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Objective quality assessment methods, such as described in ITU-R Recommendation BS.1387-1 [1], have been widely 
used for evaluation of audio coding systems. However, even though many different multi-channel audio compression 
coding systems are being developed, most current quality assessment methods only predict results for monaural or 
stereo signals. In this paper, a prediction method is introduced that can be used for the objective quality assessment for 
multi-channel audio compression coding systems. The method introduces two novel variables, interaural level 
difference distortion (ILD distortion) and interaural cross-correlation coefficient distortion (IACC distortion) to predict 
degradations in spatial quality. Simultaneously, five Model Output Variables proposed in ITU-R BS.1387-1 are 
selectively extracted from binaural signals that are synthesized using binaural room transfer functions. The prediction 
model is trained and verified using results from subjective listening tests of multi-channel audio compression coding 
systems that were performed by participants in MPEG audio group. This new model, using the two interaural and five 
non-spatial statistics, shows encouraging results in prediction perceived quality. 

INTRODUCTION 
Low bit-rate audio coding technology now is being used 
in multi-channel audio compression technologies that 
manipulate the spatial impressions of the listener. 
Recently, ISO/IEC MPEG standardized a Binaural Cue 
Coding type [2] multi-channel audio coder that has low 
bit-rate but relatively high quality [3]. As the number of 
competing compression coding systems increases, 
reliable quality assessment becomes important for 
evaluating these systems. Because a good predictive or 
objective assessment model would enable easy 
comparison of the different compression schemes, 
numerous objective quality assessment methods have 
been proposed [4]. Two recent models for the objective 
assessment of spatial quality or quality of multi-channel 
sound sources have been proposed [5, 6]. However, to 
date, satisfactory predictions of perceptual quality of 
newly developed low bit-rate multi-channel coding 
systems have not been reported. 

An adequate predictive model of sound quality must 
satisfy the following conditions. First, the listening 
environment for the multi-channel audio reproduction 
system must be modelled.  Second, not only timbral 
degradations but also spatial degradations, such as 
sound localization errors, must be quantified. Lastly, the 
model must be trained and verified with reliable 
judgments of sound quality taken from listening tests 
using a large ensemble of different kinds of 
degradations in spatial and timbral quality. 

In this paper, a prediction model is introduced that 
can be used for the objective quality assessment of 
multi-channel audio compression coding systems. In our 
method, multi-channel signals were first converted into 
binaural signals using binaural room transfer functions 
(BRTFs) measured in a listening room assuming a 
standard layout of multi-channel audio reproduction 
systems. After psychoacoustical processing of the 
binaural signals, interaural level difference distortion 
(ILD distortion [7, 8]) and interaural cross-correlation 
coefficient distortion (IACC distortion [8]) are 
computed in order to quantify degradations in spatial 
quality. Simultaneously, five Model Output Variables 
(MOVs) in ITU-R BS.1387-1 are selectively computed 
from the binaural signals for assessment of timbral 
quality. The prediction model is trained and verified 
using results of listening tests with multi-channel audio 
compression coding systems that were performed by 
participants in the MPEG audio group [9, 10]. 

In Section 1, the implementation of the prediction 
model is illustrated. The prediction model is logically 
divided into three sequential parts: a binaural hearing 
model, a peripheral ear model, and a cognition model. 
Those three parts are described in the three sub-sections 
of Section 1, respectively. The procedures for training 
and verification of the model are described in Section 2. 
The listening test database used in training and 
verification are also described in detail in Section 2. The 
verification results and future directions for this work 
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are discussed in Section 3. Finally, conclusions are 
given in Section 4. 

1 MODEL IMPLEMENTATION  

1.1 Overall process 
In the field of perceived quality assessment for sound 
reproduction systems, Basic Audio Quality (BAQ) is 
commonly used [4]. The prediction model introduced in 
this paper also estimates BAQ, using a combination of 
interaural and spectral measures. BAQ is measured by 
presenting listeners with a pair of stimuli, a reference 
audio signal and the test signal (the reference signal 
processed by some coding scheme or other transmission 
channel) and asking them to report a single value that 
estimates the degradation of the test signal compared to 
its reference. In the database used for the training and 
verification of our model, the BAQ is represented by a 
‘Mean Opinion Score (MOS),’ a value ranging from 
zero to one hundred points. The goal of our model is to 
predict the average MOS reported by listeners. In the 
current study, the input to the model is two multi-
channel signals representing the test and the reference 
signals. 

The overall structure of our prediction model is 
illustrated in Figure 1. 
 

testR
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refR
Λ
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Figure 1: Overall structure of our prediction model 
 

The process consists of a binaural hearing model, a 
peripheral ear model, and a cognition model. The 
binaural hearing model synthesizes the signals that a 
listener would receive if the multi-channel signal was 
played back to the listener in a standard, multi-speaker 
configuration in a standard listening space. The 
peripheral ear model transforms the binaural input 
signals into separate frequency channels, roughly 
approximating the excitation patterns that these signals 
would cause on the basilar membrane [11]. Lastly, the 
cognition model processes the excitation patterns to 
extract multiple interaural and spectral features from 
which the MOS is predicted. Through these stages, 

acoustic information is serially processed – the 
information flow from the multi-channel sound 
reproduction systems to the judgment by the central 
nervous system of the sound quality occurs in sequential 
order. 

The implementations of above three models are 
described in following three sub-sections, respectively. 

1.2 Binaural hearing model 
In typical multi-channel audio cases, both the reference 
and test signals will consist of five signals for the five 
channels in the reproduction system. In our binaural 
hearing model, binaural signals representing the total 
left and right signals reaching the listener for the test 
and reference inputs (denoted by subscript Test and Ref, 
respectively) are synthesized by convolving each of the 
relevant five channel inputs with the pair of BRTFs 
corresponding to the appropriate loudspeaker location 
for that channel. The five resulting binaural signals then 
are summed to produce the total binaural signal that the 
listener would hear. Thus, the binaural test and 
reference signals are synthesized as shown in  (1). 
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HCL, HLfL, HRfL, HLsL, HRsL, HCR, HLfR, HRfR, HLsR, HRsR 
are the BRTFs representing ten hearing paths, such as 
center channel to left ear, left-front channel to left ear, 

and so on. L
Λ

 and R
Λ

 are the left ear input signal and the 
right ear input signal, respectively.  

The ten BRTFs are recorded with a high quality head 
and torso simulator microphone placed in a multi-
channel listening room in the Electronics and 
Telecommunications Research Institute in Korea, so 
that the transfer functions include not only the acoustic 
effects of the head and torso but also the characteristics 
of multi-channel sound reproduction systems and 
listening room responses. The geometric configuration 
of the multi-channel reproduction system was set up to 
match the standard recommendations in ITU-R BS.1116 
[12]. This configuration has the center channel 
loudspeaker located at zero degrees, the left-front 
channel and right-front channel loudspeakers at -30 
degrees and +30 degrees, respectively, and the left-
subsequent channel and the right-subsequent channel 
loudspeakers at -110 degrees and +110 degrees, 
respectively. 

Most previous quality evaluation models, such as 
ITU-R BS 1387-1, are designed for monaural sound. 
When they are used to evaluate stereo signals, these 
systems separately compare the left and right channels 
of the test signal to the corresponding channels of the 
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reference signal. The sound quality is objectively judged 
separately for the two channels, and these two 
judgments are averaged to estimate the perceived sound 
quality. However, that matching scheme is not 
appropriate for multi-channel signals, since a listener 
hearing a multi-channel reproduction does not listen to 
the five signals in isolation, but rather to their 
combination. Multi-channel signals are generally played 
in multi-channel reproduction systems with multiple 
loudspeakers. Thus, the resulting total binaural signals 
should be compared when listeners judge sound quality. 
We have found that the MOVs of BS.1387-1 are only 
weakly correlated (correlation coefficients were in the 
range between 0.03 and 0.40) with the subjective 
evaluation data when the sound quality for each of the 
five channels measured separately and then averaged. 
However, when perceived quality of the total resultant 
binaural test signal is judged against the binaural 
reference signal, quality predictions are much better, 
with correlations ranging from 0.45 to 0.60. 

1.3 Peripheral ear model 
Synthesized binaural signals are processed by a 
peripheral ear model. The peripheral ear model converts 
ear input signals to a representation like the signals 
exciting hair cells in the human basilar membrane, 
which translate mechanical vibrations from acoustic 
inputs into neurally firing in the auditory nerve fibers. 

The peripheral ear model is implemented by taking a 
Discrete Fourier Transform (DFT), level scaling, 
filtering to simulate the ear canal resonance, cochlea 
filter-bank smoothing, adding internal noise, and then 
spreading to account for temporal and simultaneous 
masking. In our model, a 2048-point DFT is used. A 
bank of twenty equivalent rectangular bandwidth (ERB) 
filters is used to simulate a cochlea filter-bank model. 
The rest of the peripheral ear model is identical to the 
“FFT based peripheral ear model” of ITU-R BS.1387-1. 
See [1] for detailed information. 

The output of the peripheral ear model is referred to 
as the excitation pattern. The excitation pattern encodes 
loudness patterns, modulation patterns, spectral content, 
and short-term time-frequency content of the inputs. 

1.4 Cognition model 
The cognition model extracts multiple factors that have 
high correlations with human judgments of sound 
quality. These various factors are computed from the 
excitation pattern output of the peripheral ear model. 
For convenience, the factors are conceptually separated 
into spatial factors and timbral factors in the following 
sub-sections. 

1.4.1 Calculation of factors for spatial quality 
Even though the BAQ yields only a single value for one 
test signal, the sound quality itself has many attributes 

that contribute to the overall perceived sound quality. 
For this reason, most prediction models measure several 
features to quantify the relevant attributes that influence 
perceived quality. 
 

 
 

Figure 2: Conceptual illustration of Total Auditory 
Quality [13] and MUlti-level auditoRy Assessment 

Language (MURAL) [14] 
 

Figure 2 illustrates the attributes of sound quality 
used in the MUlti-level auditoRy Assessment Language 
(MURAL) [14] model. Attributes are divided into two 
groups, affecting either ‘timbre’ or ‘spatial impression.’ 
More recently, Berg and Rumsey [13] classified the 
attributes of sound quality into three categories: timbral 
quality, spatial quality, and technical quality. No matter 
what kinds of classification are considered, spatial 
quality is an important part of the perceived sound 
quality. Especially for multi-channel coding systems, 
spatial quality is very important. 

Degradations of spatial quality can come about from 
distortion of many different perceptual attributes, 
including changes in perceived source location, 
perceived source width, diffuseness, etc. Of these 
possible spatial degradations, errors in perceived 
location are taken into account first. It is generally 
accepted that the most robust and important spatial 
auditory cues are computed by calculating differences 
between left and right ears [15]. There are two such 
interaural differences that are important perceptually: 
interaural time differences (ITDs) and interaural level 
differences (ILDs). Although both ITDs and ILDs are 
important localization cues, those two cues play 
different roles and have different importance in different 
frequency regions. However in this initial 
implementation of our model, ITD distortions are not 
yet being used. Instead, ILD distortions and IACC 
distortions are used.  

ILD is calculated as ten times the logarithm of the 
intensity ratio between the left ear input XL and right ear 
input XR from the time-frequency segments in the kth 
ERB band in the nth time frame. 

L L

10
R R

[ ] [ ]
[ , ] 10log

[ ] [ ]
l

l

X l X l
ILD k n

X l X l

∗

∗

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

 (2) 

AES 30th International Conference, Saariselkä, Finland, 2007 March 15–17  3



In Yong Choi et al. Prediction of Perceived Quality in Multi-channel Audio Compression Coding Systems 

Accordingly, we can define the distortion of inter-
aural level difference as shown in the following 
equations. [ , ]testILD k n  and  are the ILD of 
test signal and original signal, respectively. ILDDist is 
the computed distortion of the ILD: 

[ , ]refILD k n

[ , ]

[ , [ , ]] [ , ] [ , ]ref test ref

ILDDist k n

w k ILD k n ILD k n ILD k n

=

⋅ −
 (3) 
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Z

−

=

= ∑  (4) 

1

1 [ ]
N
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= ∑  (5) 

[ , [ , ]]refw k ILD k n  is a non-linear weighting function 

that varies with frequency-band index  and the ILD of 
reference signal. The goal of the weighting is to take 
into account the different contributions (relative 
importance) of the ILD distortion in each frequency 
band on the perceived location, which also varies with 
the original location of the sound source. While this 
weighting is likely to be important to fine-tune our 
results, all weights are fixed to equal 1 in our initial 
implementation. 

k

The IACC is calculated as shown in (6). 
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We can derive [ , ]testIACC k n  and [ , ]refIACC k n , which 

are the IACC of test signal and original signal for the kth  
ERB band and the nth  time frame, respectively. 

IACCDist is calculated in an analogous way to the 
ILD distortion. 
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IACC and ILD are known to be independent of each 
other and have different roles in spatial perception [16]. 
Thus, theoretically, both variables are needed as they 
measure different aspects of spatial degradation. 

The computed measures of ILD and IACC distortion 
are highly correlated with subjective quality judgments 

of signals processed through different spatial audio 
compression codecs, using a wide range of sound 
sources [9, 10]. 

1.4.2 Calculation of factors for timbral quality 
Five Model Output Variables (MOVs; see [1] for details, 
e.g. equations and numerical data.) are selected from 
ITU-R BS.1387-1 to quantify spectral degradations in 
our model. There are originally sixteen MOVs in 
BS.1387-1, but only five MOVs were used in order to 
reduce redundancy and to improve the effectiveness and 
prediction performance. In our correlation analysis, the 
five selected MOVs from BS.1387-1 yield consistently 
high correlation coefficients with quality judgments 
from the multi-channel listening test database (from 
0.45 to 0.60), when measured in binaural signals. 

The selected MOVs are described briefly in Table 1. 
 

MOV Description 
ADB Averaged distortion block. Ratio of 

total distortion to the total number of 
distorted blocks. 

NMRtotB Logarithm of the averaged total noise 
to masker energy ratio 

EHS Harmonic structure of the error 
AModDif1B Averaged modulation difference 

NLoudB Averaged noise loudness 

Table 1: MOVs of ITU-R BS.1387-1 that were used as 
factors for timbral degradations 

1.4.3 Estimation of MOS 
All of the features explained in above sub-sections are 
used as inputs of a single layer feed forward neural 
network for the estimation of MOS. Initially, a pure 
linear function is used as an activation function of the 
neural network. 

2 TRAINING AND VERIFICATION OF 
MODEL 

2.1 Listening test database 
As yet, the data in the listening test database of low bit-
rate multi-channel compression coding systems is not 
widely distributed. However, a valuable database from 
listening tests of the ISO/IEC MPEG audio group from 
2004 to 2005 [9, 10] is available. The MPEG listening 
tests were performed by volunteers in order to evaluate 
the sound quality of several low bit-rate multi-channel 
compression coding systems. The listening tests 
followed the procedures set out in ITU-R BS.1534 
“Multiple Stimulus with Hidden Reference and Anchor 
(MUSHRA) [17].” Listeners were asked to give Mean 
Opinion Scores (MOS) of the test signal quality using a 

AES 30th International Conference, Saariselkä, Finland, 2007 March 15–17  4



In Yong Choi et al. Prediction of Perceived Quality in Multi-channel Audio Compression Coding Systems 

scale from 0 to 100. A score of 100 means the test 
signal quality is equal to the quality of the reference 
signal. 

In the listening tests, eleven different broad-band 
sound sources were used. All the sound sources are 
multi-channel (5.1 channel) signals with durations of 
twenty seconds. They are carefully selected to represent 
a broad range of various kinds of sounds, including 
classical music, popular music, a movie sound with a 
monologue, percussive ambience sounds, etc. The 
contents of the sound sources are described briefly in 
Table 2. 

 
Material Name Category 
BBC Applause Pathological & Ambience 
ARL Applause Pathological & Ambience 
Chostakovitch Music (back: direct) 
Fountain music Pathological & Ambience 

Glock Pathological & Ambience 
Indie2 Movie sound 

Jackson1 Music (back: ambience) 
Pops Music (back: direct) 

Poulenc Music (back: direct) 
Rock concert Music (back: ambience) 

Stomp Movie sound 

Table 2: Sound Sources included in the listening test 
database 

 
The eleven sound sources were encoded and decoded 

using eleven different multi-channel compression 
coding systems. Thus, there are 11 X 11 = 121 items in 
the database. 

The effectiveness of the compression is shown in 
Table III, which gives the bit-rate achieved by the tested 
multi-channel compression coding systems when their 
codec indexes were set randomly. 

 
CODEC 
INDEX BITRATE CODEC 

INDEX BITRATE 

α 182 kb/s Η 97 kb/s 
β 177 kb/s Θ 109 kb/s 
γ 177 kb/s Ι 172 kb/s 
δ 189 kb/s Κ 92 kb/s 
ε 102 kb/s Λ 160 kb/s 
ζ 97 kb/s   

Table 3: Low bit-rate multi-channel audio compression 
coding systems that were evaluated 

 
The MOS for each signal was judged by 42 ~ 128 

listeners and averaged. The averaged MOS judgments 
for all signals and coding schemes lie in the range 
between 42.87 and 89.76. The standard deviations and 
the numbers of the listeners are used for the calculation 

of 99% confidential intervals and 95% confidential 
intervals for the MOS for each signal and coding 
scheme. Those intervals are used as tolerance values for 
the analysis of prediction failure rate. The 95% 
confidential intervals fall in the range between 1.64 and 
6.32, with a mean value of 3.93. The 99% confidential 
intervals have a mean value of 5.17 and lie in the range 
between 2.16 and 8.32. 

2.2 Training of the prediction model 
From the 121 items, 61 items were randomly selected 
and used to train our prediction model. The seven 
predictive factors – two spatial factors and five timbral 
factors – were computed for each of the 61 items. These 
values were used as input elements of a feed-forward 
neural network whose output was an MOS value. 
Training of the network set the network weights so that 
the network output best matched the average MOS 
judgments of the training items for the appropriate 
inputs. Our network model is initially developed with a 
single layer and pure linear activation function (i.e., in 
this initial implementation, the prediction is based on a 
regression model that weights the seven input factors). 

2.3 Verification of the prediction model 
The remaining 60 items not used to train the network 
weights are used for the verification of the prediction 
model. The trained network then predicts the MOS of 
each item from the extracted factors. 
   Figure 3 shows the relation between the average 
perceived MOS and the estimated MOS, with the first 
order regression line. The correlation coefficient 
between measured and predicted MOS is 0.77. 

Estimation error is computed as the difference of the 
predicted MOS minus the perceptual average MOS. The 
mean of the absolute values of estimation errors is 5.53, 
and the standard deviation of absolute errors is 4.33.  

A prediction for an item is called a “success” if 
estimation error is within some tolerance range; 
otherwise, the prediction is called a failure. Using the 
99% confidential interval for the tolerance, the 
prediction failure rate is 23 / 60 or 38 %. The mean 
value of the absolute errors for the prediction-failed 
items is 9.15 with standard deviation equal to 4.69. For 
the prediction-failed items, Figure 3 shows the 99% 
confidential intervals (tolerance ranges). 
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Figure 3: Relation between the average perceived MOS 
and predicted MOS. The correlation coefficient between 

perceived and predicted MOS is 0.77. For the 
prediction-failed items, tolerance ranges (based on 99% 

confidence intervals) are given. 
 

If we use a more strict tolerance scheme of the 95% 
confidential interval, the prediction error rate increases 
to 36 / 60 or 60%. In that case, the mean value of the 
absolute errors for prediction-failed items is 7.72 and 
the standard deviation is 4.24.  

In Figure 4, estimation errors are shown as a function 
of the perceived MOS. In general, the errors are positive 
for low MOS and negative for high MOS. This tendency 
can inform future approaches for improving the network 
model. 
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Figure 4: Estimation errors for each “failed” item as a 

function of the perceived MOS 
 

3 DISCUSSION 
Results from our quality prediction model, compared to 
the prediction performance of different versions of 
BS.1387-1, are encouraging. The comparison of 
correlation coefficients is shown in Figure 5. Note that, 
in this comparison, correlation coefficients of current 
BS.1387-1 versions are representing their prediction 
performances in stereo – not multi-channel – databases 

(“DB-1” and “DB-2”), since the current BS.1387-1 
versions cannot behave in multi-channel situations. 
However, at least, this comparison shows that the 
proposed model is on a par with the old models in its 
prediction performance. 
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Figure 5: Comparison of correlations for several 

versions of ITU-R BS.1387-1 with two different stereo 
databases (represented as “DB-1” and “DB-2”), and our 

model with the multi-channel database (“DB-M”). 
“Version 0” is the early version of BS.1387-1, and 
Version A, B, C are final versions of BS.1387-1. 

Specific compression versions and databases are not 
reported, for anonymity. 

 
The final versions of BS.1387-1 produced correlation 

coefficients between predictions and perceived MOS 
that ranged from 0.67 to 0.86 for the different databases 
and different versions. The early version of BS.1387-1 
gave correlations of 0.71 and 0.66 for two different 
databases. Our model predictions give a correlation 
coefficient of 0.77 with the perceived MOS. 

Since our prediction model implements the monaural 
(timbral) factors used in BS.1387-1, one can view our 
model as an extension of the BS.1387-1. Figure 6 
illustrates this way of envisioning our model. 

 

Multi-channel VersionAdvanced Version

Peripheral Ear Model
(FFT Based)

Pre-Processing of
Excitation Patterns

Calculate Model Output Values

Peripheral Ear Model
(Filterbank Based)

Pre-Processing of
Excitation Patterns

Input Signal
(Ref and Tst)

Input Signal
(Ref and Tst)

Calculate Quality Measure (NN)

Binaural Ear Model
(HRTF Based)

Peripheral Ear Model
(ERB Filter Based)

Input Signal
(Ref and Tst)

Basic Version

Calculate Spatial Quality
Degradation Factors

Distortion Index ODG

 
Figure 6: One example approach for extending ITU-R 

BS.1387-1 to multi-channel use. 
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Although performance of this initial implementation 
of our model is encouraging, there is room for 
improvement. Below, we consider some issues that 
could be incorporated into future work to try to improve 
the model’s performance. 

First, psychophysical knowledge about spatial 
auditory perception should be included in the model. 
For example, the minimum audible angle [18] and the 
minimum audible movement angle [19] vary both with 
the frequency and location of a source. However, this 
change in spatial sensitivity is not yet incorporated in 
the current computations of the ILD and IACC 
distortions. The weighting factors in equations (3) and 
(7) for these features are set up to allow the weights to 
vary with these parameters; however, such a frequency- 
and location-depending weighting is not yet 
implemented. In addition, the ITD cue, which is not 
considered in the current model, should be also included 
as a feature in future implementations. 

Second, the multiple factors in the cognition model 
need to be verified, to see whether or not they can be 
treated as independent principal components. 
Simultaneously, the network function that estimates the 
MOS also can be improved by using a different 
activation function (e.g. sigmoid functions) that 
provides some nonlinearity in the predictions. 
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Figure 7: Correlation coefficients between ILD 

distortion and eleven different kinds of sound sources. 
 
Third, one should consider non-linear effects of the 

selection of a reference signal on human judgments of 
sound quality. Using objective assessment methods, we 
try to evaluate the quality of “devices” such as a 
compression codec, broadcasting systems, transmission 
lines, etc. To evaluate the device, a reference signal is 
passed through the device under test, and the signal at 
the output of the device is compared to the reference 
signal. However, these judgments can be affected by the 
kind of reference signal that is used. Moreover, devices 
under test generally show different types and amount of 
quality degradation for different kinds of sound sources. 
These effects are also found in our experiments. In the 
database used for training our model, there are eleven 
different sound sources. From the correlation analysis 
performed separately for each of different sound sources, 
the extracted factors (ILD distortion, IACC distortion, 

and MOVs) have different amounts of influence on the 
subjective evaluation data (seen as differences in the 
correlation between the factor of interest and the 
perceived MOS). 

As an example, correlation coefficients of ILD 
distortion are shown in Figure 7 for different kinds of 
sound sources. The correlations varied for different 
sound sources across a range from -0.49 to -0.95. The 
highest correlation value occurs for the “Stomp” source, 
which contains various percussion instruments moving 
around a listener. Perception of sound source location is 
more sensitive for impulsive sounds like these. Thus, 
the distortion of interaural cues has a larger effect on 
perceived sound quality for this kind of signal. In 
contrast, if a sound has few temporal fluctuations 
(unlike in the percussive “Stomp” source), location cues 
are less important for sound quality. 

In Figure 8, the waveforms of the binaural signals for 
“Stomp” and “Pops” are compared. ILD distortion has 
the lowest correlation with the subjective evaluation 
results for “Pops.”  
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Figure 8: Waveform comparison between binaural 

signals for “Stomp” and “Pops.” The two panels on the 
left show the waveforms for “Stomp” while the panels 
on the right show “Pops.” The top row shows the left-

ear signal and the bottom row shows the right-ear signal. 
The x-axis represents time in seconds. Magnitude is 

represented in a relative scale. 
 

The temporal character of the two sources is very 
different. The “Stomp” source contains many more 
impulsive sounds with more frequent changes in 
interaural magnitude ratio than “Pops.” In this direct 
comparison between those two extreme cases, it is easy 
to envision why interaural cues have a greater impact on 
a judgment of sound quality for “Stomp,” with its 
impulsive structure, than, for “Pops.” The quantification 
of those relationships between the temporal structure of 
the reference sound and the importance of interaural 
cues in sound quality judgments may lead to new 
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methods for improving the model, to take into account 
characteristics of the source in determining how to 
weight spatial features in the prediction of sound quality. 

Lastly, the listening test database needs to be 
enlarged. Recently, ITU-R is collecting new data from 
listening tests with various multi-channel compression 
coding systems [20]. 

4 CONCLUSIONS 
In this paper, an objective method is introduced that can 
be used to predict perceived quality in multi-channel 
audio compression coding systems. The method takes 
into account degradations in both spatial quality and 
timbral quality, extending previous approaches by 
incorporating a binaural hearing model from which 
interaural features are computed. After training our 
model with the listening test database that includes 
perceptual evaluation of various low bit-rate multi-
channel audio-coding systems, our model gives 
encouraging results. In particular, predictions of 
perceived quality are comparable to results from other 
evaluation models. Still, there is room for improvement 
in our model’s performance. Future efforts will 
incorporate knowledge from psychophysical research, 
particularly from spatial and binaural experiments, as 
mentioned in the discussion. 
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