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ABSTRACT:

This paper describes amodel of adaptation to remapped auditory localization cues based on
previous decision-theory models of psychophysical performance. The current model extends
earlier work by explicitly assuming that past experience affects subject perception and by
guantifying how training causes subject responses to evolve over time. The model makes
guantitative predictions of total sensitivity, bias, and resolution for subjectsinvolved in
experiments investigating spatial auditory adaptation. One assumption of the model is that subjects
cannot adapt to nonlinear rearrangements of |ocalization cues, consistent with previous
experimental reports in both audition (Shinn-Cunningham, Durlach & Held, 1998b) and vision
(Bedford, 1993). The model assumes that in spatial adaptation experiments subjects learn to
interpret a continuous internal decision variable differently than normal; they do not learn to
associate discrete stimulus/response pairs. Thisview is consistent with previous analysis of results
from experiments investigating adaptation to visual rearrangement as well as the McCullough effect

invision (Bedford, 1993; Bedford, 1995).
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There are many studies investigating the effect of altering, or rearranging, sensory localization
cues. In vision, most such studies investigate the perceptua effects of viewing the world through
prisms that rotate the visua field. In audition, the magjority of such studies investigate how mean
localization judgements change when the interaural axisis effectively rotated (e.g., see Day &
Singer, 1967; Kalil & Freedman, 1967; Mikaelian, 1969; Mikaelian, 1972; Mikaelian, 1974;
Recanzone, 1998; Willey, Inglis & Pearce, 1937; Y oung, 1928). (For areview of auditory
adaptation, see Shinn-Cunningham, Lehnert, Kramer, Wenzel & Durlach, 1997; for areview of
adaptation studies in general, see Welch, 1978).

In all such studies, naive subjects mislocalize sources in adirection predicted by the
transformation imposed on the sensory stimuli reaching the eyes or ears. If the subject isgiven
appropriate training, however, these localization errors decrease with time. Most studies of sensory
rearrangement achieve thistraining by allowing the subject to interact freely with the environment
while observing the transformed sensory stimuli (e.g., by viewing their hand as they reach for a
stimulus or by listening to sounds as they walk toward or away from a sound source). To date,
models of adaptation to both auditory rearrangements and rearrangementsin other modalities have
set out to describe qualitatively the changes in response error that occur with training. In generd,
these models (e.g., see Ebenholtz, 1970; Ebenholtz, 1973; Welch, 1978; Welch & Warren, 1980)
do not allow quantitative predictions of changes in response error, nor do they address how
resolution might be affected by changes in the adaptive state of the subjects. Instead, these models
enumerate the factors that are thought to influence localization errors.

Conversely, signal-detection-theory models for one-dimensional stimulus sets have been used
to make quantitative predictions of both resolution and bias for avariety of stimulustypes[e.g.,
intensity perception (Braida& Durlach, 1988; Braida et al., 1984; Durlach & Braida, 1969; L uce,
Green & Weber, 1976; Luce, Nosofsky, Green & Smith, 1982), auditory localization (Searle,
Braida, Davis & Colburn, 1976), auditory lateralization (Koehnke & Durlach, 1989), and speech
perception (Macmillan, 1987; Macmillan, Braida & Goldberg, 1987; Macmillan, Goldberg &

Braida, 1988)]. Such models alow quantitative predictions of resolution and/or bias for given
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experiments. However, these models generally assume that performance is stable and thus that
resolution and bias have reached asymptotic values. These models do not describe the changesin
resolution and bias over time that are seen in typical spatial-rearrangement experiments.

This paper briefly reviews a set of experiments that investigated the effect of auditory
rearrangement on mean localization judgements as well as on response bias and resolution of
source locations. A previous psychophysical model (Durlach & Braida, 1969) is extended in order
to describe the empirical results of these “supernormal” localization studies. The model isthen

evaluated by comparing predicted and empirical results.
SUMMARY OF EXPERIMENTS

A number of experimentsinvestigating adaptation to remapped auditory localization cues have
been reported previoudy (Durlach, Shinn-Cunningham & Held, 1993; Shinn-Cunningham,
Durlach & Held, 1998a; Shinn-Cunningham et al., 1998b). The goal of thiswork wasto
determine if subjects could learn a new correspondence between spatial acoustic cues and reported
azimuthal position that might enhance auditory spatial resolution (see Durlach et al., 1993). To this
end, subjects were trained to identify the azimuthal location of an auditory source whose physical

cues normally correspond to a different source position.
M ethods

Subj ects were presented with auditory localization cues ssimulated over headphones using Head
Related Transfer Functions (HRTFs). HRTFs are empirically-determined filters that describe how
to simulate (over headphones) the acoustic cues that would arise from a free-field sound source
located at a specific angular location relative to the listener. In particular, the original source signal
is convolved with apair of filters (an HRTF filter pair) to generate a binaura signal whose
interaural differences and spectral content are appropriate for the desired source at the smulated
location. HRTF-based simulations are an increasingly common method for controlling spatial
auditory cuesin order to investigate the physiological and perceptual bases of spatial auditory

perception (e.g., see Brugge et al., 1994; Wightman & Kistler, 1997). For amore complete
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discussion and review of these techniques, see Wenzel (1992) or Carlile (1996).

Normally, to smulate a source at azimuth q and elevation f, one ssimply uses the empirically
measured HRTF pair for that position, denoted in the frequency domain by H(w, q, f), where w
corresponds to frequency. In our experiments, the correspondence between HRTFs and azimuth
position was remapped such that H&w, g, f), the HRTF pair used to smulate a source at position
[q, f], isgiven by:

Hdw,q.f) = H(w.f,(a).f), (1)
wheref_(q), the family of mapping functions used to transform azimuth cues, is given by:

e .
1 . 2nsin(2
fn (Q)zztan 1§ > (ZQ) Q.
gl-n +(1+n )cos(Zq)H

)

With this transformation, a source whose position is * supposed” to be at [q, f] issimulated by
presenting the cues normally associated with a position of [f_(q), f]. The parameter n corresponds
to the dope of the transformation at g = 0. “Normal” localization cues are presented whenn=1

[i.e., thefunction f, (q) isastraight line of slope one through the origin]. This mapping is shown

in Figure 1 for the values of n used in the experiments.

------ m-mmmmmemmmme - [nSeXt Figure 1 about here ------------=-- oo

In order to determine whether subjects could adapt to the remapping of HRTF cues, they were
repeatedly tested over the course of experimental sessions lasting roughly 2 hours, first using the
“normal” mapping (n=1) and then an atered mapping (n>1). At the end of the experimental
session, testing with the “normal” mapping was repeated to |ook for after-effects of the learned
remapping. Every subject performed 8 identical 2-hour long sessions over the course of two to

three weeks. Data from each run within a session was combined with the data from the samerunin
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the other sessionsto yield atotal of 16 judgements of each source location from each subject in
each run.

Subjects were seated inside a 5-ft radius arc of 13 light bulbs, spaced every 10 degreesin
azimuth from -60 to +60 degrees, which were labeled (l€eft to right) with the numbers 1-13. In each
run, a 500-ms long wide-band click train was simulated from each of the possible locations exactly
twice, in random order. Subjects were asked to identify the source azimuth corresponding to the
simulated source position while facing straight ahead. For the experiments reported here
(Experiments F,, F...4, F,, F,,, and F,), training was achieved by turning on the light at the
“correct” or nominal location for 500 ms after each response. Each subject performed 2 “normal-
cue” runs (using n = 1), 30 “altered-cue” runs (using n > 1), followed by 8 post-training runs. In
all but one experiment, the post-training runs all used normal cues (i.e., usingn=1). In
Experiment F,,, the 8 post-training runs consisted of 4 runsin which n = 0.5 followed by 4

“normal-cue” runs.
Results

Previous reports (Shinn-Cunningham et al., 1998a) showed that the amount by which subject
responses change during an experimental session depends primarily on the strength of the
transformation (i.e., the value of n) and the range/number of source positions presented (Shinn-
Cunningham et al., 1998a). Current analysis will focus on the results from experiments that
differed only in these parameters. The transformation strengths and the number of source positions
used in each experiment are summarized in Table 1. In ExperimentsF;, F,, and F,,, al 13 source
positions were presented and the transformation strength was varied (equal to 3, 2, and 4,

respectively, as denoted by the subscript). In Experiment F,, ,, the transformation strength equaled

mid?
3, but only the middle 7 positions were presented (from -30 to +30 degrees). Finally, Experiment
F,, wasidentical to Experiment F,,, except that in the post-training runs, subjects were given both
an inverse transformation (n=0.5) and normal cues (n=1.0), as mentioned above. A more detailed

explanation of the experimental methods and the rationale behind all of the chosen experimental
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conditionsis given in Shinn-Cunningham et a. (1998a).

Various aspects of performance, including bias, resolution, and mean response were estimated
separately for each run of the experimental session as subjects learned the remapping. In generd,
bias (a measure of mean response error in units of standard deviation), decreased as subjects were
exposed to the remapped cues, consistent with subjects learning the new mapping of physical cue
to source location (Shinn-Cunningham et al., 1998a). However, some bias remained, even after
performance had stabilized. In addition, the size of the localization bias was not uniform, but
varied with stimulus azimuth. The ability to resolve adjacent response locations changed abruptly
when the remapping was introduced, as expected. Resolution improved for stimuli that were
physically more distinct with the remapped cues than with the “normal” mapping (sourcesin the
front region, as seen in Figure 1) and decreased for stimuli that were more similar than normal (for
n>1, this occurs for sources at the edges of the range). As subjects adapted to the remapped cues,
however, their ability to resolve the same physical stimuli showed an overall decrease, indicating
that subjects confused adjacent stimuli more often following training than prior to training.
Response bias and resolution are discussed in greater detail when compared with predictions from

the adaptation model (see Figures 5 and 6, respectively).
Analysis and Discussion

Previous analysis of changes in mean response (Shinn-Cunningham et al., 1998b) showed that
subjects did not adapt exactly to the transformations shown in Figure 1. Over time, mean
responses did change, but these changes were consi stent with subjects learning alinear remapping
of azimuthal cuesinstead of the nonlinear remapping that was actually imposed. The observed

behavior implies that during run r, the mean perceived position of a source whose nominal location

equalsqisgiven by

p(a,r) =k(r)fa(a) 3)
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where Kk(r) is adimensionless slope that varies with run r and f(q) is the location normally
associated with the localization cues presented (see Equation 2). For normal cue presentations,

n=1and f,(q) = g. Thus, for normal-cue runs, the mean perceived azimuthal position of a

stimulus equals the nominal location (q) scaled by k(r). For naive subjects, prior to any training
with the rearranged acoustic cues, k(r) was roughly equal to one, as expected. That is, for the
initial normal-cue runs at the beginning of each session, p(q, r) = q: subjects heard sources at the
position normally associated with the HRTFs employed and this |ocation was the nominal location.
For the altered-cue conditions, the mean perceived azimuth equalsf,(q) (the azimuth to which the

physical stimulus normally corresponds) scaled by the slope k(r). According to equation 3,

“complete” adaptation to the transformed cues does not occur, because thereis no value of k(r) for
which p(q, r) equals q for all possible locations unless n equals one.

Equation 3 implies that changesin perceived location depend only on changesin k(r), the slope
relating mean perceived location and the normal azimuthal locations of the stimuli. The effect of the
exposure to the altered cuesis to change the slope k(r). When atransformation was first introduced
(i.e., n was changed from 1 to avalue n > 1), the subjects interpreted the new set of physical cues
asthey normally would (i.e., lope, k, near unity), resulting in mean errorsin their location
judgements. As subjects were trained, k(r) decreased gradually, causing the average size of the
judgement errors to decrease. However, since the nominal responses are not linearly related to the
“normal” locations corresponding to the physical cues presented, systematic response errors
persisted.

------ --m-mmmmmmmmmm-----—-—-———- [NSErt Figure 2 about here ----------------memo oo

Thisis shown schematically in Figure 2, which plots the perceived position as a function of

frn(0), the location normally associated with the physical stimulus presented. The open circlesin the

figure represent the ideal mapping of physical cue to position during normal-cue runs. The open



Perception and Psychophysics, 62(1), 33-47. 9
sguares show the ideal mapping for runs when n = 3. Note that in both cases, there are 13 points
plotted, corresponding to the 13 available responses (-60, -50, ... 60) along the y dimension.
However, the normal-cue locations at which these values are plotted along the x-dimension are
different for normal and altered cues, since the physical stimuli presented depend upon the imposed
transformation. Prior to adaptation, subjects interpret normal cues correctly with aslopek = 1 (the
dashed line connecting the open circles). When the physical stimuli are transformed, the physica
stimuli span arange normally associated with locations from roughly —80 to +80 deg. In addition,
the nominal responses are no longer linearly related to the locations normally associated with the
physical stimuli presented. When the transformation is first imposed, subjects interpret the stimuli
inthe“normal” way (i.e., k is approximately equal to 1) and therefore make large localization
errors. As subjects adapt, the slope of the mapping between stimulus and perceived position
decreases to approximate the nonlinear transformation. Averaged across all source positions, the
mean response error is reduced when the slope decreases, athough systematic errorsremain asa
function of position. When the normal cues are reinstated at the end of the experiment, k(r)
increases back toward k = 1.

The observed changes in slope k(r) were roughly exponential, from an initial value towards an
asymptotic value denoted by T. Mathematically, if the transformation changed inrunr,, k(r) is
given by

k() =T +[k(re- 1)- T|e o{r-rc) 4
for r 2 re (and up until the next change in cue transformations), where b is a parameter (in units of
run™) governing the rate of changein k(r) and k(r_— 1) is the slope value prior to the changein the
auditory cues. Therate of change in k(r) was roughly independent of how the cue transformation
changed; all datawere fit well using b = 0.84 run™* (Shinn-Cunningham et al., 1998b).

The adaptation rate, b, was independent of the change in transformation; however, T, the

asymptotic value of k(r), varied with n (the strength of the transformation) as well as the range of

positions presented in each experiment. In particular, it was shown that for al experiments, T was
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roughly equal to k,, the value of k(r) that minimizes the mean-squared difference between k(r)f,,(q)

and g, the nominal position of the source. (The solid line in Figure 2 shows the best-fit line for the

example with k, equal to 0.61.) For runsin which the cues are nonlinearly transformed, the mean
response errors (across the stimuli presented) decrease to the minimum achievable given the linear
constraint of Equation 3.

Adaptation to the nonlinear transformation is summarized by an exponential changein the dlope
k(r). The dope exponentialy approaches the best linear approximation of the transformation
presented to the subjects. The value of the slope k(r) summarizes the adaptive state of the subject
during the course of the experiment. Thisfinding implies that there are limits on the types of
auditory spatial cue transformations that subjects can accommodate, and that subjects may not be
able to adapt to nonlinear transformations of localization cues. Thistype of constraint issimilar to
constraints that have been observed in visual spatial rearrangement experiments (Bedford, 1993;
Bedford, 1995).

THE PRELIMINARY MODEL OF AUDITORY ADAPTATION

The preliminary model of adaptation to remapped auditory localization cuesis based on the
preliminary model of intensity perception by Durlach, Braida, and associates (Braida & Durlach,
1972; Braida & Durlach, 1988; Durlach & Braida, 1969). This model focused primarily on
predicting resolution results for various experimental paradigms measuring intensity perception.
However, the underlying assumptions of the model are easily applied to experiments investigating
resolution in other stimulus dimensions, including stimulus location.

The Preliminary Model of Intensity Perception
In the preliminary model of intensity perception (described fully in Durlach & Braida, 1969)

every stimulus| givesriseto an interna sensation Y which is a Gaussian random variable with

meana(l) and variance b2. This sensation is then further transformed into a decision variable

along an internal axis to produce a Gaussian random variable Q which has mean a (I) and variance
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b2 + 2. In thismodel, internal noise arises from two independent sources. Sensation noise (with
variance b2) depends only upon the stimulus presented and, therefore, causes a fixed limit on the

best performance that can be achieved in any experiment. Memory noise (with variance ¢?) affects

the transformation from the sensation Y to the internal representation of the decision variable Q and
depends upon the type of experiment. For single-interval experiments like those in the current

study, memory noise is assumed to be proportional to the total range of stimuli presented in the

experiment and is termed “ context-coding” noise. Thus, 2 = G2R2 where G isa constant, R =
a(Imax) - @(lmin), and | ax @nd 1,y @re equal to the extreme values of the stimuli used in the

experiment. The addition of context-coding noise allows the model to account for the fact that
subjects may confuse two stimuli in large-range tasks (such as identification tasks) even when the
same stimuli are perfectly resolvable in tasks where the rangeis small (such asin JIND-type tasks).
The preliminary intensity perception model further assumes that subject responses are based on
the value of the decision variable Q using a Thurstonian decision model. With these assumptions,
the decision axis along which Q fallsis assumed to be divided into n contiguous regions by n+1

criteria{Cj} (with C, = -¥ and C,,, = ¥). Each region corresponds to one of the n possible
responses for the experiment being performed. In asingle interval task, the means of the
underlying probability distributions P(Q|l;) depend only upon the stimulus presented (1;), and the
variance (which is constant, independent of the stimulus value) depends only on the range of
stimuli used in the experiment. The underlying discriminability between two stimuli I; and | j ina
one-interval experiment can then be written as
a(l,)-a(l)

_, )
b’ + Gz[a(l max(R)) -a (' mm(R))]

d'R('i"J):\/

where Risthe range of stimuli used in the experiment, b and G are constants, Imax(r) and Imin(r)

are the maximum and minimum stimulus intensities in the range R, and a (*) is amonotonic
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transformation which relates the physical stimulus valuesto values along an internal decision axis.
It can be seen from Equation 5 that the ability to resolve two stimuli depends only on the range of

stimuli used in the experiment, and the stimulus values.
An Internal Representation of Azimuth

Many of the ideas used in developing the preliminary model of intensity perception have been
used to model perception of other stimulus dimensions, including speech (Macmillan, 1987;
Macmillan et a., 1987; Macmillan et al., 1988), auditory localization (Searle et d., 1976) and
auditory lateralization (Koehnke & Durlach, 1989). However, no previous work quantified how

auditory localization resolution depends upon absolute position. In the preliminary model of
intensity perception, relative sengitivity istaken into account by the mapping function a(¢), which
isresponsible for converting values from the stimulus space to a dimension in which distanceis
directly proportiona to discriminability between stimuli. For the current model, the function a (q)
was roughly fit using data from an early free-field study Mills (1958, pp. 37-50) of the minimum
audible angle (MAA). Details in the methodology for fitting a (q) are given in Shinn-Cunningham
(1994). The resulting function is given by

a(g) = sign(g)(2- & *9) 6)
where a= 0.02 degrees™. The form of this function reflects the fact that the MAA is small around a

reference position of 0 degrees azimuth and grows rapidly for reference locations to either side of
the listener. Asaresult of this mapping, when a pair of stimuli at g and q + D deg are mapped to a
pair of probabilistic distributions of the interna decision variable, the distance between the means
of the distributions decreases as the magnitude of g grows. Since the model assumes that the

standard deviation of the noise in the internal decision variable isindependent of the stimulus
value, the model predicts that sourcesto the side are less easily resolved than are sources near zero

azimuth.
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Extending the Model to Adaptation Paradigms

In order to account for changes in performance that occur in adaptation paradigms, the
preliminary intensity perception model of Durlach and Braida is extended in two important ways:
1) The effective range R depends both on the stimuli being presented at a given point in
time and the past experience of the subject. R is no longer determined exclusively by
the stimuli used in an experiment.

2) The criteria{ Cj} are not assumed to be optimally positioned for the given stimuli;

thelr placement depends on the past experience of the subject.

Intuitively, it isunlikely that subjectsimmediately change their behavior when the physical
stimuli change abruptly. Therefore, when the stimulus range changes in the adaptation experiment,
itisunlikely that the memory noisein the underlying decision space will be determined by the
range of the physical cues being presented immediately after the change. Instead, the model
predicts that the range of cues that the subject expectsto hear determines the internal decision
noise. Just after a change in stimulus range, the expected or effective range should roughly equal
the range of cues presented in the previous run (assuming performance was stable prior to the
changein cues). Over time, the effective range should approach the actual range of cues being
presented. Similarly, the model assumes that just after the remapping is introduced, subjects make
thelr response decisions based on the positions of the decision-axis criteriaprior to the change.
Over time, the criteria shift to new positions, more appropriate for the current stimulus-response
mapping. The adaptation model assumes that both of these gradual changes (in the effective range
and in the placement of the decision criteria) are governed by changesin an interna mapping
maintained by the subject. Thisinternal representation describes how physical stimuli are related to
the available range of responses a a given point in time.

The model assumes that the slope k(r), which relates the normal-cue position of a physical
stimulus to the mean subject response, summarizes the state of the posited internal map throughout

the experiment. During the adaptation experiments, a subject knows that the range of possible
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responses is restricted, usually from -60 to +60 degrees. During agiven run r, however, the

subject maps that same range of responsesto a different range of physical cues, as described by

Equation 3. Thus, in run r, the minimum physical cue that the subject expectsis equal to Honin and

k(r)

the maximum physical cue he expects equals Ao (whereq,,, and g, are the azimuthal angles of

k(r)

the minimum and maximum allowed responses, respectively). These physical cue values

correspond to values along the internal decision axis of a@ﬂg and agaﬂg, respectively.

ek(r) e e k(r) o
Thus, in runr, the model assumes that R, the effective stimulusrangein runr, is given by

R L0 &0
R . = gCmx= _ 4 CAmin = 7
“ = 3(Ne &) e 0

Similarly, the subject expectsto hear a set of physical stimuli that are different from the actual

stimulus values presented. In particular, from equation 3, the subject expects the stimulus qj to

map to physical stimul usi . Thus, in the underlying decision space, the subject expects the

k(r)

20 &
mean value of the stimulus whose nominal responseis gj to equal agig. However, the

k(r)e

stimulus whose nominal location is g isthe same physical stimulus whose “normal” locationis

fn(qj) . Thus, in the underlying decision space, the actua stimulus has a mean value of a(fn(q J)) .

If the subject tries to place decision criteriaidedlly, he will place them midway between the
expected mean locations, not midway between the mean locations of the values actually presented.

The model predictsthat, in run, the decision-axis criterion C; will equal

1€ @0, 6 ;. 0U

)= 2 ko 2 k()

(8)
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while the optimal placement (independent of run) is given by

Cjopt _ _;[a(fn(qj)) + a(fn(CIj+1))

------ mmmmmmm e oo iNSENt Figure 3 about here -----------mmmmmmmmm oo

: (9)

Figure 3 illustrates how the internal decision variable and the criteria change in the model for an
experiment similar to Experiment F,, (in which seven stimuli, ranging from g=-30 deg to g =30
deg, were presented). In the figure, panel @) shows the distributions of the internal decision
variable that would arise for the seven normal-cue stimuli presented to a naive subject. In this
condition, thereis no discrepancy between the stimulus values expected by the subject and the
values presented, so the subject places his criteria (the dashed vertical lines) at optimal locations
along the decision axis. The variance in the distributionsis determined by the internal decision
noise that in turn depends on the effective range. For this condition, thereis no discrepancy
between the effective range and the actua range of the stimuli presented. The second panel shows
what occurs when the transformed cues arefirst introduced: criteriaare located at their optimal
locations for normal cues, not for the transformed cues. In addition, the internal sensation noiseis
determined by the range spanned by the normal-cue stimuli, not by the actual range of stimuli now
being presented. Panel ¢ shows the effects of adaptation. Criteria are shifted in the correct
direction, but are not positioned optimally, since subjects adapt to alinear approximation of the
transformation employed in the experiments. In addition, memory noise grows, reflecting the fact
the effective range grows as subjects learn to expect alarger range of stimuli. Finally, panel d)
shows what occurs for normal cue stimuli following training. The decision criteria are at their
adapted locations, causing bias in the direction opposite that initially introduced with the cue
transformation. Similarly, memory noise is determined by the range expected with transformed

cues, and isthus larger than in the pre-training, normal-cue condition.
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MODEL PREDICTIONS

Total Cumulative Sensitivity

There are two free parameters in the model: b, the standard deviation of the sensation noise;

G
and p , therelative importance of the context coding noise compared to the sensation noise.

Model parameters were estimated by examining the total cumulative sensitivity D'. Total

cumulative sensitivity measures the total distance along the internal decision axis between the mean

values of the minimum and maximum stimuli used in an experiment, measured in units of the

standard deviation in the decision variable." Thus, D' is given by:

(10)

For each subject, the values of b and p  that minimized the mean square difference between

predicted values of D' and the individua data were estimated. These values were averaged across

G
subjects. Theresulting valuesareb = 0.06 and p = 1.43 (nearly identical results were found

using a minimum mean-square error criteriainlog D' space). It should be noted that for the

G
experiments considered here, the mode! is not extremely sensitive to the exact valuesof b and p .

In particular, for the experiments considered (in which g, = -q,.. and b? << 4G2a? Smac ! .),

gkt

Equation 10 can be approximated by:
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D » a[fn(q,max)] -,
%50, Smax U

Do k() |

(11)

G
Thus, as long as the product of the estimated parametersb and p is constant, predictions are

roughly comparable for the identification experiments considered. This product varied from subject
to subject, consistent with the idea that different subjects have different overal levels of
performance (i.e., different levels of internal noise). Despite the fact that there are differences
across subjects (and that different subjects performed each experiment), only the average parameter
values are used for al subsequent model predictions. This choice was made in part because all data
to which the predictions will be compared are across-subject averages and in part because it
reduces the number of free parametersin the model. Thus, the model predictions presented in this
paper represent the performance expected of a“typical” subject rather than of the subjects who
performed any specific experiment.

------ m-m-mmmmmmmmmmom-----—-———- inSErt Figure 4 about here ----------------momooe e

Figure 4 plots predictions of total cumulative sensitivity (using Equation 9 and the best-fit

G
valuesof b and p ) and the empirically determined total cumulative sensitivity as afunction of

run. In each panel, thefilled circles show the predicted values of D' (r) for the corresponding
experiment. Also plotted isthe mean value of the empirical estimates of D' averaged across
subjects, plus or minus one standard deviation.

As stated above, intersubject differencesin the magnitude of D' are large within each

experiment (a difference for which the model could account by allowing the internal noiseto vary

from subject to subject). Thisintersubject variability accounts at least in part for discrepancies

between the estimated and actual magnitude of D' in the different experiments (e.g., results for
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Experiments F,, and F,,, which present identical stimuli for runs 1-32, show large differencesin
mean values of D' for these same runs). Overall, the observed level of performanceis better than
predicted in Experiment F,, worse in Experiment F,,, and in good agreement for the remaining
three experiments.

Even more important than the overall magnitude of the predictions are the details of how D'

changes with run. In all cases, whenever the localization cues change there are two effects: an
immediate effect on the actua range of stimuli being discriminated (numerator in Equation 10) and
agradual growth of the effective stimulus range (and in the internal noise in the model; i.e., the
denominator in Equation 10). In the current experiments, when the cue transformation is first
introduced (e.g., in run 3 for al experiments), the physical cue range increases sightly, causing an
immediateincreasein predictions of D'. These predicted changes are not obvious in the empirical
data; however, the predicted changes are small relative to the variability in the underlying data. As

subjects adapt, the interna memory noise increases and there is a concomitant decreasein

predictions of D' until performance stabilizes and reaches a steady-state value.

Steady-state predictions of D' are approximately equal across al the experiments. Thisresult is

easly understood by examining the numerator and denominator in Equation 11. For the reported

experiments (in which internal noise is dominated by context coding noise), D' isroughly

proportional to theratio of the actua stimulus range divided by the expected range. While the

expected range varies with k(r), its steady-state value (when k(r) has approached its asymptote) is
roughly equal to the actual range. Thus, for all experiments reported here, D¢» G * in the steady-
state.

When the cue transformation changes at the end of the session, predicted values of D' change

again. In particular, in all experiments, the actual range of stimuli (numerator in Equation 10)
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decreases abruptly between runs 32 and 33. At the same time, the internal noise (denominator in

Equation 10) begins to decrease towards its asymptotic value when the cue transformation

changes. In most experiments, thereisllittle discernable change in the empirical values of D'
between runs 32 and 33. However, in two experiments, empirical values of D' showed a

significant change between runs 32 and 33: in Experiment F,.,, D" was significantly lower for

mid?

normal-cue runs (n = 1) following adaptation to transformed cues (n = 3); and in Experiment F,, ,

D' was significantly smaller for the runsin which n = 0.5 following training with n = 4. The

model predicts similar changes for both experiments. In the model, these decreases arise because
the range of physical cues presented to the subject decreases drastically with the changein cue
transformation. At the same time, the starting value of the effective range isrelatively large
immediately after the changein cues (i.e., the denominator in Equation 10 isinitialy large). The
model predicts qualitatively similar effects for Experiments F,, F,, and F,,. However, for these
experiments the percentage change in range is much smaller and the predicted effect is small

compared to the intrasubject variability (i.e., compared to the random, nonsystematic variationsin

estimates of D' for each subject as afunction of run). In Experiments F,_., and F,,, the magnitude

mid

of the predicted decreasein D' at run 33 was dightly smaller than seen in the actua data; however,

in both cases the fit was relatively good.

Finaly, in Experiment F,,, the model predicts an abrupt increasein D' in run 37 compared to
run 36. This prediction arises because the range of stimuli increases between these runs, causing
an immediate increase in the numerator and a dow decrease in the denominator in Equation 10. The
empirical results also show animmediate increasein D' in run 37; however, theincrease is larger

than predicted by the model.
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Response Bias

The bias, Bj, is one of the performance metrics investigated in a previous paper (Shinn-

Cunningham et al., 1998a). Bj isequal to the difference between the optimal and actual placement

of the jth decision criteria. Biasisrelated to absolute localization accuracy; when criteriaare placed
optimally, the probability of responding correctly on agiven tria is maximized (if al stimuli are
equally likely) and any response error is due to internal noisein the decision variable. Thus, from
Equations 8 and 9, biasin the placement of the jth criterion is given by
Copt - Cir
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where g isthe nominal source position for the jth stimulus.

------ m-mm-mmmmmmmemm—-—--—-———- nSErt Figure 5 about here -----------------memmm e

Empirical results and model predictions of bias are shown in Figure 5: the left half of each
panel shows empirical estimates of bias for sources to the left of center and the right half of each
panel shows the model predictions for sources to the right of center. The model parameters used in

thisfigure (and in resolution predictions, shown in Figure 6) are identical to the values chosen to

fitD' in Figure 4. The experimental bias was first estimated individually for each subject.®* These

values were then normalized by subtracting the average biasin the first normal-cue run to remove
any bias effects not due to training. The normalized estimates of bias were then averaged across all
subjects and then further collapsed by assuming left-right symmetry to yield the data plotted in
Figure 5.
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Focusing first on the experimental results, we see that, because of the normalization
performed, initial bias with normal cuesisidentically equal to zero for al positions. Without this
normalization, someinitial bias was seen for many subjects; however, the magnitude of thisinitial
bias was small relative to the bias seen in all other runs. When transformed cues are first
introduced alarge bias results in the direction expected on the basis of the transformation (i.e.,
subjects tend to place the criteria too close to the zero-azimuth stimulus location).* The biasis
reduced with exposure to the atered cues to roughly 50% of the initial bias observed. When
returning to normal cues, there is a negative aftereffect in the direction opposite the initia bias. The
magnitude of the initial bias and negative aftereffect appear to be directly related to the strength of
the transformation, with greater initial bias and aftereffect for more extreme transformations. In
Experiment F,,, the bias for the initia run with the transformation n = 0.5 resulted in alarger
reverse bias than was seen using normal cues (n = 1), as expected. By the final run with these
cues, the effect diminished. The effect of thistraining on the biasin run 37 (using normal cues)
was to decrease the negative aftereffect seen when returning to normal-cues following exposure to
the “opposite” transformation n = 0.5.

Predictions for all experiments are in good agreement with the data (to the extent that the panels
are symmetric about the liney = -x, the dataand model predictions are equal). A large biasis
evident with thefirst altered cue run which decreases by the end of the training. A negative
aftereffect occurs when first tested with normal cues after the altered-cue exposure. In the
experimental data, the size of the bias and negative aftereffect varies with the transformation
strength. The predictions capture not only the general trends in the bias results, but also show the
same dependence of the magnitude of the induced bias with changes in cue transformation.

While the agreement between the predicted and actual bias resultsis quite good, there are afew
discrepancies worth pointing out. The actual data show artifacts of the response method (whereby
bias tends to be positive for the leftmost position and negative for the rightmost position) that is
less evident in the model predictions. In addition, the size of the predicted negative aftereffect is

generaly larger than the negative aftereffect in the empirical data. This discrepancy may be dueto a
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tendency to “readapt” to normal cues more quickly than it takes to adapt to the altered cues. On the

whole, datafrom all five experiments are fit well by the model.

Resolution
Themetricd’j = d’(gj+1, G) isthe resolution with which stimulusj+1 and j can be

discriminated. The model predictsthat d'; is given by

(13)

Figure 6 plots experimental and predicted values of d' j for various runsin the experiments.

Again, focusing first on the experimental results, the first test with altered cuesyields alarge

increase in resolution for sourcesin front of the listener compared to the first test with normal cues.

However, in all the experimental results, d 'j showed atendency to decrease as the subjects adapted
to the altered cues. A similar decreaseis seen in thefinal (post-training) test with normal cues
compared to the initial resolution test with normal cues. In Experiment F,,,, dramatically decreasing
the range of stimuli in run 33 resulted in alarge decrease in resolution. There was little effect of
this exposure on resolution in run 37 (using normal cues).

The overall magnitudes of the actual and predicted results are reasonably close for al five
experiments. In the predictions, asimilar decrease in resolution is seen with training, but the
decrease tends to be smaller than that shown in the experimental results. The decrease in the
predictions arises because the effective range increases as subjects adapt, causing an increase in
memory noise with training. Asin the actua results, the predicted decrease is largest in Experiment
F..4- Thisoccursin the predicted results for two reasons: 1) a smaller range was used in

Experiment F,,, than in the other experiments, so that the percentage increase in the effective range
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islargest when changing from altered to normal cues, and 2) the absolute increase in the range with

transformed cuesislarger for positions closer to the center of the range [both because of the

transformation employed and because of the shape of a(q)].
DISCUSSION

Other unidimensional decision models

The preliminary model of adaptation is based on the preliminary model of intensity perception
of Durlach and Braida (e.g., see Durlach & Braida, 1969); however, thisis not the only
quantitative model of perception of unidimensional stimulus sets. Two other prominent, aternative
psychophysical models of resolution are considered here (for a short note reviewing these and
other unidimensional stimulus models, see Shiffrin & Nosofsky, 1994).

Luce and his colleagues (Green, Luce & Duncan, 1977; Luce et ., 1976) suggested that
intensity resolution changes with stimulus range as aresult of shiftsin afixed-width “attention
band.” The posited “attention band” was assumed to cover alimited range of intensities at any
moment. Stimuli with values falling inside the attention band were expected to be resolved more
easily than stimuli outside the attention band. The recent history of stimuli presented to a subject
determined the location of the attention band at any point in time. The attention-band model predicts
that resolution in small-range intensity experimentsis, on average, better than resolution in larger-
range tasks because a stimulus is more likely to fall inside the attention band. Further, the model
predicts that there should be observable sequential effectsin resolution, whereby resolutionis
enhanced when two subsequent stimuli are similar in value (Luce et a., 1982).

A number of investigators have shown that, in alarge range experiment, the value of a
preceding stimulus significantly reduces the variability in response to a subsequent stimulus when
thetwo are close in value (Green et a., 1977; Luce et a., 1982; Purks, Callahan, Braida &
Durlach, 1980; Ward & Lockhead, 1970). However, analysis suggests this effect is caused by a
shift in response criteria (in a Durlach/Braida style decision-theory model) rather than achangein

underlying sensitivity (as predicted by the attention-band model; e.g., see Luce et a., 1982; Purks
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et al., 1980).

Other experiments demonstrate that with an appropriate experimental design (for instance, if the
stimulus order is controlled so that subsequent presentations are always close in value), underlying
sengitivity doesimprove (Luce et a., 1982; Nosofsky, 1983). Both the attention-band model and
the preliminary adaptation model predict that recent history affects resolution. The attention-band
model predicts these effects because past history affects the location of the fixed-width attention
band. In contrast, the current model posits that the range of stimuli across which subject attention
is alocated evolves over the course of tens of trials. In effect, by assuming that the expected range
of stimuli determines memory noise, the adaptation model combines elements of the attention-band
model with the basic structure of the preliminary model of intensity perception.

Braida and Durlach refined the preliminary model of intensity perception to account for
systematic changesin relative intensity resolution with stimulus range. The preliminary model of
intensity perception predicts that sensitivity is uniformly scaled up or down with changes in range.
However, careful examination of the shape of the cumulative sensitivity functions observed in
experiments using different ranges of stimulus intensity revealsthat stimulus sensitivity is
relatively better at the edges of the range than in the middle of the range (Berliner, Durlach &
Braida, 1977; Luce et a., 1982). Durlach and Braida developed the anchor modd of intensity
perception to account for this discrepancy (Braida& Durlach, 1988; Braida et a., 1984). The
anchor model assumes that resolution is influenced by the location of perceptual anchors located at
the edges of the range of the set of physical stimuli. Judgements of intensity are made by judging
the distance between an observed interna decision variable and these internally-maintained
anchors. Distance judgements for values relatively close to the anchors are more accurate, leading
to improved sensitivity for stimuli near the anchors.

Anaysis of the cumulative sensitivity function in the current experiments did not reveal any
systematic changes in relative sensitivity as afunction of the stimulus range (Shinn-Cunningham,
1994). In particular, results from all experiments were consistent with the assumptions of the

preliminary model of intensity perception. Thus, the simpler, preliminary model was used as the
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basis for the current adaptation model. Although results in the current experiments suggest that the
range of stimuli used in an experiment does not affect relative sengitivity, this does not necessarily
imply that there are not internal anchors or reference positions that are important in auditory spatial
perception. One alternative isthat spatial perception is qualitatively different from perception of
other stimulus dimensions, and that any perceptual anchors occur at fixed values, independent of
the stimulus range. In particular, Since it isimportant in everyday life to make absolute, egocentric
judgements of source location, it is conceivable that subjects constantly maintain a set of fixed
anchor locations (such as “straight ahead” or “directly to the left” of the head). If spatial resolution
is governed by comparisons with such fixed anchors, the observed shape of the cumulative
sensitivity function should show little, if any, dependence on the stimulus range. In other words,
the current results do not negate the possibility that perceptual anchors are at play in the current
experiments. Instead, they suggest that the locations of any spatial perceptual anchors are constant,

independent of the experimental paradigm.
What changes during spatial adaptation?

Even though subjects are trained to associate a finite set of stimulus/response pairs, the model
assumes that subjects do not learn the specific associations used during training. Instead, the
model assumes that training causes subjects to alter an internal map relating physical acoustic cues
to sound source location. Thisinternal map is constrained: only linear relationships between
stimuli/responses are learned. This assumption is consistent with the ideas of “dimension learning”
(e.g., see Bedford, 1993) and “function learning” (e.g., see Koh & Meyer, 1991).

In contrast to most rearrangement studies, the work of Bedford (e.g., Bedford, 1993)
examined whether subjects can adapt to complex, nonmonotonic remappings. Her results imply
that subjects adapt to complex remappings by fitting aroughly linear function to al of the
stimulus/response pairs presented. Mean localization errors persist when the stimulus/response
pairs used to train the subjects do not obey alinear relationship. Bedford demonstrated that training

with even a single stimulus location causes subjects to ater their localization responses to sources
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from many different locations (Bedford, 1993). She interpreted her results as indicating that
localization-rearrangement experiments cause subjects to alter entire stimulus/response dimensions,
rather than learning explicit stimulus/response pairs.

Koh and Meyer (1991) trained subjects to associate pairings of line length (the stimuli) and
event duration (the response). Various mathematical relationships governing the trained
stimulus/response pairs were tested. The results of the study imply that the easiest mapping to learn
isalinear function in log-length log-duration coordinates. Since duration and length perception
both obey Weber's Law for the visual stimuli used in the experiment, Koh and Meyer concluded
that subjects learn most rapidly when presented with stimulus/response functions that are linear in
the underlying perceptual dimensions.

The current model and the work by Bedford also imply that linear stimulus/response
relationships are most readily learned; however, both of these studiesimply that the
stimulus/response mapping is linear in spatial dimensions, not in the internal-decision-axis
dimensions. This difference may reflect qualitative differences between learning somewhat
arbitrary stimulus/response rel ationships (such as between line length and event duration)
compared with learning spatial-cue/position relationships.

Evidence for neural plasticity

The proposed model of adaptation assumes that peripheral acoustic spatial cues are mapped to
some internal perceptual dimension representing source location, and that training alters how these
peripheral cues are mapped to spatial responses. These assumptions lead naturally to the question
of whether neural spatial auditory maps have been observed, and whether such maps demonstrate
plasticity when sensory stimuli are rearranged. A brief review of these issuesis presented below
(for amore compl ete review, see King, 1993; King & Moore, 1991; and Brainard, 1994).

Spatially-tuned, topographically-organized neurons are observed at the levels of the brainstem
through the inferior and superior colliculi in avariety of mammals and birds (e.g., see King, 1993;

Knudsen & Knudsen, 1989). However, as yet thereis little evidence for such maps in the cortex
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of any species, even though spatially-sensitive cells are observed (e.g., see Middlebrooks, 1994).
In normal adult animals, multisensory cells of the superior colliculus (SC, or its avian

homol ogue, the optic tectum) form atopographical map in which visua receptive fields, auditory
receptive fields, and/or somatosensory receptive fields are in registry (e.g., see King, 1993). The
formation of spatia auditory mapsin the SC is disrupted when animals are deprived of effective
visua or auditory stimulation during a critical period in development (King & Carlile, 1993;
Withingon-Wray, Binns, Dhanjal, Brickley & Keating, 1990; Withingon-Wray, Binns & Keating,
1990; Withington, 1992). Similarly, when owls are reared with abnormal visual or binaural cues,
the tuning of the auditory map in the optic tectum (OT) is atered in away that compensates for the
externally-imposed sensory rearrangement (Brainard & Knudsen, 1995; Knudsen & Knudsen,
1986; Knudsen & Knudsen, 1989). When the owls are older than the critical period in
development, the spatial mapsin OT do not completely compensate for the imposed sensory
rearrangement (Knudsen & Knudsen, 1985; Knudsen & Knudsen, 1990). Spatial tuning of OT
cellsin more mature birds does exhibits some plasticity, especialy to less extreme transformations;
however, the degree to which spatial tuning of OT cells changes generally decreases with age
(Knudsen, Esterly & Olsen, 1994; Knudsen & Knudsen, 1990).

Spatial tuning of cortical neurons also can be affected by sensory experience. In particular,
animals deprived of visual stimulation have alarger number of spatially-selective auditory neurons
with sharper-than-normal spatial tuning (Korte & Rauschecker, 1993; Rauschecker & Korte,
1993).

In humans who suffer from congenital aural atresia, the ear canal is blocked or absent,
effectively attenuating the sound to that ear by 45 — 60 dB (Wilmington, Gray, & Jahrsdoerfer,
1994). It is possible to correct this anomaly with surgery so that patients receive normal auditory
stimulation, but the surgery is usually performed after the head has neared its mature size. Even
months after this surgery, patients tend to perform poorly on complex spatial auditory tasks. In
contrast, they have normal sensitivity to basic binaural cues such asinteraural time and level

differences. One interpretation of thisresult isthat even though peripherally-computed auditory
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gpatial cues are available to these patients, their spatial perception is permanently disrupted by the
abnormal sensory stimulation they received during early development.

These studies demonstrate that the spatial tuning of auditory neurons can be affected by long-
term sensory rearrangement. This plasticity decreases with age: in particular, without appropriate
early experience, spatial auditory perception may be permanently interrupted even when relatively
peripheral auditory processing isintact. While the demonstrated plasticity is probably important for
understanding the development of normal spatial perception, the relationship between these results
and the short-term, reversible changesin behavior observed during adaptation to spatial
rearrangement of auditory cues is unknown. However, taken together, these results suggest that
auditory spatial perception is governed by an internal representation of external space that can be
“retuned” by sensory experience, even in adult animals. Assumptionsin the current model are
consistent with this view: short-term adaptation in the model correspondsto alinear “retuning” of

the posited neural representation of auditory space.
Summary

The preliminary model of adaptation extends the preliminary model of intensity perception
(Braida & Durlach, 1972; Braida & Durlach, 1988; Durlach & Braida, 1969) by predicting changes
in bias and resol ution as subjects are trained with remapped auditory localization cues. In
particular, the model assumes that the effective stimulus range and the placement of decision
criteriaare governed by changesin alinearly-constrained map relating stimulus to response. The
dope of thismap evolves over time as subjects adapt, causing the criteria and the effective range
(and hence theinternal noise) to evolve over time. The resulting model predicts that the order of
stimulus presentation will affect resolution, an effect that the preliminary intensity perception model
did not address.

Decision criteria are assumed to equal the perceived-optimal criteriain the subjects decision
space. However, since the mapping between physical cue and perceived position 1) changes

dowly with time and 2) is constrained to be linear, the model predicts that response bias decreases
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with exposure time, but never disappears. Similarly, the perceived range of positionsis always
assumed to equal the spatial range of the responses used in the experiments; however, the effective
range in the underlying decision space changes as the mapping between perceived and normal-cue

position changes. Thisgradual change in effective range causes a corresponding gradual changein

resolution. The model predicts the observed dependence of D', bias, and d ' on stimulus value and

onrun. Empirica results match predicted valuesfairly well, both qualitatively and quantitatively.
The modd implies that adaptation to rearranged spatial auditory cuesis characterized by
changesin an internal map that determines how a noisy, internal representation of spatial locationis

related to positionsin external space.
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NOTES
! Note that the model assumesthat D' equals the sum of the distances between adjacent stimuli
in the set, measured in units of standard deviation. Thus, D' equals the sum over all adjacent
stimulus pairs of d' ji the standard psychophysical measure of stimulus resolution. The measure

d'j isconsidered in detail below.

Z In the current paper, biasis denoted by B (rather than the more usual symbol b) to avoid

confusion with the sensation noise in the mode.

% Bias estimates and resol ution estimates (shown in Figures 4, 5 and 6) were found using a
maximum likelihood estimation approach detailed in Shinn-Cunningham et al. (1998a).

* Theoreticaly, the optimal placement for all criteria should be farther from the zero-azimuth
location than the actua criteria placement for naive subjects; however, biasin the first altered-cue
run tends to be positive for the leftmost criterion and negative for the rightmost criterionin all

experiments. Thisis an artifact of the identification method, reflecting the fact that subjects cannot
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accurately indicate the heard location of a source when it falls outside the range of allowed

responses.
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TABLES
Experiment n Subjects Positions
F, 3 5 13
Famid 3 4 7
F, 2 4 13
Fi. 4 3 13
Fa 4,0.5 3 13

Table 1: Summary of experiments: n gives transformation strengths used, Subjects gives number of subjects,
and Positions shows number of positions used in each experiment.
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FIGURE CAPTIONS

f (6) (degs)

-50 -30 -10 10 30 50

source azimuth 6 (degs)

Figure 1. The family of functionsf,_(q) used to transform auditory localization cues. Using
these transformations, a source from azimuth g was synthesized using the HRTF that normally
corresponded to the position f, ().
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Figure 2. Schematic representation of the observed constraint on adaptation. The abscissa
represents f, (), the location normally associated with the stimulus whose nominal location is

g.The ordinate represents the mean response given by the subject. In normal-cue runs, the correct
responses for the cues presented (open circles) fall on aline of slope one. In altered-cue runs, the
correct responses (open squares) are anonlinear function of f,(q). The solid line represents how
subjects actually adapt to this nonlinearity.



Perception and Psychophysics, 62(1), 33-47. 38

a) Normal cues, pre-training
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b) Altered cues, pre-training

ISEIN

c) Altered cues, post-training
T S S
d) Normal cues, post-training

2

Internal Decision AXxis

Probability

Figure 3. Representation of the internal decision axisfor a seven-alternative, forced choice task
smilar to that in Experiment F,_,, (in order to emphasize model behavior, transformation strength n
isequal to 6). @) initia run with normal cues, b) initial run with altered cues, c) final run with
altered cues, and d) initial, post-training run with normal cues. In each panel, the probability
distributions of the internal decision variable corresponding to each of seven possible stimulus
values are plotted. The criteriadividing the decision axis into seven distinct regions are shown by
the dashed vertical lines.
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Figure 4. Estimated and predicted D' as a function of run.
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Figure 5. Estimated and predicted bias B, as afunction of position. In each panel, the
experimental results, plotted on the left side of each panel, were found by assuming that
performance was symmetric about the midline. The predictions from the model are shown on the
right side of each panel. To the extent that the |eft and right halves of each panel are symmetric
about the liney = -x, the model fits the experimental results.
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Figure 6. Estimated and predicted resolution d’, as a function of position. In each panel, the
experimental results, plotted on the left side of each panel, were found by assuming that
performance was symmetric about the midline. The predictions from the model are shown on the
right side of each panel. To the extent that the left and right halves of each panel are symmetric
about the x axis, the mode fits the experimental results.



