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Modal analysis of a rectangular room requires evaluation of the eigenvalues of the Helmholtz
operator while taking into account the boundary conditions imposed on the walls of the room. When
the walls have finite impedances, the acoustic eigenvalue equation becomes complicated and a
numerical method that can find all roots within a given interval is required to solve it. In this study,
the interval Newton/generalized bisection �IN/GB� method is adopted for solving this problem. For
an efficient implementation of this method, bounds are derived for the acoustic eigenvalues and their
asymptotic behavior explored. The accuracy of the IN/GB method is verified for a canonical
problem by comparing the modal solution with the corresponding finite element solution.
Furthermore, reverberation times estimated using the IN/GB method are compared to
those calculated using the finite difference method. Through these examples, it is demonstrated
that the IN/GB method provides a useful and efficient approach for estimating the
acoustic responses of rectangular rooms with finite wall impedances. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2114607�
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I. INTRODUCTION

Modal analysis is a classical method for solving prob-
lems in room acoustics �see, for example, Refs. 1–5�. Using
this method, once all the normal modes are known, the
acoustic pressure distribution for an arbitrary sound source in
a room can be easily computed. Although the modal theory
of room acoustics was established and fully formulated over
a half century ago,1 it is still incomplete in the sense that
there is no well-developed, general method for finding eigen-
values that correspond to room modes for walls with arbi-
trary impedances. Only for rooms with perfectly or nearly
rigid walls or rooms with the same impedance on each pair
of parallel walls are the eigenvalues or their approximations
easy to evaluate. Hence, only these cases have typically been
considered in the acoustics literature.1–6 However, the effect
of finite wall impedances on quantities of interest, such as
the reverberation time, is of general interest and important
for real-world problems. Hence there is a need for an effi-
cient and accurate method for evaluating eigenvalues for the
more general case.

The difficulty in finding the acoustic eigenvalues arises
from the nonlinear and transcendent nature of the acoustic
eigenvalue equation,1,2,5 which necessitates the use of nu-
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merical methods. In addition, for the modal solution to be
accurate, these methods must be able to evaluate all the roots
of this equation within a given interval. Classical numerical
approaches for solving nonlinear equations such as Newton’s
iteration are not suitable for solving these equations because
they yield one root for a single initial guess. Moreover, the
initial guess must be “good” in order to obtain a root in the
range of interest. If the number of roots in a range of interest
is unknown, which is often the case in the acoustic eigen-
value problem for a room with finite wall impedances, these
methods cannot be applied. Although several numerical
methods have been developed to attack this problem �some
of which work relatively well�,7,8 it is generally recognized
that a simpler, more efficient, and stabler method would
greatly increase the practicality of using modal analysis in
studies of room acoustics.

In this study, the interval Newton/generalized bisection
�IN/GB� method9–11 is applied to the acoustic eigenvalue
equation to overcome the above-mentioned difficulties. The
IN/GB method is an extension of the classical Newton itera-
tive method, combined with the concept of interval
arithmetic.9–12 The method is guaranteed to find all possible
solutions of a system of equations within intervals specified
for each variable. In addition, the quadratic convergence of
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the Newton method is preserved.
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The remainder of this paper is organized as follows. In
Sec. II, we derive the acoustic eigenvalue equation. In Sec.
III, we discuss the application of the IN/GB method to the
acoustic eigenvalue problem. In particular, we derive limits
and approximations of eigenvalues that yield “good” initial
guesses for intervals used in this method. These limits and
approximations are useful not only for efficient implementa-
tion of the IN/GB method, but find more general applica-
tions. The subsequent sections describe three numerical ex-
periments. In Sec. IV, we evaluate acoustic eigenvalues using
the IN/GB method for a one-dimensional problem. In Sec. V,
we evaluate the modal solution for a point source problem
and compare our results with a benchmark solution obtained
using the finite element method �FEM�. In Sec. VI, we esti-
mate room reverberation times using the acoustic eigenval-
ues, and compare our results with calculations using the
finite-difference time-domain �FDTD� method.13 We make
concluding remarks in Sec. VII. In the Appendices, we re-
view interval arithmetic first, and then describe the IN/BG
method for single and multiple variable problems, of which
the latter is required for solving the acoustic eigenvalue
equation.

II. ACOUSTIC EIGENVALUE EQUATIONS

Normal modes of a rectangular room are obtained by
solving the homogeneous Helmholtz �reduced wave� equa-
tion. For a room with uniform impedance on each of its
walls, the three-dimensional homogeneous Helmholtz prob-
lem for the acoustic pressure p�x ,y ,z� is described as

− �2p − k2p = 0, in � , �1�

�p · n = − i
�c

Zj
kp = − i� jkp, on � j , �2�

where � is the entire space of the room, � j is the jth wall
whose impedance is denoted by Zj, i is the imaginary unit,
k=� /c is the driving wave number with angular frequency
�, c is the speed of sound, n is the outward normal unit
vector on the walls, � is the density of the medium inside
the room, and � j =�c /Zj are the specific acoustic admit-
tances of the walls. Figure 1 shows the coordinate system
used for this problem. The domain is �= �0,Lx�� �0,Ly�

FIG. 1. Coordinate system of a rectangular room.
� �0,Lz�.
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The solution of this homogeneous Helmholtz problem
can be obtained by the separation of variables.1–5 Exponen-
tials are chosen as the eigenfunctions in this study; for ex-
ample, the eigenfunction in the x direction is given in the
form

�x�x� = Aeikxx + Be−ikxx, �3�

where kx �which is generally a complex value� is the eigen-
value in the x direction, and A and B are complex constants.
After applying Eq. �3� to the boundary conditions Eqs. �2� at
x=0 and x=Lx, the lth eigenfunction in the x direction is
obtained as

�xl�x� = �kxl + �1k�eikxlx + �kxl − �1k�e−ikxlx, �4�

where �1 is the specific acoustic admittance at x=0. kxl is the
lth root of kx for the following acoustic eigenvalue equa-
tion:

ei2kxLx =
�kx − �1k��kx − �2k�
�kx + �1k��kx + �2k�

, �5�

in which �2 is the specific acoustic admittance at x=Lx. The
eigenfunctions and eigenvalues in the y and z directions can
be defined in the similar manner.

Since Eq. �5� is a nonlinear equation involving exponen-
tials, its analytical solution is not feasible. Hence, it must be
solved numerically, using a method that will yield all roots in
a given interval. The solution of this problem using standard
Newton’s iteration with several initial guesses is fraught with
difficulties, as different guesses might lead to the same root
and it is impossible to determine if all roots within an inter-
val have been estimated.

With this as motivation, the applicability of the IN/GB
method for solving this problem is explored. The IN/GB
method evaluates all possible solutions of a nonlinear equa-
tion system within a given range, and is therefore an appro-
priate method for finding all important eigenvalues of the
acoustic eigenvalue equation. Interval arithmetic and the
IN/GB method are reviewed in the Appendices. For a more
detailed analysis of this method, the reader is referred to
Refs. 9–12.

III. APPLICATION OF IN/GB METHOD TO ACOUSTIC
EIGENVALUE EQUATIONS

A. Formulation of acoustic eigenvalue equation for IN/
GB method

The IN/GB method is defined for real intervals �see the
Appendices�. However, the approach can be used to find
complex roots in the acoustic eigenvalue equation, Eq. �5�,
by splitting the complex values into real and imaginary parts.
Two separate equations derived from the real and imaginary
components can then be written as f1�kxR ,kxI�=0 and
f2�kxR ,kxI�=0, respectively. In this study, the following form

is considered:
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f1�kxR,kxI�

� �kxR − �1Rk��kxR − �2Rk� − �kxI − �1Ik��kxI − �2Ik�

− e−2kxILx�cos�2kxRLx���kxR + �1Rk��kxR + �2Rk�

− �kxI + �1Ik��kxI + �2Ik�� − sin�2kxRLx���kxR + �1Rk�

��kxI + �2Ik� + �kxI + �1Ik��kxR + �2Rk��� = 0, �6�

f2�kxR,kxI�

� �kxR − �1Rk��kxI − �2Ik� + �kxI − �1Ik��kxR − �2Rk�

− �cos�2kxRLx���kxR + �1Rk��kxI + �2Ik�

+ �kxI + �1Ik��kxR + �2Rk�� + sin�2kxRLx���kxR + �1Rk�

��kxR + �2Rk� − �kxI + �1Ik��kxI + �2Ik��� = 0. �7�

The subscripts R and I denote the real and imaginary parts,
respectively. Equations �6� and �7� are solved for kxR and kxI

using the multivariate IN/GB method.

B. Limits and approximations of acoustic eigenvalues

Although the IN/GB method is guaranteed to find all
roots in a given interval, an intelligent choice of the initial
intervals makes it more efficient. In this section, the limits
and the asymptotic behavior of the acoustic eigenvalues are
derived in three theorems. Taken together, these three theo-
rems significantly reduce the size of the initial intervals
�from the entire complex plane�.

Theorem 1: The solutions of the acoustic eigenvalue
equation appear in pairs of opposite signs.

Proof: Replacing kx by −kx in the acoustic eigenvalue

equation, Eq. �5� leads to the same equation. Hence, if k̂x is a

solution of Eq. �5�, then −k̂x also satisfies this equation. �

This theorem illustrates that it is sufficient to find solu-
tions in only half of the complex plane. In this study, kxI

�0 is considered. In this half-plane, 0	e−2kxILx 
1 in Eqs.
�6� and �7�, while on the other half of the plane, it grows to
infinity as kxI decreases. For this reason, solutions are sought,
even for kxR
0, although nonpositive values of kxR are of no
interest from a physical point of view. If a root with negative
real part is found, then the root that has the opposite sign is
an eigenvalue of interest.

While the lower limit of kxI is determined from Theorem
1, the next theorem indicates that kxI cannot be infinite.
Taken together, these two theorems show that the interval to
be searched for the imaginary parts of roots can be restricted
to a moderate range.

Theorem 2: Let k̂xR and k̂xI be the real and imaginary
parts of a root of the acoustic eigenvalue equation, respec-

tively. If k̂xI�0, then k̂xI is not much larger than
max�1/2Lx , ��1k� , ��2k��.

Proof: Let � be a real number such that ����1. If k̂xI

1/2Lx , ��1k� , ��2k�, then e−2k̂xILx, �1Rk / k̂xI, �1Ik / k̂xI,

�2Rk / k̂xI, and �2Ik / k̂xI can be represented in terms of � as
e−1/�ae��, a1R�, a1I�, a2R�, and a2I�, respectively, where a’s

satisfy �a�
1. Dividing Eqs. �6� and �7� by k̂xI
2 and denoting

ˆ ˆ
kxR /kxI by � gives
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�� − a1R���� − �2R�� − �1 − a1I���1 − a2I��

= e−1/�ae���cos�2k̂xRLx���� + a1R���� + a2R��

− �1 + a1I���1 + a2I���

− sin�2k̂xRLx���� + a1R���1 + a2I��

+ �1 + a1I���� + a2R���� , �8�

�� − a1R���1 − a2I�� + �1 − a1I���� − a2R��

= e−1/�ae���cos�2k̂xRLx���� + a1R���1 + a2I��

+ �1 + a1I���� + a2R���

+ sin�2k̂xRLx���� + a1R���� + a2R��

− �1 + a1I���1 + a2I���� . �9�

� can be expanded in a perturbation series as

� = �0 + ��1 + �2�2 + ¯ . �10�

Substituting this expansion in Eqs. �8� and �9� and collecting
terms of O��0� yields

�0
2 = 1, �11�

�0 = 0. �12�

As these two equations are contradictory, the assumption

must be incorrect, and hence k̂xI is not much larger than

max�1/2Lx , ��1k� , ��2k�� if k̂xI�0.
The next theorem shows that when the magnitude of the

real part of the eigenvalue is large, the eigenvalue can be
roughly estimated �see also Ref. 2�.

Theorem 3: Let k̂xR and k̂xI be the real and imaginary
parts of a root of the acoustic eigenvalue equation, respec-

tively. If �k̂xR�max���1k� , ��2k��, then �k̂xR�	n� /Lx, where n

is an integer, and k̂xI	0.

Proof: If �k̂xR�max���1k� , ��2k��, then a real number �

with ����1 can be introduced to represent �k / k̂xR as

�1Rk / k̂xR=a1R�, �1Ik / k̂xR=a1I�, �2Rk / k̂xR=a2R�, and �2Ik /

k̂xR=a2I�, respectively, where �a�
1. Using the notation �

= k̂xI / k̂xR, the division of Eqs. �6� and �7� by k̂xR
2 leads to

�1 − a1R���1 − a2R�� − �� − a1I���� − a2I��

= e−2k̂xILx�cos�2k̂xRLx���1 + a1R���1 + a2R��

− �� + a1I���� + a2I���

− sin�2k̂xRLx���1 + a1R���� + a2I��

+ �� + a1I���1 + a2R���� , �13�

�1 − a1R���� − a2I�� + �� − a1I���1 − a2R��

= e−2k̂xILx�cos�2k̂xRLx���1 + a1R���� + a2I��

+ �� + a1I���1 + a2R���

+ sin�2k̂xRLx���1 + a1R���1 + a2R��
− �� + a1I���� + a2I���� . �14�
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Substituting the perturbation expansion of � in Eq. �10� into
Eqs. �13� and �14� and focusing on the terms of O��0� shows
that

��0
2 − 1��e−2k̂xILx cos�2k̂xRLx� − 1� + 2�0e−2k̂xILx sin�2k̂xRLx�

= 0, �15�

2�0�e−2k̂xILx cos�2k̂xRLx� − 1� − ��0
2 − 1�e−2k̂xILx sin�2k̂xRLx�

= 0. �16�

The elimination of �0 reduces these two equations to

�e−2k̂xILx cos�2k̂xRLx� − 1�2 + �e−2k̂xILx sin�2k̂xRLx��2 = 0.

�17�

This implies that

e−2k̂xILx cos�2k̂xRLx� = 1, �18�

e−2k̂xILx sin�2k̂xRLx� = 0. �19�

The solutions of these equations are

k̂xR =
n�

Lx
, �20�

k̂xI = 0, �21�

where n is an integer. �

Theorem 3 indicates that if the magnitude of the real
part of the solution is large relative to ��1k� and ��2k�, then it
is sufficient to find eigenvalues near kx=n� /Lx, which are
the eigenvalues when the walls are perfectly rigid both on
x=0 and x=Lx. Therefore, the initial intervals used in the
IN/GB method can be small and set only near kx=n� /Lx for
large kxR. Alternatively, the classical Newton iterative
method can be used for Eq. �5� with the complex variable kx

for �kxR� ��1k� , ��2k� with initial guesses n� /Lx. In either
case, the knowledge of the approximate solutions can be
used to vastly improve the computational efficiency.

In summary, the region on the complex plane in which
the eigenvalues are sought can be restricted as follows:

�1� 0
kxI.
�2� kxI is not much larger than max�1/2Lx , ��1k� , ��2k��.
�3� Near kx=n� /Lx, if �kxR� ��1k� , ��2k�.

Although the limits and approximations of acoustic eigenval-
ues are derived to improve the efficiency of the IN/GB
implementation, they may be applied to all methods for find-
ing acoustic eigenvalues and are not restricted to the IN/GB
method.

In the following sections, three numerical experiments
are performed to show the accuracy, efficiency, and the util-
ity of the IN/GB method.

IV. NUMERICAL EXPERIMENT 1: EIGENVALUE
CALCULATION

Eigenvalues in the x direction were found by implement-

ing the multivariate IN/GB method for solving the eigen-
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value equations �Eqs. �6� and �7�� for driving wave numbers
k=2, 10, and 20. These wave numbers correspond roughly to
the frequencies of 100, 500, and 1000 Hz, respectively. In all
calculations, Lx=1 m, and the specific acoustic admittances
of the walls were set based on Fig. 1 in Ref. 14, which shows
the specific acoustic impedances of some commercial acous-
tic materials with rigid wall backing. At each frequency, the
specific impedances of Celotex C-4 1.25 in. and Johns-
Manville Acoustex 0.88 in. were obtained from this figure.
The impedances of the former material were used at x=0 and
the latter at x=1. Table I shows the specific acoustic imped-
ances used in the calculations. Because typical impedances
of commercial materials were used, the resulting boundary
conditions represent a real-world situation. Based on Theo-
rems 2 and 3 derived in the previous section, the initial in-
tervals for kxI were set at �0,10 max�1/2Lx , ��1k� , ��2k���.

The implementation of the IN/GB algorithm requires an
interval arithmetic software package. While some compilers
support interval arithmetic,15 public domain software is also
available in several programming languages.16

INTLIB
17 was

used to implement interval arithmetic in this study.
The ten eigenvalues with the smallest real parts are

shown in Fig. 2 and Table II for each driving wave number k.
Results show that there are a few eigenvalues whose imagi-
nary parts are much larger than the others, e.g., the first ei-
genvalue for k=2 and the second eigenvalues for k=10 and
k=20. The magnitudes of the eigenfunctions corresponding
to these roots change more rapidly in space than others �see
Eq. �4��. Although such roots are hard to find by some nu-
merical methods,7 the IN/GB method succeeds in finding
them. Note that this method is guaranteed to find all roots

TABLE I. Specific acoustic impedances Z1 /�c �on x=0� and Z2 /�c �on x
=Lx�.

k Z1 /�c Z2 /�c

2 3.0−16.0 i 3.0−25.0 i
10 2.5−2.0 i 1.5−5.0 i
20 3.0+2.0 i 1.5−2.0 i

FIG. 2. The ten eigenvalues with the smallest real parts in the x direction

with Lx=1 m and with boundary impedances shown in Table I.
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within a given interval. These results also indicate that it is
not appropriate to assume kxRkxI, an assumption that has
been previously used.1,2,5

Whereas Table II and Fig. 2 also validate that the eigen-
values obey the limits and asymptotic behavior derived in
Sec. III, these properties are more clearly seen in Fig. 3,
which shows the first 1000 eigenvalues ordered by the mag-
nitudes of their real parts. Results show that kxI approaches
zero with increasing kxR, as indicated by Theorem 3, and that
when kxR is large, the rate of change of kxI with respect to kxR

is approximately O�kxR
−1� for all the driving wave numbers k.

The behavior of kxR is shown in more detail in Fig. 4. This
figure shows the difference between kxlR, the real part of the
lth eigenvalue, and the nearest n� /Lx. As expected from
Theorem 3, kxlR converges to n� /Lx as the mode number l
grows, and the convergence rate is found to be approxi-
mately O�l−1� for all driving frequencies.

The efficiency of the IN/GB algorithm is demonstrated
by the observation that 1000 eigenvalues were calculated in
about 10 s for all the wave numbers mentioned above on a
computer with a 2.4 GHz CPU.

V. NUMERICAL EXPERIMENT 2: MODAL SOLUTION

As an application of the eigenvalues obtained using the
IN/GB method, the modal solution of the Helmholtz problem

TABLE II. The ten eigenvalues with the smallest real parts in the x direction
with Lx=1 m and with boundary impedances shown in Table I.

k=2 k=10 k=20

1 0.0370+0.4524 i 0.7631+1.9528 i 2.9873+0.6154 i
2 3.0768+0.0106 i 2.6597+2.0652 i 4.8000+6.4000 i
3 6.2513+0.0052 i 5.6177+0.5628 i 6.0268+0.8930 i
4 9.4036+0.0034 i 9.0063+0.3390 i 9.1681+0.8216 i
5 12.5505+0.0026 i 12.2582+0.2467 i 12.3426+0.6812 i
6 15.6952+0.0020 i 15.4635+0.1947 i 15.5169+0.5668 i
7 18.8390+0.0017 i 18.6467+0.1611 i 18.6849+0.4814 i
8 21.9821+0.0015 i 21.8177+0.1375 i 21.8473+0.4171 i
9 25.1248+0.0013 i 24.9813+0.1200 i 25.0053+0.3674 i

10 28.2672+0.0011 i 28.1398+0.1065 i 28.1602+0.3280 i

FIG. 3. The 1000 eigenvalues with the smallest real parts in the x direction

with Lx=1 m and with boundary impedances shown in Table I.
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in a two-dimensional rectangular room is calculated. The
modal solution is then compared with the benchmark solu-
tion computed using the finite element method �FEM� to
discuss the accuracy of the modal solution and hence the
validity of the application of the IN/GB approach to the
acoustic eigenvalue equation.

The problem domain is the rectangle on the xy plane in
Fig. 1, and the size of the room is 1 m�1 m �i.e., Lx=Ly

=1 m�. The governing equation is the inhomogeneous Helm-
holtz equation, given by

− �2p − k2p = ��x − xs� , �22�

in which xs is the source position, set at the center of the
room, i.e., xs= �xs ,ys�= �0.5,0.5�. On the walls at x=0 and
x=Lx, the impedance boundary conditions listed in Table I
are imposed for driving wave numbers k=2,10,20. The
walls on y=0 and y=Ly are rigid with a specific acoustic
admittance of zero.

A. Modal solution

1. Derivation of modal solution

Once all the eigenvalues in x and y directions are found,
the modal solution of Eq. �22� is expressed in the series
expansion in terms of the eigenfunctions as

p�x,y� = 

l=1

�



m=1

�

Ãlm�xl�x��ym�y� , �23�

where Ãlm are constants to be determined. The lth eigenfunc-
tion in the x direction �xl�x� is defined by Eq. �4�, and
similarly for �ym�y�.

When walls have nonzero acoustic admittance, the
eigenfunctions �xl�x� are orthogonal in the sense that

�
0

Lx

�xl�xl� dx = �xl�ll� �no sum on l� , �24�

FIG. 4. Difference between the real part of each eigenvalue kxR and the
nearest n� /Lx, which is the eigenvalue when the walls are perfectly rigid.
where �ll� is the Kronecker delta function and
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�xl = �
0

Lx

�xl
2 dx �25�

=2Lx�kxl
2 − ��1k�2� −

i

2kxl
��kxl + �1k�2�ei2kxlLx − 1�

− �kxl − �1k�2�e−i2kxlLx − 1�� . �26�

Note that in Eq. �24�, �xl is multiplied by �xl�, and not by the
complex conjugate of �xl�. This orthogonality can be proven
by explicitly evaluating the integral in Eq. �24� and using the
fact that kxl satisfy the corresponding acoustic eigenvalue
equation, Eq. �5�. The eigenfunction is normalized as

�xl�x� =
�xl�x�
��xl

. �27�

The modal solution is represented in terms of the orthonor-
mal eigenfunctions as

p�x,y� = 

l=1

�



m=1

�

Alm�xl�x��ym�y� . �28�

Alm are obtained by using the orthogonality of the eigen-
functions, an approach routinely used when the solution is
sought for rigid walls. Substituting series expansion, Eq.
�28�, into the inhomogeneous Helmholtz equation Eq. �22�
and making use of the orthonormal property of the eigen-
functions, the modal solution is given by

p�x,y� = 

l=1

�



m=1

�
1

klm
2 − k2�xl�x��ym�y��xl�xs��ym�ys� , �29�

where klm are the eigenvalues of the room defined by

klm
2 = kxl

2 + kym
2 . �30�

The real parts of klm correspond to eigenfrequencies or reso-
nance frequencies for the room, while the imaginary parts are
the damping constants.1,5

Because of the rigid boundary conditions on y=0 and
y=Ly, the eigenfunctions in the y direction are given by �see
Eq. �4��

�ym�y� =��m

Ly
cosm�

Ly
y� , �31�

where �m is the Neumann factor with the value �m=1 if m
=0 but �m=2 if m�1, and the eigenvalues are given by

kym = m�/Ly, m = 0,1,2, . . . . �32�

Substituting these eigenfunctions and eigenvalues into Eq.
�29�, the modal solution for the entire problem is

p�x,y� = 

l=1

�



m=0

�
1

kxl
2 + �m�/Ly�2 − k2

�
�m

�xl�xs�cosm�
ys��xl�x�cosm�

y� . �33�

Ly Ly Ly
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2. Truncated modal solution

The modal solution is expressed by the infinite series
given in Eq. �33�; however, in practice, this series is trun-
cated at a finite number of modes. As the truncation criterion,
R is introduced such that all normal modes satisfying

rlm � �klm
2 − k2�1/2 
 R �34�

are included in the summation. With this criterion, the trun-
cated modal solution is defined as

pR�x,y�

= 

l,m

rlm
R

�m

�klm
2 − k2�Ly

�xl�xs�cosm�

Ly
ys��xl�x�cosm�

Ly
y� .

�35�

B. Finite element solution

For comparison, the same interior Helmholtz problem
was solved using the FEM. In this simulation a uniform
mesh of square elements with bilinear interpolations was
used. The edge of each square element was 0.002 m long.
This corresponded to 1571, 314, and 157 elements per wave-
length for k=2, 10, and 20, respectively. With this resolution,
the finite element solution converges well for all the driving
wave numbers considered. Thus, the finite element solution
provides a reliable benchmark solution and was used to
check the validity of the modal solution.

C. Comparison of modal and finite element solutions

The modal solution was compared with the finite ele-
ment solution at the nodal points used in the finite element
analysis. Nodes inside a square region with a side length of
0.1 m centered at the source position were excluded from the
comparison because the analytical solution is unbounded at
the source and the finite element solution does not capture
this behavior accurately.

The normalized error of the truncated modal solution
with respect to the finite element solution is defined by

eR =�
i
�pfem�xi� − pR�xi��2


i
�pfem�xi��2

, �36�

where pfem is the finite element solution, and xi are the
nodal points. As the FEM solution is an accurate approxi-
mation of the exact solution, the convergence rate of the
normalized error eR with respect to the truncation criterion
R must be the same as that of the analytical truncation
error. Figure 5 shows the normalized error eR as a function
of R. The log–log plot shows that for all driving wave
numbers k, the error decreases with increasing R with a
convergence rate of approximately O�R−1�. It can be
shown that the truncation error for a room with rigid walls
also varies as R−1. This observation validates the accuracy
of the eigenvalues and the IN/GB method.

The result also strongly supports the assertion that the
terms in the summation in Eq. �29� become increasingly less

2 2
important as �klm−k � increases. Thus, there is an easy-to-
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evaluate tradeoff between the accuracy of the modal solution
and the number of terms included in the summation, and the
IN/GB method can be used to find acoustic eigenvalues with
whatever precision is desirable or necessary.

VI. NUMERICAL EXPERIMENT 3: ROOM
REVERBERATION TIMES

As another example application of finding acoustic ei-
genvalues using the IN/GB approach, room reverberation
times were calculated for three-dimensional rectangular
rooms and then compared with the results obtained from the
finite-difference time-domain �FDTD� method reported by
Yasuda et al. in Ref. 13. The width and the depth of the room
were Lx=24 m, Ly =12 m, respectively, and the height was
either Lz=3 m or Lz=6 m. An absorber with absorption co-
efficient �=0.5 was installed either only at z=0 or both at
z=0 and z=Lz. All other walls were assumed to have �
=0.05. The corresponding specific acoustic impedances were
all given as real values, i.e.,

Z

�c
=

1 + �1 − �

1 − �1 − �
. �37�

For these conditions, the reverberation times in 1/3 octave
bands were calculated using the eigenvalues obtained by the
IN/GB method.

In order to estimate the reverberation times, the collec-
tive modal decay curves were first obtained by

�p2���f ,t� = 10 log
�f
e−2kNIt/kNI


�f
1/kNI

�, in dB, �38�

where t is time, N is a trio of l, m, and n �the mode numbers
in the x, y, and z directions, respectively�, kNI is the damping
constant �the imaginary part of the eigenvalue kN�, and the
summation is over all eigenvalues whose eigenfrequencies
�real parts of kN� are within the band �f .7,18 Although this

FIG. 5. Normalized difference between the modal solution and the finite
element solution with a mesh size of 0.002 m as a function of R, the maxi-
mum value of �klm

2 −k2�1/2 included in the summation used to calculate the
modal solution Eq. �35�.
decay curve is not exact, it roughly characterizes the energy
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decay with time in a given frequency band. Figure 6 shows
the decay curves obtained from Eq. �38� in 1 /3 octave bands
for all height and absorber configuration conditions men-
tioned above. The driving wave numbers k were set such that
they correspond to the center frequencies of the 1/3 octave
bands.

The reverberation times T60 were obtained from the
modal decay curve, Fig. 6, and are plotted in Fig. 7 along
with the reverberation times computed in Ref. 13, which
used the FDTD approach to solve the same problem. A com-
parison between the room reverberation times using these
two approaches shows that all trends are in close agreement.
The only major distinction is that the reverberation times
using the IN/GB method and decay curve, Eq. �38�, are
shorter than those found using the FDTD approach. How-
ever, the differences are consistent across all frequencies and
conditions, and the correlation coefficient between the FDTD
and modal decay with the IN/GB method �32 points corre-
sponding to 8 frequency bands and 4 height/absorption con-

FIG. 6. Collective modal decay curves in 1/3 octave bands of rectangular
rooms of size 24 m�12 m�Lz m. The height of the room is either Lz

=3 m or 6 m, and an absorbing material is either only on z=0 or both on
z=0 and z=Lz.

FIG. 7. Reverberation times of rectangular rooms of size 24 m�12 m
�Lz m. The height of the room is either Lz=3 or 6 m, and an absorbing
material is either only on z=0 or both on z=0 and z=Lz. Data using the
FDTD method were provided by Yasuda et al., taken from their study, Ref.

13.
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ditions for each method� is 0.9853. One possible reason for
the systematic difference between the values found using the
two approaches is that Eq. �38� is an approximation based on
averaging the source and receiver positions over the entire
room space, while the reverberation times were calculated in
Ref. 13 for a specific source/receiver position.

Numerical approaches for finding reverberation times,
such as finite element or finite difference methods, are com-
putationally expensive, especially for large rooms or for high
frequencies. On the other hand, the computational cost of
finding reverberation times based on finding acoustic eigen-
values using the IN/GB method is considerably cheaper than
these numerical methods.

VII. CONCLUSIONS

In this study, the IN/GB method was applied to the
acoustic eigenvalue equation of a rectangular room with ar-
bitrary, uniform wall impedances to find all eigenvalues
within a given interval. Furthermore, the limits and
asymptotic behavior of these eigenvalues were derived.
These properties were used to restrict the interval range in
the IN/GB method and to provide “good” initial guesses,
increasing its efficiency in finding all eigenvalues. Several
numerical tests were performed to validate the proposed
method and to demonstrate its accuracy and efficiency. In the
first test, it was verified that the roots obtained using the
IN/GB method satisfied the analytical estimates we devel-
oped. In the second test, the IN/GB method was used to
compute the modal solution corresponding to a point source
in a two-dimensional room. This solution was compared with
a well-resolved finite element solution, which was used as a
benchmark. It was found that as the number of modes in the
modal solution are increased, it converged to the FEM solu-
tion at the expected analytical rate. Finally, the IN/GB
method was used to evaluate the reverberation times for a
three-dimensional room with finite wall impedances. These
results were compared with the FDTD results obtained by
other researchers.13 It was found that the IN/GB results were
in good agreement with the FDTD results.

With the development of interval arithmetic software, it
will become increasingly easy to apply the interval method.
Therefore, in conjunction with the properties of acoustic ei-
genvalues derived in this study, the IN/GB method presents
an efficient method for solving the acoustic eigenvalue equa-
tion for rectangular rooms with arbitrary, uniform wall im-
pedances.
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APPENDIX A: INTERVAL ARITHMETIC

Real interval arithmetic operates on closed, real inter-
vals. Let X= �x� , x̄� denote a real interval with lower limit x�
and upper limit x̄, and similarly define as Y = �y� , ȳ�. The el-
ementary interval operations are defined as follows:9–12

X + Y = �x� + y� , x̄ + ȳ� , �A1�

X − Y = �x� − ȳ, x̄ − y�� , �A2�

X � Y = �min�x�y� ,x� ȳ, x̄y� ,xy�,max�x�y� ,x� ȳ, x̄y� ,xy�� , �A3�

1/X = �1/x̄,1/x��, if 0 � X , �A4�

X/Y = X � 1/Y . �A5�

Note that although the reciprocation 1/X or the division Y /X
are undefined in ordinary interval arithmetic if 0�X, they
can be defined in extended arithmetic.11

APPENDIX B: INTERVAL EXTENSION OF FUNCTIONS

Elementary functions, such as trigonometric functions
and exponentials, can also be extended to work on
intervals.9–11 For a function f�x� :R→R, its interval exten-
sion f�X� is defined such that

�f�x��x � X� � f�X� . �B1�

The definition of the interval extension of a function can also
be more intuitively represented as

f�X� = �min
x�X

f�x�,max
x�X

f�x�� . �B2�

APPENDIX C: UNIVARIATE IN/GB METHOD

For a problem with only one variable, the mean value
theorem implies

f�x� − f�x*� = �x − x*�f���� , �C1�

for some � satisfying x
�
x*. In Eq. �C1�, f� denotes the
derivative of f . If x* is the root of f �i.e., f�x*�=0� and
f�����0, then the root of f can be represented from Eq. �C1�
as

x* = x −
f�x�
f����

. �C2�

Now let X be an interval such that x ,x*�X, and hence �
�X. If f��X� is the interval extension of f��x� over the inter-
val X, then by definition f����� f��X�. Therefore, the interval
arithmetic formulation of Eq. �C2� becomes

x* = x −
f�x�
f����

� x −
f�x�

f��X�
� N�x,X� , �C3�

where N�x ,X� is called the Newton operator. Thus, x*, the
root of f in X, must be in the intersection X�N�x ,X�.

In each iteration step of the interval Newton method, the
Newton operator is used to narrow the potential interval con-
taining the roots. The nth iteration of the interval Newton

method is defined as follows:
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x�n� = m�X�n�� , �C4�

N�x�n�,X�n�� = x�n� −
f�x�n��

f��X�n��
, �C5�

X�n+1� = X�n� � N�x�n�,X�n�� , �C6�

where m�X� is the midpoint of X, calculated for X= �x� , x̄� as

m�X� =
x� + x̄

2
, �C7�

and the number in parentheses in the superscripts denotes the
iteration number. The input of the nth step is X�n� and the
output is X�n+1�.

The number of roots in X is then found from investigat-
ing the output interval based on the following properties:

�a� If X�n+1�=�, i.e., if N�x�n� ,X�n���X�n�=�, then there is
no root of f in X�n�.

�b� If X�n+1�=N�x�n� ,X�n� , �, i.e., if N�x�n� ,X�n���X�n�, then f
has a unique root in X�n�.

�c� If neither �a� nor �b� is satisfied, then more than one root
may exist in X�n�.

Proofs of these properties can be found in Refs. 9–11
and 19. In case �a�, the input interval X�n� can be discarded.
In case �b� or �c�, the output interval X�n+1� is used as the
input of the next step to further narrow the interval.

If X�n�=X�n+1�, i.e., if X�n��N�x�n� ,X�n��, then the interval
must be bisected. In such a case, the next step of the interval
Newton method must be implemented for each of the divided
intervals. The natural choice of the bisection point is the
midpoint of the interval. When the interval Newton method
is combined with this bisection technique, it is called the
interval Newton/generalized bisection �IN/GB� method.

The number of roots in X�n� is known if X�n+1� satisfies
the conditions of properties �a� or �b�. In case �c�, although
the number of roots in X�n� is unknown, further IN/GB itera-
tions lead all the subintervals of X�n� to either case �a� or �b�.
Therefore, after a certain number of iterations, it is assured
that all subintervals that constitute the entire range of the
initial interval have either zero or one root. Hence, once the
roots are found in all subintervals in case �b�, it is guaranteed
that all roots in the initial interval are found.

The termination criteria of the iteration of the IN/GB
implementation can be given by the residuals and/or the
width of the intervals. Therefore, accuracy of the IN/GB so-
lutions is easily controlled. Once the intervals containing
unique roots are sufficiently small, any points inside these
intervals can be taken as the approximate roots of the equa-
tion. Alternatively, a certain point inside such an interval can
be used as the initial guess of a classical method to calculate
a closer approximation of the root.

If 0� f��X�n��, the division on the right-hand side of Eq.
�C5� can be evaluated by extended interval arithmetic.11 In
this case, N�x�n� ,X�n�� may consist of two disjoint, semi-
infinite intervals. However, after taking the intersection with
the bounded interval X�n� in Eq. �C6�, the output of nth itera-

�n+1�
tion X is bounded, although it may consist of two inter-
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vals. If the output of a certain iteration contains two inter-
vals, the next IN/GB step must be implemented for each
interval.

APPENDIX D: MULTIVARIATE IN/GB METHOD

For a problem with r variables, x, X, and f are extended
in vector form as

x = �x1,x2, . . . ,xr�T, �D1�

X = �X1,X2, . . . ,Xr�T, �D2�

f = �f1, f2, . . . , fr�T. �D3�

Note that the components of x and f�x� are real numbers,
while those of X and f�X� are real intervals. The simple
multivariate extension of the Newton operator becomes

N�x,X� = x − F��X�−1f�x� , �D4�

where F��X� is the interval extension of the Jacobian matrix
of f�x�. Unlike the univariate case, the multivariate Newton
operator can be used only when the Jacobian matrix F� is not
singular, i.e., 0�det�F��X��. If the Jacobian matrix is sin-
gular, computations of the matrix-vector product of
F��X�−1 and f�x� require the addition and/or subtraction of
semi-infinite intervals; however, such operations are not
defined. For this reason, the Krawczyk operator9–11 is
widely used for multivariate problems instead of the New-
ton operator.

In the Krawczyk method, the classical multivariate
Newton method is treated as a fixed point iteration. The
Krawczyk operator can be used even if the interval extension
of the Jacobian matrix is singular. This operator is defined as

K�x,X� = x − Yf�X� + �I − YF��X���X − x� , �D5�

where I is the identity matrix. Y is an approximation of the
inverse of the interval Jacobian matrix and Y
= �m�F��X���−1 is frequently used, where m is the midpoint
defined by Eq. �C7�. The Krawczyk method can be used by
extending Eqs. �C4�–�C6� to multivariate form and replacing
the Newton operator by the Krawczyk operator.
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