delays in the medial superior olive (MSO) [32, 33]. 
ILDs are extracted in a neighbouring region, the lateral 
superior olive (LSO). ITDs provide strong spatial cues 
for low frequency sounds (below 1500Hz), while ILDs 
are most important in high frequency sounds (above 
2500Hz). Although ITDs in the envelopes of high-
frequency sounds are perceptually salient [34, 35], the 
importance of these cues depends on characteristics of 
the stimulus [36] and is not as important in perception 
as the low-frequency ITDs. Thus, in this initial 
development of the cognition model, ITDs and ILDs are 
implemented in different methods with different target 
frequencies, i.e. low frequency spatial distortions are 
based on measurement of ITD changes, while high 
frequency spatial distortions use ILD changes. Section 3 
discusses how high-frequency envelope ITDs might be 
incorporated into future models. 

The computational models for measuring these 
psychoacoustical factors are described in the next sub-
sections. 

1.4.1 Computation of errors in low frequency sound 
directions based on ITD distortion 
ITD, derived by coincidence detection neurons in the 
brain (MSO), is an important cue for sound source 
localization, especially for a low-frequency sound. Thus, 
differences in the low-frequency ITD between the test 
and reference signal is likely to be important in 
predicting sound quality. However, because of the non-
linear nature of human neural systems, computation of a 
perceptual distance between two ITDs requires multiple 
stages of computation. 

First, ITD can be computed from the following time-
window-based normalized cross-correlation function 
(NCF), where XL,k,n and XR,k,n are peripheral ear model 
outputs of the left ear and the right ear, respectively. d is 
the time lag represented in samples. k and n are the 
frequency band and time frame indices. The cross-
correlation is calculated over 7/8 overlapping 
rectangular time windows with the length approximately 
equivalent to 20ms. 

, , , ,

, 2 2
, , , ,

[ ] [ ]
[ ]

[ ] [ ]

L k n R k n
l

k n

L k n R k n
l

X l X l d
NCF d

X l X l

+
=
∑

∑
 (2) 

The interaural cross-correlation coefficient (IACC) is 
defined as the maximum value of the NCF over all d, 
and the ITD is the value of d giving this maximum. 
These values are denoted as IACC[k,n] and ITD[k,n] in 
(3) and (4), to indicate their frequency and time indexes: 

,[ , ] = max [ ]
d N

k n d N
IACC k n NCF d

=+

=−  (3) 

,[ , ] arg max [ ]
d N

k n d Nd
ITD k n NCF d

=+

=−
=

 (4) 

Parameter N is the range of d, covering all 
theoretically possible ITD values, represented in sample 
numbers. ITD is measured in both the test and reference 
signals, and is denoted as ITDtest[k,n] and ITDref[k,n] in 
the next computation stage. 

Second, inspired by a computational model for 
predicting source direction based on ITD (in which the 
interaural phase difference is the phase and IACC is the 
amplitude of a vector represented in polar coordinates 
[37]), the perceptual change of the source direction can 
be appropriately calculated as the Euclidian distance 
between two positions on a unit circle. Since the 

distance between two different azimuth angles ( 1θ  and 
2θ , with the same radius of 1) can be calculated as (5), 

the perceptual distance between two source directions 
due to the ITD difference can be modeled as (6). 

2 2
1 2 1 2 1 2(cos cos ) (sin sin ) 2 2cos( )θ θ θ θ θ θ− + − = − −

........ (5) 

 

[ , ] 2 2cos ( [ , ] [ , ])s
test ref

fITD k n ITD k n ITD k nNπΔ = − −

........ (6) 

In this formulation, parameter fs is the sampling rate 
and N is the maximum ITD represented in sample 
numbers. Thus, fs/N can be regarded as a normalizing 
factor that restricts the input of the cosine function of 
(6) to be in the range from 0 to π. 

Lastly, it must be considered that ITD detection 
probably fails in some cases. Perceived source direction 
can be ambiguous if the IACC is too low to produce 
reliable percepts of source direction. Thus, we need to 
apply a decision factor that takes into account the 
certainty of the calculated ITD. In our computation 
method, this certainty is modelled by a nonlinear 
transformation of the IACCs through an approximate 
tangential sigmoid function, as in (7) and (8). 
Parameters S and Tk are constants for steepness and 
threshold. The tangential sigmoid function is shown in 
figure 3 for the slope parameter (S) set to 50 and the 
threshold (Tk) set to 0.5. Note that, in the model, Tk 
takes on different values in different frequency bands, in 
order to account for different sensitivity to ITD in 
different frequency bands. 
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Figure 3: ITD certainty factor model, with the 

steepness parameter of 50 and and threshold of 0.5. X-
axis represents the absolute value of IACC. 

( [ , ] ) 1[ , ] {1 }test kS IACC k n T
testp k n e− − −= +  (7) 

( [ , ] ) 1[ , ] {1 }ref kS IACC k n T
refp k n e− − −= +

 (8) 

After applying those certainty factors to the 
ΔITD[k,n], the ITD distortion is given by (9). 

1[ , ] ( [ , ] [ , ]) [ , ]
2 test refITDDist k n p k n p k n ITD k n= + ⋅Δ

........ (9) 

The resulting ITD distortions are averaged over 
frequency bands and time frames, as in (10) and (11). 
ITDDist is used to represent the average ITD distortion, 
which measures perceptual distance between the test 
and reference source directions due to differences in 
their ITDs. 

1

1
0

1[ ] [ ] [ , ]
Z

k
ITDDist n w k ITDDist k n

Z

−

=
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1

1 [ ]
N

n
ITDDist ITDDist n

N =

= ∑
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w1[k] is a non-linear weighting factor, which takes 
into account the relative importance of the ITD 
distortion in each frequency band for perceived location. 

1.4.2 Computation of perceived degradation in high 
frequency sound direction 
ILD, or interaural level difference between the left and 
right ear inputs, is an important cue for perception of 
sound direction of high-frequency sounds. Thus, the 
computation of ILD difference between the test and 
reference signals reflects degradations in the perceived 
source direction for a high-frequency sound. 

ILD is calculated as ten times the logarithm of the 
intensity ratio between the left ear input XL and right ear 
input XR from the time-frequency segments in the kth 
frequency band in the nth time frame. The intensity 

levels are calculated in 3/4 overlapping rectangular time 
windows that have the sizes approximately equivalent to 
10ms (half of the length of the window used in ITD 
computation). 

2
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10 2
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l

X l
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⎛ ⎞
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⎝ ⎠

∑
∑

 (12) 

ILD is extracted in the LSO of the brain through a 
different physiological mechanism from that extracting 
ITD. Thus, the computation method for the distortion in 
inter-aural level differences differs from that of ITD 
distortion. First, the perceptual distance between two 
source locations due to the ILD difference is estimated 
by linear subtraction of the ILD in dB. Second, the 
sound localization judgment based on ILD is weighted 
by the intensity of the signal in a given time-frequency 
segment. Thus, the ILD distortion is modelled as: 

2
2 10 , ,

[ , ]

[ ] log ( [ ]) [ , ] [ , ]L k n test ref
l

ILDDist k n

w k X l ILD k n ILD k n= ⋅ ⋅ −∑
.......(13) 

where ILDtest[k,n] and ILDref[k,n] are the ILDs of the test 
and reference signals, respectively. w2[k] is a non-linear 
weighting factor, which mirrors the relative importance 
of the ILD distortion in each frequency band. 

By averaging over frequency bands and time frames 
(as in (14) and (15)), we get ILDDist, which is a 
measure of perceptual distance between the ILD-based 
source direction of the test and reference signals. 

1
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k
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Z
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1
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n
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N =
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1.4.3 Computation of perceived degradation in 
apparent source width 
IACCDist is used as a measure of degradations in the 
apparent source width, and it is calculated as: 

3[ , ] [ ] [ , ] [ , ]test refIACCDist k n w k IACC k n IACC k n= ⋅ −
.......(16) 
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= ∑  (17) 

1
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N

n
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N =
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Note that the IACC for this IACCDist computation is 
calculated the same way as in (3), but the cross-
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correlation here uses a longer time window 
(approximately 50ms). 

1.4.4 Calculation of factors for timbral quality 
Model Output Variables (MOVs) from ITU-R BS.1387-
1 are used to quantify spectral degradations in our 
model. There are two versions in BS.1387-1: the 
Advanced Version with six MOVs and the Basic 
Version using eleven MOVs. In the current method, the 
ten MOVs from the Basic Version were used, except 
that one Basic Version MOV, which produces saturated 
values for the multi-channel sound sources used here, 
was discarded; the MOVs used are briefly described in 
Table 2 (see [8, 25] for details, e.g. equations and 
numerical data). 

1.4.5 A neural network for multi-dimensional 
perception of sound: Estimation of MOS 
Estimation of MOS, the measure of the one dimensional 
attribute “BAQ,” is performed by two network models: 
a linear estimator and an artificial neural network model 
with multiple inputs and one output. Through the 
computations explained in above sub-sections, a total of 
thirteen attributes – three interaural features and ten 
MOVs [8, 25] – were extracted and used as the inputs to 
the network models. 

The three spatial features and ten MOVs are 
summarized in table 1 and table 2, respectively. 
 

Features Description 
ITDDist Perceptual distance between source 

directions of the signal under test and 
the original signal due to the ITD 

difference. Computed for low 
frequency sounds (below 1500Hz). 

ILDDist Perceptual distance between source 
directions of the signal under test and 

the original signal due to the ILD 
difference. Computed for high 

frequency sounds (above 2500Hz). 
IACCDist Perceptual difference between 

apparent source widths of the signal 
under test and the original signal due 

to the IACC difference. 
Table 1: BAQ estimator inputs I - Interaural features 

for measuring degradations in spatial quality 
 

MOV Description 
ADB Averaged distortion block. Ratio of 

total distortion to the total number of 
distorted blocks. 

NMRtotB Logarithm of the averaged total noise 
to masker energy ratio 

EHS Harmonic structure of the error 
BWRef Bandwidth of the reference signal 

BWTest Bandwidth of the signal under test 
AModDif1B Averaged modulation difference 
AModDif2B Averaged modulation difference with 

emphasis on the modulation changes 
where the reference contains little 

modulations. 
WinModDif

B 
Windowed averaged modulation 

difference 
RDF Relative fraction of frames with 

significant noise component 
NLoudB Averaged noise loudness 

Table 2: BAQ estimator inputs II - MOVs of ITU-R 
BS.1387-1 that were used as factors for timbral 

degradations 

 
The artificial neural network model is developed as a 

two-layer feed-forward network and trained using the 
“backwards propagation of errors (backpropagation)” 
method. The first layer has five nodes with the tangent 
sigmoid transfer function, and the second layer has one 
linear node. The procedures and results of network 
training are shown in the next section. 

2 TRAINING AND VERIFICATION OF 
MODEL 

2.1 Listening test database 
As yet, the data in the listening test database of low bit-
rate multi-channel compression coding systems is not 
widely distributed. However, a valuable database from 
listening tests of the ISO/IEC MPEG audio group [19, 
20] is available. The MPEG listening tests were 
performed by volunteers in order to evaluate the sound 
quality of several low bit-rate multi-channel 
compression coding systems. The listening tests 
followed the procedures set out in ITU-R BS.1534 
“Multiple Stimulus with Hidden Reference and Anchor 
(MUSHRA) [22].” Listeners were asked to give Mean 
Opinion Scores (MOS) of the test signal quality using a 
scale from 0 to 100. A score of 100 means the test 
signal quality is equal to the quality of the reference 
signal. 

In the listening tests, eleven different broad-band test 
signals were used. All the test signals are multi-channel 
(5.1 channel) signals with durations of twenty seconds, 
selected to represent a broad range of various kinds of 
sounds (e.g., classical music, popular music, a movie 
sound with a monologue, percussive ambience sounds, 
etc.). The contents of the test signals are described 
briefly in Table 3. 
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Material Name Category 
BBC Applause Pathological & Ambience 
ARL Applause Pathological & Ambience 
Chostakovitch Music (back: direct) 
Fountain music Pathological & Ambience 

Glock Pathological & Ambience 
Indie2 Movie sound 

Jackson1 Music (back: ambience) 
Pops Music (back: direct) 

Poulenc Music (back: direct) 
Rock concert Music (back: ambience) 

Stomp Movie sound 

Table 3: Test excerpts included in the listening test 
database 

 
The eleven test excerpts were encoded and decoded 

using eleven different multi-channel compression 
coding systems. Thus, there are 11 X 11 = 121 items in 
the database. 

The effectiveness of the compression is shown in 
Table 4, which gives the bit-rate achieved by the tested 
multi-channel compression coding systems when their 
codec indexes were set randomly. 

 
CODEC 
INDEX BITRATE CODEC 

INDEX BITRATE 

α 182 kb/s Η 97 kb/s 
β 177 kb/s Θ 109 kb/s 
γ 177 kb/s Ι 172 kb/s 
δ 189 kb/s Κ 92 kb/s 
ε 102 kb/s Λ 160 kb/s 
ζ 97 kb/s   

Table 4: Low bit-rate multi-channel audio compression 
coding systems that were evaluated 

 
The MOS for each signal was judged by 42 - 128 

listeners and averaged. The averaged MOS judgments 
for all signals and coding schemes lie in the range 
between 42.87 and 89.76. Confidence intervals are used 
as tolerance values for the analysis of prediction failure 
rate. The 99% confidential intervals fall in the range 
between 2.16 and 8.32, with a mean value of 5.17. 

2.2 Training of the prediction model 
From the 121 items, 61 items were randomly selected 
and used to train the prediction model. The thirteen 
predictive factors – three spatial factors and ten timbral 
factors – were computed for each of the 61 items. These 
values were used as the input elements of a linear 
estimator and a feed-forward neural network whose 
output was an MOS value. Training of the network set 
the network weights so that the network output best 

matched the average MOS judgments of the training 
items for the appropriate inputs. 

2.3 Verification of the prediction model 
The remaining 60 items not used to train the network 
weights were used for the verification of the prediction 
model. The trained network then predicts the MOS of 
each test item from the extracted factors. 

Three types of network functions were developed: a 
linear estimator with only ten MOV inputs (“10-input 
LE”), a linear estimator with thirteen input parameters 
including ten MOVs and three interaural features (“13-
input LE”), and a two-layer feed-forward neural 
network (“13-input NN”). The linear estimation 
network models were trained to attain the least square 
error, and the artificial neural network model was 
trained by the backpropagation method. The best model 
can be derived by comparing the three different 
approaches. First, comparison between 10-input LE and 
13-input LE establishes the value of the newly proposed 
interaural features. Second, comparison between 13-
input LE and 13-input NN shows the improvement 
obtained by using a neural network instead of a linear 
estimator. 

Figures 4 (a), (b), (c) show the relations between the 
average perceived MOS and the estimated MOS that are 
predicted by the above three methods, with the first 
order regression lines. Table 5 shows a comparison of 
several diagnostic attributes that evaluate the 
performance of the three models. The correlations 
coefficients are largest using the non-linear network 
model with the new interaural features; the correlation 
coefficients between measured and predicted MOS are 
0.71, 0.79, and 0.85 for 10-input LE, 13-input LE, and 
13-input NN, respectively. 

Estimation error is computed as the difference 
between the predicted MOS and the perceptual average 
MOS. The mean of the absolute values of estimation 
errors was 6.18 for the 10-input LE. This error was 
reduced to 5.44 when the three spatial features were 
included as inputs, and to 5.09 when the non-linear 
neural network was used instead of the LE. 

A prediction for an item is called a “success” if 
estimation error is within some tolerance range; 
otherwise, the prediction is called a failure. Using the 
99% confidence intervals as the tolerance, the prediction 
failure rate was 28 / 60 or 47 % when the 10-input LE 
was used. The failure rates for the LE and the non-linear 
neural network using spatial features were lower than 
for the 10-input LE (21 / 60 = 35% and 18 / 60 = 30%, 
respectively). The mean values of the absolute errors for 
the prediction-failed items are 9.94, 9.79, and 9.02, with 
standard deviations equal to 4.50, 4.41, and 4.19. For 
the prediction-failed items, Figure 4 shows the 99% 
confidence intervals (tolerance ranges). In summary, 
correlation is greatest and the mean number of errors 
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smaller when the three, newly proposed interaural 
features are used as classifier inputs. Use of a non-linear 
neural network also improves the performance of MOS 
prediction over a LE using the same input parameters. 

 
 10-input 

LE 
13-input 

LE 
13-input 

NN 
Correlation 
Coeffcient 

0.71 0.79 0.85 

Mean of Estimation 
Errors 

6.18 5.44 5.09 

Standard Deviation 
of Estimation Errors 

4.84 4.39 4.04 

Prediction Failure 
Rate 

28 21 18 

Mean of Estimation 
Errors in failed items 

9.94 9.79 9.02 

Std. dev. of Est. 
Errors in failed items 

4.50 4.41 4.19 

Table 5: Comparison of various criteria for prediction 
performance in three types of the MOS estimators: ten 
input linear estimator, thirteen input linear estimator, 

and thirteen input neural network. 
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(a) Estimated MOS: predicted by a linear estimator with 

10 inputs. 
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(b) Estimated MOS: predicted by a linear estimator with 

13 inputs. 
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(c) Estimated MOS: predicted by a neural network with 

13 inputs. 
 

Figure 4: Relation between the average perceived MOS 
and predicted MOS with three types of estimators. The 
correlation coefficient between perceived and predicted 

MOS is 0.71 (a), 0.79 (b), and 0.85 (c). For the 
prediction-failed items, tolerance ranges (based on 99% 

confidence intervals) are given. 
 

3 DISCUSSION 
The proposed interaural difference distortion variables 
are highly correlated with listening test results. 
Correlation coefficients for the thirteen attributes, ten 
MOVs and three spatial features, are compared in 
Figure 5. The correlation coefficients are calculated 
using binaural signals from all 121 items in the listening 
test database. In the correlation analysis, the computed 
measures of ITD, ILD and IACC distortions and the ten 
selected MOVs from the Basic Version of BS.1387-1 
yield consistently high correlation coefficients. ILD 
distortion, IACC distortion, and ITD distortion have 
correlation coefficients of -0.78, -0.62, and -0.61, 
respectively. 
 



Inyong Choi et al. Objective Quality Measurement in Multi-channel Audio Coding Systems 

  10

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

ADB

NM
Rto

tB

N
LoudB

AM
odDif1

B

W
M

odDif1
B

RDF
EHS

AM
odDif2

B

AvgB
wRef

AvgB
wTst

IL
DD

IA
CCD

IT
DD

 
Figure 5: Comparison of correlations for ten MOVs of 

ITU-R BS.1387-1 and proposed spatial features with the 
listening test results. Because these values are 

negatively correlated with the spatial feature measures, 
the y-axis shows the negative correlation coefficient, so 

that better predictions yield taller bars in the plot. 
Correlation coefficients are calculated using binaural 

signals from all 121 items in the listening-test database. 
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Figure 6: Comparison of correlations for several 

versions of ITU-R BS.1387-1 with two different stereo 
databases (represented as “DB-1” and “DB-2”), and our 

model with the multi-channel database (“DB-M”). 
“Version 0” is the early version of BS.1387-1, and 
Version A, B, C are final versions of BS.1387-1. 

Specific compression versions and databases are not 
reported, to preserve anonymity. 

 
Results from our MOS prediction model, compared to 

the prediction performance of different versions of 
BS.1387-1, are also encouraging. The comparison of 
correlation coefficients is shown in Figure 6. Note that, 
in this comparison, correlation coefficients of current 
BS.1387-1 versions represent their prediction 
performance for stereo – not multi-channel – databases 
(“DB-1” and “DB-2”), since the current BS.1387-1 
versions cannot be used to evaluate multi-channel 
conditions. Nonetheless, this comparison shows that the 
proposed model is on a par with the old models in its 
prediction performance. 

The final versions of BS.1387-1 produced correlation 
coefficients between predictions and perceived MOS 
that ranged from 0.67 to 0.86 for the different databases 
and different versions (reported in [8]). The early 

version of BS.1387-1 gave correlations of 0.71 and 0.66 
for two different databases. Our model predictions have 
a correlation of 0.85 with the perceived MOS. 

Since our prediction model implements the monaural 
(timbral) factors used in BS.1387-1, one can view our 
model as an extension of the BS.1387-1. Figure 7 
illustrates this way of envisioning our model. 

 

Multi-channel VersionAdvanced Version

Peripheral Ear Model
(FFT Based)

Pre-Processing of
Excitation Patterns

Calculate Model Output Values

Peripheral Ear Model
(Filterbank Based)

Pre-Processing of
Excitation Patterns
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(Ref and Tst)

Input Signal
(Ref and Tst)

Calculate Quality Measure (NN)

Binaural Ear Model
(HRTF Based)

Peripheral Ear Model
(ERB Filter Based)

Input Signal
(Ref and Tst)
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Calculate Spatial Quality
Degradation Factors

Distortion Index ODG

 
Figure 7: One example approach for extending ITU-R 

BS.1387-1 to multi-channel use. 
 

Although performance of this initial implementation 
of our model is encouraging, there is room for 
improvement. Below, we consider some issues that 
could be incorporated into future work to try to improve 
the model’s performance. 

First, the multiple factors used in the cognition model 
need to be verified, to see whether or not they can be 
treated as independent principal components. 
Furthermore, the network function that estimates the 
MOS also may be improved by using a different 
structure. 

Second, high-frequency envelope ITDs should be 
considered in the next development. Although the 
“duplex theory [15, 31]” of localization has great 
explanatory power, it was developed to describe results 
for sinusoidal stimuli. It is well known that high-
frequency envelope ITDs are perceptually important [34, 
35], although their salience depends strongly on the 
temporal characteristics of the input stimuli [36]. If it is 
possible to incorporated knowledge about the 
detectability of envelope ITDs for different high-
frequency stimuli, a high-frequency ITD measure would 
likely provide new information about spatial sound 
quality. In our present ITD-cognition model, the 
probability factor that models sensitivity to changes of 
ITDs is implemented as a function of the magnitude of 
the interaural cross-correlation coefficient. A sensitivity 
factor similar to this may be important when developing 
a high-frequency, envelope ITD metric, with different 
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input parameters such as the steepness of the envelope 
curve, etc. 

Now we can naturally move on to the third topic of 
future works: signal analysis. One should consider (non-
linear) effects in the selection of a reference signal on 
human judgments of sound quality. Using objective 
assessment methods, we try to evaluate the quality of 
“devices” such as a compression codec, broadcasting 
systems, transmission lines, etc. To evaluate the device, 
a reference signal is passed through the device under 
test, and the signal at the output of the device is 
compared to the reference signal. However, these 
judgments can be affected by the kind of reference 
signal that is used, since devices under test generally 
show different types and degree of quality degradation 
for different kinds of test signals. 

These effects are also found in our experiments. In 
the database used for training our model, there are 
eleven different test signals. From the correlation 
analysis performed separately for each of different test 
signals, the extracted factors (ITD distortion, ILD 
distortion, IACC distortion, and MOVs) have different 
amounts of influence on the subjective evaluation data 
(seen as differences in the correlation between the factor 
of interest and the perceived MOS). 

As an example, correlation coefficients of ITD, ILD, 
and IACC distortions are shown in Figure 8 for different 
kinds of test excerpts. The correlations varied for 
different test excerpts across a range from -0.48 to -0.96. 
The highest correlation occurs for test signals like 
“Glock” and “Stomp,” which contain percussion 
instruments moving around a listener. Sensitivity to 
spatial cues is higher for impulsive sounds like these 
than for more continuous sounds. Thus, the distortion of 
interaural cues has a larger effect on perceived sound 
quality for this kind of signal. In contrast, if a sound has 
few temporal fluctuations, location cues are less 
important for sound quality. 
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Figure 8: Correlation coefficients between ILD 

distortion and eleven different kinds of test excerpts. 
 
In Figure 9, the waveforms of the binaural signals for 

“Indie 2” and “Stomp,” which are examples of a non-
percussive and an extremely percussive stimulus, 

respectively, are compared. Distortions of interaural 
differences yield low correlations with the subjective 
evaluation results for “Indie 2,” but high correlation 
with “Stomp,” which contains many transients.  

The temporal character of the two sources is very 
different. The “Stomp” source contains many more 
impulsive sounds with more frequent changes in 
interaural magnitude ratio than “Indie 2.” Moreover, the 
“Stomp” is created by an advanced recording 
technology that uses multi-channel microphones 
equipped in the space of a sound event, whereas the 
“Indie 2” is an audio clip of a movie soundtrack created 
by a conventional method in a studio. In this direct 
comparison between those two extreme cases, it is easy 
to envision why interaural cues have a greater impact on 
a judgment of sound quality for “Stomp,” with its 
impulsive structure and realism of spatial information, 
than for “Indie 2.” Finding a way to quantify these 
differences in signal quality is likely to lead to new 
methods for improving the model by taking into account 
characteristics of the source in determining how to 
weight spatial features in the prediction of sound quality. 
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Figure 9: Waveform comparison between binaural 

signals for “Indie 2” and “Stomp.” The two panels on 
the left show the waveforms for “Indie 2” while the 

panels on the right show “Stomp.” The top row shows 
the left-ear signal and the bottom row shows the right-

ear signal. The x-axis represents time in seconds. 
Magnitude is represented in a relative scale. 

 
Signal analysis could also improve how the other, 

timbral variables are weighted in the model. The current 
system only considers a small set of known coding 
artifacts (changes of modulation patterns, frequency-
band limitation, adding of noise, etc.) and it uses a fixed 
network function to extract a predicted MOS from the 
multiple variables regardless of the type of signal used. 
A method that quantifies different signal attributes and 
adjusts the weighting and scaling of the different factors 
in the prediction, based on the type of input signal, is 
likely to produce better results. 



Inyong Choi et al. Objective Quality Measurement in Multi-channel Audio Coding Systems 

  12

Lastly, the listening test database needs to be 
enlarged. ITU-R is currently collecting new data from 
listening tests with various multi-channel compression 
coding systems [38], which will provide additional tests 
of the current algorithm and other new approaches. 

4 CONCLUSIONS 
In this paper, an objective method is introduced that can 
be used to predict perceived quality in multi-channel 
audio compression coding systems. The method takes 
into account degradations in both spatial quality and 
timbral quality, extending previous approaches by 
incorporating a binaural-hearing model from which 
interaural features are computed. After training with the 
listening test database that includes perceptual 
evaluation of various low bit-rate multi-channel audio-
coding systems, our model gives encouraging results. In 
particular, predictions of perceived quality are 
comparable to or better than results from other 
evaluation models. 

5 ACKNOWLEDGEMENT 
This work was supported by the Korea Research 
Foundation Grant funded by the Korean Government 
(MOEHRD, KRF-2006-612-D00068). Authors are 
grateful to Virginia Best for reading and discussions. 
 
REFERENCES 
[1] B. Paillard, P. Mabilleau, S. Morisette, J. 

Soumagne, “Perceval: Perceptual Evaluation of 
the Quality of Audio Signals”, J. Audio Eng. 
Soc., vol. 40, pp. 21-31, 1992. 

[2] J. Herre, E. Eberlein, H. Schott, and C. 
Schmidmer, “Analysis Tool for Real Time 
Measurements Using Perceptual Criteria,” Audio 
Eng. Soc. 11th Conference, Portland, USA, 1992. 

[3] J. G. Beerends and J. A. Stemerdink, “A 
Perceptual Audio Quality Measure Based on a 
Psychoacoustic Sound Representation,” J. Audio 
Eng. Soc., Vol. 40, pp. 963-978, 1992. 

[4] C. Colomes, M. Lever, J. B. Rault, and Y. F. 
Dehery, “A Perceptual Model Applied to Audio 
Bitrate Reduction,” J. Audio Eng. Soc., Vol. 43, 
pp. 233-240, 1995. 

[5] T. Thiede and E. Kabot, “A New Perceptual 
Quality Measure for the Bit Rate Reduced 
Audio,” Audio Eng. Soc. 100th Convention, 
Copenhagen, Denmark, 1996. 

[6] W. C. Treurniet, “Simulation of Individual 
Listeners with an Auditory Model,” Audio Eng. 
Soc. 100th Convention, Copenhagen, Denmark, 
1996. 

[7] T. Sporer, “Objective Audio Signal Evaluation – 
Applied Psychoacoustics for Modeling the 
Perceived Quality of Digital Audio,” Audio Eng. 
Soc. 103rd Convention, New York, USA, 1997. 

[8] ITU-R Recommendation BS.1387-1, "Method 
for Objective Measurement of Perceived Audio 
Quality,” International Telecommunication 
Union, Geneva, Swiss, 1999. 

[9] ITU-R Question 122/6, “Objective Perceptual 
Audio Quality Measurement Methods,” 
International Telecommunication Union, Geneva, 
Swiss, 2006. 

[10] S. Torres-Guijarro, J. A. Beracoechea-Alava, F. J. 
Casajus-Quiros, and I. Perez-Garcia, "Coding 
Strategies and Quality Measure for Multichannel 
Audio,” Audio Eng. Soc. 116th Convention, 
Berlin, Germany, 2004. 

[11] S. George, S. Zielinski, and F. Rumsey, "Initial 
Developments of an Objective Method for the 
Prediction of Basic Audio Quality for Surround 
Audio Recordings," Audio Eng. Soc. 120th 
Convention, Paris, France, 2006. 

[12] J. Blauert, "Spatial Hearing: The Psychophysics 
of Human Sound Localization,” MIT Press, 
Boston, 1983. 

[13] F. Baumgarte and C. Faller, “Binaural Cue 
Coding. Part I: Psychoacoustic Fundamentals 
and Design Principles,” IEEE Transactions on 
Speech and Audio Processing, Vol. 11 (6), pp. 
509-519, 2003. 

[14] ISO/IEC JTC1/SC29/WG11 (MPEG) Document 
23003-1, 2006. 

[15] J. W. Strutt, “On Our Perception of Sound 
Direction,” Philos. Mag. Vol. 13, pp. 214-232, 
1907. 

[16] ISO/IEC JTC1/SC29/WG11 (MPEG) Document 
M12265, "Objective Measurement of Total 
Auditory Quality of Spatial Audio Coding," 
Poznan, Poland, July 2005. 

[17] I. Choi, S. B. Chon, and K.-M. Sung, "Measuring 
Spatial Attributes of Multi-channel Audio 
Coding Systems," Western Pacific Acoustics 9th 
Conference, Seoul, Korea, 2006. 

[18] I. Choi, B. G. Shinn-Cunningham, S. B. Chon, 
and K.-M. Sung, "Prediction of Perceived 
Quality in Multi-channel Audio Compression 
Coding Systems," Audio Eng. Soc. 30th 
Conference, Saariselkä, Finland, 2007. 

[19] ISO/IEC JTC1/SC29/WG11 (MPEG) Document 
N6813, "Report on Spatial Audio Coding RM0 
Selection Tests,” Palma de Mallorca, Spain, Oct. 
2004. 

[20] ISO/IEC JTC1/SC29/WG11 (MPEG) Document 
N7138, "Report on MPEG Spatial Audio Coding 
RM0 Listening Tests,” Busan, Korea, 2005. 

[21] S. Bech and N. Zacharov, "Perceptual Audio 
Evaluation - Theory, Method and Application," 
John Wiley & Sons, Chichester, 2006. 

[22] ITU-R Recommendation BS. 1534-1, "Method 
for the Subjective Assessment of Intermediate 
Sound Quality (MUSHRA)”, International 



Inyong Choi et al. Objective Quality Measurement in Multi-channel Audio Coding Systems 

  13

Telecommunication Union, Geneva, Swiss, 2001. 
[23] ITU-R Recommendation BS.1116, "Methods for 

Subjective Assessment of Small Impairments in 
Audio Systems including Multichannel Sound 
Systems,” International Telecommunications 
Union, Geneva, Swiss, 1994. 

[24] C. Kim, R. Mason and T. Brookes, “An 
Investigation into Head Movements Made When 
Evaluating Various Attributes of Sound,” Audio 
Eng. Soc. 122nd Convention, Vienna, Austria, 
2007. 

[25] T. Thiede, W. C. Treurniet, R. Bitto, C. 
Schmidmer, T. Sporer, J. G. Beerends, C. 
Colomes, M. Keyhl, G. Stoll, K. Brandenburg, 
and B. Feiten, “PEAQ – The ITU Standard for 
Objective Measurement of Perceived Audio 
Quality,” J. Audio Eng. Soc., Vol. 48 (1/2), pp. 
3-29, 2000. 

[26] R. Patterson, J. Holdsworth, I. Nimmo-Smith, 
and P. Rice, “The Auditory Filter Bank,” MRC-
APU Report 2341, Cambridge, England, 1991. 

[27] B. C. J. Moore, “An Introduction to the 
Psychology of Hearing,” Academic Press, 
London, 1997. 

[28] B. C. J. Moore, B. R. Glasberg, and T. Baer, “A 
Model for the Prediction of Thresholds, 
Loudness, and Partial Loudness,” J. Audio Eng. 
Soc., vol. 45, pp. 224-240, 1997. 

[29] T. Letowski, "Sound Quality Assessment: 
Concepts and Criteria,” Audio Eng. Soc. 87th 
Convention, New York, Oct. 1989. 

[30] J. Berg and F. Rumsey, "Systematic Evaluation 
of Perceived Spatial Quality,” Audio Eng. Soc. 
24th International Conference on Multichannel 
Audio, Banff, Canada, June 2003. 

[31] E. A. Macpherson and J. C. Middlebrooks, 
“Listener Weighting of Cues for Lateral Angle: 
The Duplex Theory of Sound Localization 
Revisited,” J. Acoust. Soc. Am. Vol. 111 (5), Pt. 
1, pp. 2219-2236, 2002. 

[32] L. A. Jeffress, “A Place Theory of Sound 
Localization,” J. Comp. Physiol. Psychol. Vol. 
41, pp. 35-39, 1948. 

[33] P. X. Joris, P. H. Smith, and T. C. T. Yin, 
“Coincidence Detection in the Auditory System: 
50 years after Jeffress,” Neuron, Vol. 21, pp. 
1235-1238, 1998. 

[34] E. R. Hafter and R. H. Dye, “Detection of 
Interaural Differences of Time in Trains of High-
frequency Clicks as a Function of Interclick 
Interval and Number,” J. Acoust. Soc. Am. Vol. 
73, pp. 644-651, 1983. 

[35] L. R. Bernstein and C. Trahiotis, “Enhancing 
Sensitivity to Interaural Delays at High 
Frequencies by Using Transposed Stimuli,” J. 
Acoust. Soc. Am., Vol. 112 (3), Pt. 1, pp. 1026-
1036, 2002. 

[36] G. C. Stecker, “Rate-limited, but Accurate, 
Central Processing of Interaural Time 
Differences in Modulated High-frequency 
Sounds. Focus on: Neural Sensitivity to 
Interaural Envelope Delays in the Inferior 
Colliculus of the Guinea Pig,” J. 
Neurophysiology, Vol. 93, pp. 3048-3049, 2005. 

[37] B. G. Shinn-Cunningham and K. Kawakyu, 
“Neural Representation of Source Direction in 
Reverberant Space,” IEEE Workshop on 
Application of Signal Processing to Audio and 
Acoustics, New Paltz, USA, 2003. 

[38] ISO/IEC JTC1/SC29/WG11 (MPEG) Document 
M12151, "Liaison Statement from ITU-R TG 6/9 
to ISO/IEC MPEG, SMPTE, and EBU,” Poznan, 
July 2005. 

 


