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Abstract

In this paper, the finite element method (FEM) is used
to solve the Helmholtz equation for a rectangular room
with sound-hard boundaries. An imaginary surface is
introduced to truncate the room, reducing the effective
room size and thus the computational costs. The bound-
ary condition on the imaginary surface is the Dirichlet-
to-Neumann (DtN) map that exactly models the effect of
the portion of the room that is removed. Results suggest
that in addition to the computational savings, introducing
the imaginary boundary and using the DtN map yields
more accurate results than the conventional FEM without
a DtN map.

1. Introduction

Echoes and reverberation impact auditory perception in
many ways, distorting auditory spatial cues, rendering
speech less intelligible, and providing cues for source dis-
tance and room characteristics. In order to investigate
the influence of room acoustics on perception (particu-
larly spatial hearing), a realistic model of the impulse re-
sponses from a source to the left and right ears would be
invaluable. However, many common methods for calcu-
lating such responses are based on geometrical approxi-
mations and simplifications that fail under certain condi-
tions of interest to psychoacousticians, such as when the
sound source is near the listener [1].

The finite element method (FEM) and the boundary
element method (BEM) are useful in this context since
they can account for relevant physical phenomena, such
as diffraction, even in complex geometries [2]. Each of
these method has its own advantages and disadvantages.
In the BEM, only the boundaries need to be discretized,
and thus the size of the stiffness matrix, which consists
of the coefficients of the unknowns, is small. It is, how-
ever, a dense matrix. In contrast, the FEM requires the
discretization of the whole computational domain, and
hence the stiffness matrix is large. However, it is sparse
and as a result easier to solve.

Solving the FEM becomes computationally pro-

hibitive when applied to the acoustic problem inside a
room with typical dimensions, because the size of the re-
sulting stiffness matrix is large. In this work, we reduce
the size of the stiffness matrix by truncating the domain at
an imaginary surface and imposing the appropriate DtN
map [3] boundary condition on the new, imaginary sur-
face. Thereby it becomes feasible to use the FEM for
solving this problem.

2. Problem description

The approach detailed below solves the scalar Helmholtz
equation in rectangular-shaped rooms having sound-hard
boundaries. The approach is also extended to the case in
which the room contains sound-hard objects with irregu-
lar shapes.

2.1. General interior Helmholtz problem

Let Ω denote a closed domain and Γ denote its boundary.
Formulated in this way, Γ includes all the walls of the
room and the surfaces of the objects. If Γ is sound hard,
then the problem for the acoustic pressure p can be solved
by finding p such that:

−∇2p − k2p = g in Ω, (1)

∇p · n = 0 on Γ, (2)

where k = ω/c is the wave number, ω is the angular fre-
quency, c is the speed of sound, g is the forcing function,
and n is the outward unit normal vector on Γ. Note that
(1) and (2) are the equations describing not only pressure
p but other acoustic quantities such as density and particle
velocity.

2.2. Interior Helmholtz problem with DtN map

2.2.1. Truncation of domain

We introduce an imaginary surface Γdtn that divides the
domain Ω into two separate parts denoted by Ωn and Ωa.
The problem is solved numerically in Ωn and analytically
in Ωa. Objects with sound-hard boundaries can be placed



inside Ωn, but not in Ωa. For the computational domain
Ωn, the problem for the acoustic pressure p can be solved
by finding p such that:

−∇2p − k2p = g in Ωn, (3)

∇p · n = 0 on Γn, (4)

∇p · n = Mdtn(p) on Γdtn, (5)

where Mdtn(p) is the boundary condition imposed on
Γdtn that exactly models the effect of the other portion of
the overall domain, Ωa. The boundary condition Mdtn(p)
is called the Dirichlet-to-Neumann (DtN) map.

The DtN approach has been applied to other prob-
lems in other domains (e.g., see [4]). Following these
approaches, we find that the DtN map for a three dimen-
sional room in the Cartesian coordinate system described
in Fig. 1 is given by

Mdtn(p) =

∞
∑

m=0

∞
∑

n=0

αmn tan [αmn (Lx − xdtn)]
εmεn

LyLz

×

∫

Γdtn

p(xdtn, y′, z′) cos

(

mπy′

Ly

)

cos

(

nπz′

Lz

)

dΓ′

× cos

(

mπy

Ly

)

cos

(

nπz

Lz

)

, (6)

where
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, (7)

and εm is the Neumann factor having the value εm = 1 if
m = 0 but εm = 2 if m ≥ 1. Note that the DtN map for
the two dimensional case can be obtained directly from
(6) by simply setting n = 0 and Lz = 1.

2.2.2. FEM approach

The FEM is actually solved by finding the approximate
solution to the equivalent weak form of (3) – (5). The
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Figure 1: Coordinate system.

weak form associated with the DtN formulation is solved
by finding p ∈ S such that ∀w ∈ V:

a (w, p) − (w,Mdtn (p))
Γdtn

= (w, g) , (8)

where

a (w, p) = (∇w,∇p) − k2 (w, p) . (9)

The inner products (·, ·) and (·, ·)
Γdtn

used in (8) and (9)
are defined by

(w, p) =

∫

Ωn

w p dΩ, (10)

(w, p)
Γdtn

=

∫

Γdtn

w p dΓ. (11)

Since all the boundaries are sound hard, the function
spaces S and V are the same and defined as

S = V = {v | v ∈ H1(Ωn)}. (12)

3. Implementation

To solve the problem by the Galerkin FEM, we use the
QMR method together with the SSOR preconditioner [5].
The QMR method, like other Krylov-subspace iterative
methods [5], requires the computation of matrix-vector
products at each iteration. Most of the computational
effort required to solve the current problem is devoted
to calculating these matrix-vector products. The matrix
multiplied by the vector (the stiffness matrix) can be rep-
resented as a sum of two matrices, one associated with the
computational domain Ωn and one that reflects the contri-
bution of the DtN boundary condition. The former matrix
is sparse, while the latter is dense. Effective algorithms
to reduce the computational penalty of the matrix-vector
product associated with the dense part of the stiffness ma-
trix [6] are used to manage the computational effort.

4. Results

This section shows computational results for two three-
dimensional examples using the DtN map. In the first ex-
ample, the accuracy and efficiency of the DtN computa-
tional solution are compared to both the analytic solution
and the solution found using the pure FEM computational
approach. The second example explores how the DtN and
pure FEM solutions are influenced by objects inside Ωn.

In both examples, a rectangular room with sound-
hard boundaries is considered. The dimensions of the
room are Lx = 2.8m, Ly = 2.2m, Lz = 2.4m, xdtn =
0.5m (see Fig. 1). The receiver position is xr =
(0.4, 1.6, 2.0) and the point source,which is chosen as the
forcing function, is placed at xs = (0.3, 0.3, 1.0). The
numeric computations are halted when the residual drops
to less than 10−5 of the initial residual. Mdtn is approx-
imated using the first eleven modes in each of y- and z-
directions (i.e., summing (6) over 0 ≤ m,n ≤ 10) when



the wave number k is less than or equal to 10.0. If k is
greater than 10.0, the number of modes used to approxi-
mate Mdtn is set by adding one to the integer portion of
the wave number.

4.1. Example 1: Room without objects

Analytical, pure FEM, and FEM with the DtN solutions
are first found for the room when it is empty. Table 1
shows the computational time and the numbers of itera-
tions needed for convergence of the pure FEM and the
FEM with the DtN map at k = 10.0, which corresponds
to 509.3 Hz . The time per iteration, also shown in Table
1, is estimated by dividing the total computational time
by the number of iterations.

Table 1 shows that the the time for each iteration is re-
duced by including the DtN map (as expected given that
the size of the stiffness matrix is reduced). Moreover, the
number of iterations required for convergence is greatly
reduced. As a consequence, the total computational time
of the DtN method is reduced by 88 percent relative to
the time required for the traditional FEM approach. The
introduction of the DtN map drastically improves the ef-
ficiency.

Fig. 2 shows the analytic solution, the full FEM nu-
merical solution, and the numerical solution for the FEM
with the DtN map as a function of frequency. Note that
the result for the non-DtN case is obtained only up to
k = 12.0 since it is not feasible to perform the compu-
tation for higher frequencies. For each frequency f , the
normalized error at the receiver position, e(f), is found
as

e(f) =
|p(f) − pexact(f)|

|pexact(f)|
, (13)

where p(f) and pexact(f) are the numerical and analyti-
cal solutions, respectively.

Fig. 2 (b) shows e(f) for the FEM solutions with the
DtN map and without the DtN map. Results show that the
errors in both the DtN and the non-DtN cases grow as the
frequency increases, a well-known result of the Galerkin
finite element method [7]. However, more importantly,
the DtN map solution gives more accurate results than the
standard FEM. While important, this result is not surpris-
ing considering that the problem is solved analytically in
Ωa without any approximation. Therefore, the DtN map

Table 1: Computational costs.

example method time iterations time per
(wave (min) iteration

number) (sec)

1 DtN 43 2311 1.1
(k = 10.0) non-DtN 358 9448 2.3

2 DtN 11 550 1.3
( k = 5.0) non-DtN 70 1871 2.2
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(a) Numerical and analytical solutions.
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Figure 2: Solutions at xr = (0.4, 1.6, 2.0) and xs =
(0.3, 0.3, 1.0) in an empty, rectangular room.

solution contains the exact effect of Ωa and results are
more accurate with the DtN map as long as Mdtn is found
with sufficient accuracy (i.e., including enough modes).

4.2. Example 2: Room with objects

In the second example the same room is considered, but
a simple model of the KEMAR mannequin with sound-
hard surfaces is modeled in Ωn [8]. The head and the
torso are modeled as a sphere and an ellipsoid respec-
tively. The center of the sphere is at (0.3, 0.4, 1.0) and
the back side of the model is facing the plane x = 0. The
same source and receiver positions are used as in the re-
sults shown in Fig. 2. The sound source is located at the
entrance of the external ear canal so that, eventually, we
can use the reciprocity principle to efficiently obtain the
reverberant head-related transfer function (HRTF) or the
binaural room impulse response (BRIR) [8].

Fig. 3 shows the results for the computation with and
without the DtN map. Each panel gives the contour plot
of the solution on the vertical plane containing the cen-
ter of the sphere and the source position for wave number



(a) DtN (b) Non-DtN

Figure 3: Contour plot of pressure in every 2 dB on the
plane x = 0.3.

5.0. Panels (a) and (b) are almost identical, demonstrat-
ing that the DtN map can be used to truncate the com-
putational domain and reduce computational complexity
without loss of accuracy, even when there are objects
within Ωn.

The bottom entries in Table 1 show that the total com-
putation time, the number of iterations, and the time per
iteration are smaller with the DtN map than without. The
time required for each iteration is almost the same as in
Example 1 and the total computational time of the DtN
method is about 16 percent of the non-DtN case. These
results suggest that the improvement in computational ef-
ficiency afforded by the DtN is unaffected by the presence
of the objects in the solution domain.

5. Conclusions and future work

In order to reduce the computational cost of solving a
Helmholtz problem in a rectangular-shaped, sound-hard
room using the FEM, the domain can be truncated by an
imaginary surface on which the appropriate DtN bound-
ary condition is imposed. Examples show that the intro-
duction of the DtN map reduces the computational de-
mands as expected. Moreover, the DtN approach gives
more accurate results than the standard FEM.

While results are promising, the method is still lim-
ited in both the frequency range and the size of the do-
main Ωn to which it can be applied. In order to be
useful for finding BRIRs, both efficiency and accuracy
must be further improved. Computational speed may be
increased by introducing more than one imaginary sur-
face, so that the computational domain is even smaller,
or by the use of an FFT algorithm to reduce the compu-
tational costs of solving the matrix equation associated
with the DtN map formulation. Similarly, there are sev-
eral ways to improve accuracy. For instance, the Galerkin
least square method is more accurate than the standard
Galerkin method. We can also obtain more accurate so-
lutions by using higher-order elements. Ultimately, such
improvements may lead to a tractable numerical approach

for finding BRIFs in complex, reverberant listening en-
vironments directly from the solution to the Helmholtz
equations.
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