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Amaong the child’s most important conceptual acquisitions are the informa-
tion processes that underlie quantification: the knowledge and skills related
to the encoding and manipulation of quantitative information. Like the
acquisition of another major conceptual system, language, the earliest
developments occur long before children enter a classroom, whereas most
of the formal aspects of numbers are learned in school. In this chapter, we
suggest that the earliest bases for understanding numbers are founded upon
innate or early developing perceptual capabilities of the young child. More
specifically, we focus on the development of children’s understanding of
number conservation and the construction of the knowledge required by
that transition.

Since Piaget, conservation has been thought to be the first major
conceptual advance in chiidren’s numerical development. It is not the kind
of knowledge that results from what young children learn in school, and yet
it appears to be a foundation that must be securely in place before many
other concepts of number and arithmetic can be acquired. Although
conservation of number is one of the most heavily researched phenomena in
cognitive development, a satisfactory theoretical account of its acquisition
remains to be formulated. The first computational models of different
states of conservation knowledge were proposed nearly 20 years ago (Klahr
& Wallace, 1976). More recently, Klahr, (1984) sketched a flowchart type
model of the transition processes but he did not implement it as a
computational model. In this chapter, we extend those earlier ideas and
integrate them with Soar (Newell, 1990)—a unified theory of cognition—to
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316 SIMON AND KLAHR

present a computation model of conservation acquisition. The model was
first proposed by Simon, Newell and Klahr (1991), and we elaborate that
account in this chapter.

Our computational model demonstrates that conservation learning de-
rives from the ability to make accurate measurements and to use them to
evaluate the numerical effects of transformations on collections of objects.
Qur account is the logical inverse of the one presented by Piaget. The
difference between our position and the Piagetian one concerns the
developmental roles of two central conceptual attainments in the develop-
ment of quantification abilities. These are conservation knowledge (under-
standing the behavior of quantities under transformation} and measure:
ment skills (creating quantitative values for bodies of material)

The Piagetian view (Piaget, Inhelder and Szeminska, 1960) is that
conservation is a logical prerequisite to the ability to measure. Piaget
reasoned that, without an understanding of the essential nature of quantity,
measurements in terms of those quantities would mean nothing and would
be of no practical use. The opposing view is that measurement is the
necessary precursor of conservation (Klahr & Wallace, 1976; Miller, 1984).
Measurement is the empirical tool used to gather information about
whether or not some dimension of a transformed entity has remained
quantitatively invariant. Miller stated that “practical measurement proce-
dures appear not to be late-developing concomitants of a more general
understanding of quantity. Instead, the measurement procedures of chil-
dren embody their most sophisticated understanding of the domain in
question. The limitations of these procedures constitute significant limits on
children’s understanding of quantity” (p. 221).

Such measurement is not always possible. The limitations Miller spoke of
determine what children can learn about quantity. They are responsible for
the pattern in the development of conservation. Number, or discrete
quantity, conservation is acquired first. Also, preconservers can reason
successfully about transformations of smail discrete quantities but not
about large ones (Cowan, 1979; Fuson, Secada, & Hall 1983; Siegler, 1981).
Conservation of continuous guantities such as length, area, and volume is
acquired a year or two later (Siegler, 1981).

One type of limitation is on processes, that is, to what kinds of things
measurement procedures can be applied. As Piaget et al. (1960) stated, “to
measure is to take out of a whole, one . . . unit, and to transpose this unit
on the remainder of the whole.” Thus, any material to be measured must
afford the measurer some unit that can be used in that process. This
characteristic is not present in continuous quantities. Beakers of water or
pieces of string do not exhibit any evident subunits. Only the employment
of special tools such as rulers or measuring cylinders (and the knowledge ol
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how to use them) can create subunits that can be used for quantification.
On the other hand, discrete quantities are defined by collections of
individual subunits of the quantity as a whole. No special tools are needed
because quantification abilities are present to some extent in even the
youngest children. Young children appear to be particularly sensitive to the
fact that unitary objects, and not subparts of those objects, have a special
status. In learning language, they choose that level for the assignment of
novel word Jabels (Markman, 1990), and in quantification of coliections,
they choose that level for the assignment of units (Shipley & Shepperson,
1990) Thus, discrete quantities are clearly easier to identify, and thus, to
measure.

A second type of limitation is in the abilities of children who attempt to
use measurement procedures. The children that need to carry out measure-
ments to determine quantitative invariance are those below the age of 5.
However, their quantification skills are not well developed. They are
efficient at subitizing: a fast, accurate perceptual quantification mechanism
(Chi & Kiahr, 1975; Svenson & Sjoberg, 1983). Subitizing, however, has a
limit of about four objects (Atkinson, Campbell & Francis, 1976; Simon,
Cabrera, & Kliegl, 1993). Young children’s counting is only reliable for
collections of about the same size (Fuson, 1988).

Therefore, the measurement-before-conservation view predicts the
learning events that enable the acquisition of quantitative invariance
knowledge. It follows that, if measurement is needed to be able to reason
about quantity, learning can occur only when the effects of transformations
of small collections of objects are evaluated. These quantities have to be
discrete because young children are not capable of creating consistent
subunits from continuous quantities. Gelman (1977) showed that 1-year-
olds can reason about some transformations when the number of objects
involved is very small. The discrete quantity requirement was supported by
Piaget et al.’s (1960) and Miller's (1984} findings that, given the task of
dividing up an object such as a cookie into equal parts, young children
created many arbitrarily sized subunits. These are unsuitable for quantifi-
cation because counting them fails to produce accurate absolute measures
for single entities, or to produce relative measures of multiple entities.

Miller (1989) further demonstrated the interaction between the use of
measurement procedures and the acquisition of quantitative knowledge. He
tested 3- to 10-year-olds on a modified equivalence-conservation task,
where the effect of transforming one of a pair of guantities must be
established. A variety of transformations were applied to different mate-
rials to test number, length, and area conservation. Miller demonstrated
that the effects of transformations are easy to determine when measurement
procedures provide good cues to the actual quantity, and vice versa. For
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example, spreading out 2 row of objects has no effect if number is the
conservation dimension in question, but it does affect length conservation.
Therefore, the appropriate measurement tool for this transformation would
be enumeration in a number task. However, it would produce no informa-
tion useful for evaluating length conservation. Thus, Miller predicted that
performance would be best where transformations were relevant to the
domain: The effects of spreading a row of objects would be easily evaluated
in the number task, but the effects of changing their size would not. The
results were as predicted, showing that the acquisition of quantitative
knowledge depends on the selection and application of appropriate mea-
surement procedures.

Our theory follows that of Klahr (1984} in stating that it is measurement
of collections of discrete objects that provides information upon which
knowledge about quantitative invariance is built. Conservation knowledge
is acquired in situations where invariance can be empirically verified. In
other words, learning events occur when the materials allow children to use
their measurement capabilities to obtain a numerical measurement for a
collection of objects before and after it has been transformed. The two
measurements can then be compared and the result attributed to the
transformation as its effect. If the results are identical, the quantity is
unchanged and the transformation is deemed to have a nonquantitative
effect for the dimension in question—it conserves number. If some
difference is detected, the transformation is found to be nonconserving.
Such differences can be simply detected by means of discriminations based
on subitizing. With sufficient domain knowledge, the direction and mag-
nitude of the change can also be determined. Thus, we conclude that the
initial learning experiences for invariance knowledge are based on measure-
ments of small collections of discrete objects within the subitizing range.
Such a view is consistent with Starkey's (1992) conclusion that simple
numerical abstraction competence supports numerical reasoning before the
emergence of the mature counting skill.

In the following sections of this chapter, we present the various compo-
nents of our theory of conservation learning and the accompanying
computational model. We begin in by examining the phenomenon of
conservation in order to establish the learning task that our model will
account for. Then, we discuss the particular training study that we used as
the vehicle for our demonstration of conservation learning, and present our
theory of number conservation learning in more detail. Next, we briefly
overview Soar, the computational medium within which our model is
constructed, and then present a detailed account of Q-Soar, our computa-
tional model of number conservation learning. Finally, we extend the
account of conservation beyond the behaviors directly modeled by Q-Soar
and draw conclusions.
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THE PHENOMENON OF CONSERVATION

A central temet of Piagetian theory (Piaget, 1952, 1970) is that the
acquisition of conservation knowledge is a crucial step in the child’s
development of mature conceptual capabilities. Piaget (1968, p.978) de-
fined conservation as follows:

We call “conservation” (and this is generally accepted) the invariance of 2
characteristic despite transformations of the object or of a collection of
objects possessing this characteristic. Concerning number, a collection of
objects “conserves” its number when the shape or disposition of the collection
is modified, or when it is partitioned into subsets.

As we stated, children’s knowledge about the effects of transformations
must be empirically derived in the first instance because all transformations
have different effects on different physical dimensions of the transformed
material. For example, whether or not the pouring trangformation con-
serves quantity depends on what is poured and what is measured:

If we pour a little sugar into red sugar water, we do not change temperature,
amount, height, width, or redness, but we increase sweetness. If we add more
of an identical concentration, we do not change temperature, redness or
sweetness; however the amount increases, as does liquid height, but not width
(in 2 rigid container) On the other hand, if we add water, we increase two
extensive quantities (amount, liquid height), reduce two intensive quantities
(redness, sweetness), and leave one unchanged (temperature). (Klahr, 1982,
pp 68-69)

Therefore, a central component of what must be learned, either in
training studies or by being naturally acquired by the child outside the
laboratory, are the linkages between transformational attributes and their
dimensional effects as measured in a variety of contexts.

The centrality of conservation concepts to most theories of cognitive
development produced a vast database of empirical results. Nevertheless, a
computational model that can account for the regularities has yet to be fully
specified. There are structural and processing accounts of the knowledge
used by a child who “has” conservation, as well as global characterizations
of the acquisition of that knowledge, such as Piaget’s assimilation and
accommodation processes, Klahr and Wallace’s (1976) time-line processing,
and Halford's (1982) levels of cognitive systems. However, neither these nor
any other accounts completely stated a set of operations and their interac-
tion with a specified learning mechanism and shown this to produce the
pattern of behavior observed in children acquiring conservation knowledge.

O-Soar is 2 model of the acquisition of conservation knowledge designed
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to meet several criteria for computational models of developmental phe-
nomena:

1. Such models should be based on a principled cognitive architecture,
rather than a set of arbitrary and ad hoc mechanisms. For Q-Soar, the
architecture is Soar, to be described in a later section.

2. Computational models should be constrained by the general regular-
ities in the relevant empirical literature. There are a number of such
regularities, that is, findings that are consistently reported and for which
there is little or no disconfirming evidence. The critical regularities for the
construction of Q-Soar are later discussed in detail.

3. Computational models should generate the same behavior as do the
children in the specific domain being modeled. More specifically, they
should compute an approximation of subjects’ final knowledge states, given
an approximation of initial states and external inputs like those imposed by
experimental and/or natural conditions.

Although more than 20 years have passed since Kiahr and Wailace (1970)
proposed an information processing approach to cognitive development,
there are no computational models of any major developmental transitions
that satisfy all of these criteria. The Klahr and Wallace work on the
development of quantitative concepts (Klahr, 1973, 1984; Klahr & Wallace,
1973, 1976) consisted of verbal descriptions, flow charts, and production-
system models of distinct performance levels in the general domain of
guantitative reasoning, including subitizing, counting, estimation, class
inclusion, transitive reasoning, and quantity conservation. However, with
respect to transition processes, their most fully developed model (Wallace,
Klahr, & Bluff, 1987) went only as far as a partially specified architecture
for supporting developmental transitions.

More recent computational accounts of developmental phenomena have
been of two kinds:

1. One type of account is highly constrained by data from empirical
studies of children’s acquisition of knowledge in a domain, but the
computational model itself is not constrained by any theoretical principles.
Instead, it is based on pragmatic decisions about how to implement a set of
assumed mechanisms (e.g., Siegler, 1991},

2. The other type of account is based on a broad set of theoretical
assumptions that are consistent with a range of specilic implementations.
Examples include the adaptive production system used by Halford et al.
(chap 3., this volume) to model the acquisition of transitive inference, the
connectionist model used by McClelland (1989} to model the acquisition of
balance scale rules and the concept-formation system used by Jones and

|
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VanLehn (in press) to model the strategy changes in young children's
arithmetic. Computational models of this type, although they suggest
interesting learning mechanisms, tend to be relatively unconstrained by
either any particular empirical results on children’s knowledge acquisition
or by illustrations that their central constructs are critical in accounting for
other aspects of human cognition.

The purpose of our approach is to formulate a model that is tightly
constrained by both a general theory of the cognitive architecture and a
specific set of empirical results. Q-Soar’s challenge is to demonstrate that it
can model the learning reported in Gelman’s (1982) training study, to be
described next. The further issue of explaining general developmental
regularities is addressed in the final section of the chapter.

A TRAINING STUDY

Simon and Halford (chap. 1, this volume) discuss, simulating the activities
of children engaged in a training study is one way to ensure that the model
and the child engage in very similar activities while acquiring the knowledge
involved in a transition of interest. In constructing our simulation of
training studies, we were faced with the choice of modeling either our own
arbitrary view of the essential properties of a typical training situation, or
one specific training situation chosen from the vast conservation training
literature. The problem with the former choice is that there is no typical
training study. Detailed examination of the literature on conservation
training studies reveals that they vary along so many potentially relevant
dimensions that it is impossible to get agreement on even a prototypical
training study, let alone a set of defining properties. For example, Field's
(1987) review organized a collection of 25 recent conservation training
studies with preschoolers along nine dimensions and three theoretical
orientations.! Without any principled basis on which to construct a typical
study, we chose to simulate a specific training study with well-defined
procedures and clear quantitative outcomes.

Gelman’s Training Procedure

As noted, we chose a training study reported by Gelman (1982) in which 3-
and 4-year-olds were trained in a brief session using small collections of

IThe procedural dimensions were design, pretest, training, materials, reinforcements, verbai
rule instruction, postiest, justilications, and delayed posttest. The theoretical orientations were
specific experience, cognitive readiness. and perceptual readiness. Space does not permit an
elaboration of these guiding models. as Field (1987) called them, but tmining studies vary
widely zlong both procedural and theoretical dimensions.
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discrete objects (N = 3—4) in both equivalence (two rows of equal number)
and inequivalence (two rows of unequal number) relations, and in which the
transfer test inciuded both small (N = 4-5) and large (N = 8-10)
collections. Gelman trained one group and used two types of control
groups. Children in the experimental group were trained with two types of
collections in counterbalanced order. Half the children were first shown an
equivalence relation (two rows of four items each), and the other half were
first shown an ineguivalence relation {one row of four and one row of
three). In both equivalence and inequivalence collections, the items were
initially placed in one-to-one correspondence.

For each type of collection, there were nine steps, as illustrated in Fig.
7.1z

1. The display was presented in one-to-one correspondence and the

child was instructed to count the number of items in one of the

rows.

That row was covered by the experimenter and the child was asked,

“How many are under my hands?”

3. The child was instructed to count the number of items in the other
row.

4, That row was covered by the experimenter and the child was asked,
“How many are under my hands?”

5. The child was asked to judge whether the two uncovered rows
contained “the same number or a different number” of items.

6. While the child watched, the length of one of the rows was spread
or compressed.

7. The experimenter pointed to the altered (or unaltered) row and
asked, “Are there still N here?”

8. The experimenter pointed to the other row and asked the same
guestion.

9. The child was asked whether the pair of rows had the same number
or a different number of items, and to explain his or her judgment.

.

All children answered the questions correctly {except for cne 3-year-old
who needed a slight extra prompt).

Gelman used two control groups. Children in the cardinal-once group
were exposed to only one row (of three or four items). For that one row,
they were exposed to Steps 1-2 and 6-7. (Each row was altered four times
to provide a comparable number of counting trials between the experi-
mental and control groups.) The other control group (no-cardinal) simply
counted single rows of three or four items, but the children in that group
were not asked to “indicate the cardinal value rendered by the count.”
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FIG 7.1 Graphical representation of the experimental procedure
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Conservation Test

Immediately following the experimental or other procedures, conservation
tests were administered. Each child was given four different conservation
tasks (large or small set size, and equal or unequal numbers of items in the
two rows). Small sets included either 4 and 5 or 5 and § items, and large sets
included either 8 and 10 or 10 and 10 items:

The order of presentation of large and small set sizes was counterbalanced as
was the order of conservation of equality and inequality tasks within a set-size
range. The equal arrays were equal in length prior to the transformation and
unequal in length after being transformed. The reverse was true for the
nonequivalent arrays: before being transformed they were unequal in length
and then equal in length after the transformation. The conservation trials
were run in the standard way older children are tested, and included requests
for explanations. Likewise, children were discouraged from counting. (Gel-
man, 1982, p. 213)

Because children were discouraged from counting, and because one or both
of the rows had at least five items, and because children of this age do not
count beyond three or four items reliably (Fuson, 1988), it is likely that the
pre-transformation equivalence (or nonequivalence) of both large and small
arrays was established by one-to-one correspondence.

Results

For both the large and small sets, there was almost no dilference in the
equal and unequal set sizes, so those results are collapsed in the following
discussion. Table 7.1 shows the overall proportion of correct judgments on
conservation tasks. The effect of condition is striking: Qverall, the exper-

TABLE 7.1
Proportion of Correct Conservation Judgments (Over all Four Judgments and all Subjects)
In Each Condition, Derived From Table 1 in Gelman (1982}

Experimental Cardinal-Once No-Cardinal
Age & Set Size =21 (n = 249) (n = 16)
35 on small set size 71 1 13
4s on small set size 75 58 16
3s on large set size 72 8 0
1s on large set size 65 34 13
Overall 3s 7t 9 6

Cwverall 45 70 46 15
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imental groups passed about 70% of the conservation trials, compared to
passing rates from 0% to 15% for the “untrained” (no-cardinal) groups.
Trained threes and fours did equally well on large and small sets.

The interesting difference between the threes and fours occurred in the
cardinal-once groups. For threes, cardinal-once training had no effect, but
for fours it had a substantial effect when tested on both small and large set
sizes. This is important, because the children in the cardinal-once group
were trained only in identity conservation (transforming a single row),
rather than equivalence conservation (transforming one of a pair of rows).?
That is, they were never trained to notice that the relation between two
different collections remained the same under a perceptual transformation,
nor could they use one-to-one correspondence to reason about the effects of
the transformations to which they were exposed. Instead, they could only
learn that the initial and final cardinal value of a collection remained
unchanged under certain kinds of transformations (i.e., spreading and
compressing). Apparently, many 4-year-olds, though few 3-year-olds, were
able to learn about transformations without the further help of one-to-one
correspondence.

Gelman's categorization of children’s explanations for their correct
responses are presented in Table 7.2 in terms of (our interpretation of)
whether the explanation makes reference to the transformation or to
one-to-one correspondence. Gelman gave examples of two categories:
irrelevant transformation {They just moved) and addition/ subtraction (You
need another one to make them the same) explanations. Initial equality or
inequality of number explanations presumably stated that the original value
still held, whereas the content of one-to-one correspondence explanations is
obvious. The majority of the children's explanations referred to the
transformation and, as can be seen in Table 7.2, there were more of these
transformationally referenced explanations than there were explanations in
terms of one-to-one correspondence. More specifically, for the experi-
mental threes, experimental fours, and cardinal-once fours, the proportion
of transformationally referenced explanations was 619, 81%, and 65%,
respectively, whereas for the same groups, one-to-one correspondence was
used for only 21%, 9%, and 15% of the explanations.

Three-year-olds did not benefit from cardinal-once training, and 4-year-
olds in the experimental group benefited more than did their agemates in the
cardinal-once group. Rather than attribute these differences to the role of
one-to-one correspondence, we note that subjects in the experimental
group, but not in the cardinal-once group, received repeated exposure to

?Sce Kiahr (1984) for a full discussion of the difference berween identity conservation (IC)
and equivalence conservation {(EC) Note that Klahr's account of the acquisition of conserva-
tion rules is presented entirely in terms of the simple IC situation
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TABLE72
Reference to Transformation or One-To-One Correspondence of Geiman’'s
Explanation Categories

Transformation One-to-One
Frrelevant transformation X
Addition/ subtmaction X
Initial equality/inequality X
One-to-one correspondence X

observations of the following transitive relation. When, for example, two
rows of objects have the same number, and after spreading the transformed
row has the same number as before, then the untouched row and the
transformed row still have the same number of objects.

It is not difficult for the child to compute the effect of the transforma-
tion. First, each set was counted before and after the transformation for the
experimental trials, rendering one-to-one matching redundant. Second, in
experimental trials, the pre- and posttransformation information is visible
in the form of a transformed and an untransformed row after the
transformation has taken place. However, in the cardinal-once trials,
memory of the pretransformation information is always required to com-
pute the transformation’s effect. All of the 3-year-olds and some of the
4-year-olds apparently needed this additional information (and reduction of
processing) that was provided to the experimental group.

A THEORY OF NUMBER CONSERVATION KNOWLEDGE

We summarize our view of the important difference between the experi-
mental group and the cardinal-once group as follows. Subjects in the
experimental group were exposed to equivalence (or inequivalence) conser-
vation trials in which they observed and encoded an initial quantitative
relation between two collections, and then observed a quantity -preserving
transformation on one of the collections. They then requantified both
collections and noted that the relation had not changed. In contrast,
subjects in the cardinal-once group, because they were dealing with only one
collection rather than two, were in an identity conservation situation. That
is, they had to judge, after observing a spreading or compressing transfor-
mation, whether or not the quantity following the transformation was the
same as the guantity preceding it; they could not simply requantify and
compare the tWo rows.

In both situations, acquired knowledge stemmed primarily from the
discovery that certain types of transformations have no effect on the
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numerosity of an object set, even though the transformations may affect
other properties, like the spatial density or length of the set. This conclusion
is indepcndent of the number of objects in the set that was measured when
the new knowledge was created. In other words, what was learned was a
characterization of the quantity-preserving aspects of the transformation in
guestion.

Q-Soar was built to model this piece of knowledge acquisition. In order
to do this, the system must be able to specify:

1. The knowledge state prior to the training (i.e, a nonconserving
child).

2. The encoding of the collection(s) prior to transformation. This
includes salient features such as number, length, and density, as
well as other features that may be irrelevant for the task at hand.

3. The encoding of the relation between collections {for the experi-

mental group).

The encoding of the collection(s) following transformation.

. The encoding of the physical aspects of the transformation (e.g.,
salient motion, how objects were moved, how many were moved,
direction of movement).

6. New knowledge acquired from repeated trials of the kind presented

to both groups.

S

The model will have two variants, and each will be exposed 1o the three
kinds of stimulus presentations (corresponding to the experimental, cardinal-
once, and no-cardinal groups): Q-Soar—4 will model the 4-year-olds, who
learn from both the experimental manipulations and the cardinal-once
manipulations. Q-Soar-3 will model the 3-vear-olds, who learn only from
the experimental condition.

This set of general hypotheses about the essential mechanisms involved in
the child’s acquisition of number conservation can be called @ Theory, to
distinguish it from Q-Soar, which conjoins Q Theory with the assumptions
of a particular cognitive architecture (Soar) to form a more complete
operational theory. A full theory of conservation will ultimately contain
assumptions about the nature of the environments in which development
takes place (see Simon & Halford, chap. 1, this volume). Indeed, it is the
lack of justifiable assumptions that can be made about naturally occurring
conservation experiences that forces us to focus entirely on training studies.

THE SOAR ARCHITECTURE

This section describes the refevant aspects of the Soar architecture. More
detailed accounts exist elsewhere (Laird, Newell, & Rosenbloom, 1987;
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Laird, Swedlow, Altmann, & Congdon, 1989; Newell, 1990). Besides being
an operational architecture, Soar is also a theory of cognition that explains
a variety of psychological phenomena. We make no attempt to describe that
wider background here (cf. Lewis et al., 1990; Newell, 1990).

All tasks are formulated in Soar as search in problem spaces, where
operators are applied to states in an attempt to attain a goal state. Problem
spaces can be thought of as packages of knowledge about different tasks.
The operators within a given space {and knowledge about constraints on
legal states) define the problem solver’s competence for a task. For example,
a complete problem space for the Missionaries and Cannibals puzzle
contains the necessary operators to carry out moves, knowledge about the
goal state, and knowledge about legal and illegal moves. Problem solving
proceeds sequentially by decisions that select problem spaces, states, and
operators. This processing gathers knowledge from a long-term recognition
memory that is implemented as a production system. This memory matches
structures in working memory and retrieves knowledge that elaborates the
existing state and suggests preferences for the next step to take.

If Soar cannot make a decision, an impasse occurs and Soar automati-
cally generates a subgoal in which a new problem space can be used to find
the required knowledge. A major reason that Soar exhibits the impasse and
subgoal pattern is that not all of the knowledge required to carry out a task
can be searched for within a single problem space. For example, shouid the
goal arise in the Missionaries and Cannibals context to explain why the boat
does not sink, there will be no knowledge in the problem space to implement
that process. In response, an impasse will arise and in the resulting subgoal,
Soar will select a problem space for solving such an explanatory problem,
because this is a different task requiring different knowledge. Once that
knowledge is found, subgoals are resolved and processing continues where
1t teft off (Newell, 1990).

Soar has a single learning mechanism, called chunking, that learns new
productions, or chunks, for resolved impasses. When similar situations are
encountered, the knowledge generated by the previous subgoal processing is
automatically retrieved so that the impasse is not recreated. The chunk will
apply in a wider set of circumstances than the exact conditions under which
it was created. This is because the chunking mechanism carries out an
analysis that is a form of explanation-based learning (DeJong & Mooney,
1986: Mitchell, Keller, & Kedar-Cabelli, 1986; Mooney, 1991; Rosenbloom
& Laird, 1986) to determine the critical features of the situation that led to
the creation of the new knowledge. In future situations, these act as cues (o
make the new knowledge available. The behavioral implication of chunking
is that Soar exhibits a shift from deliberate to automatic processing as the
situations it encounters become increasingly familiar. In other words,
knowledge becomes compiled [rom search-based retrieval to recognition-
based retrieval (Anderson, 1987; Rosenbloom & Newell, 1936).

N



OBNATE: PAGE: 329 BESS: 11 lied Nov 38 15:83:50 1894
Fxl:jcompfai 1jobz/CLS, leasGRP book/.J0B_s i mon/GIV_chap?

7. COMPUTATIONAL THEORY 329

Q-SOAR’S ACQUISITION OF NUMBER CONSERVATION
KNOWLEDGE

The knowledge and processes that enable Q-Soar to acquire number
conservation knowledge are implemented as a set of problem spaces that
are depicted in Fig. 7.2. The figure shows the problem spaces that are
selected to carry out processing in response to given deficiencies in
available knowledge;, these deficiencies are stated as labels on the
downward-pointing sides of the arrows. Once sufficient knowledge is
returned (as depicted by the upward-peinting side of the arrows), the
original processing can continue. The new knowledge becomes immediately
accessible on later occasions in the form of chunks. The top panel depicts
the knowledge required to interpret task instructions and to establish initial
values before a transformation is applied. The lower panel depicts the
knowledge involved in determining the quantitative effects of transforma-
tions.

The figure also distinguishes between task-motivated problem spaces
(unshaded) and theory-motivated problem spaces (shaded). The unshaded
spaces contain those operations that any task analysis of the training studies
would deem to be necessary for its successful completion. These processes
include the ability to understand instructions, create responses, and deter-
mine relative or absolute values for the objects used in training and testing,
The shaded problem spaces contain operations that we, as theorists, assert
are necessary to enable the cognitive architecture, Soar, to achieve the
behavior and learning that constitute the attainment of number conserva-
tion as shown by children in the 3- to 4-year-old age range.

Q-Soar's design presumes that young children acquire number conserva-
tion knowledge by measurement and comparison of values to determine the
effects of transformations on small collections of discrete objects. Having
been shown a transformation to a set of objects, the child first categorizes
the transformation and then initiates a conservation judgment about the
transformation's effect. Ideally, categorization will identify the observed
transformation as an instance of a larger class, with effects that are known
to be associated {through chunking) with this class. If not, then pre- and
posttransformation values created by measurement processes are compared
to determine the effect of the transformation. The learning over this
processing creates new knowledge about this kind of transformation,
thatwill become available on future occurrences in similar contexts.” Now
the transformation’s effects can be stated without the need for any
empirical processing. In other words, the necessity of the effects is
recognized.

*The notion of similarity involved is the sceurrence in the rew situation of the same essential
features used in the prior situation. There is no similarity metric involved.
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Regularities and Theoretical Assumptions

The behavior exhibited by Q-Soar is constrained by a set of regularities in
the literature on early numerical abstraction and reasoning. The processes
that Q-Soar employs to generate that behavior are determined, in part, by
five assumptions we make about the knowledge and strategies used by 3-
and 4-year-old children in the context of conservation experiments. These
regularities and theoretical assumptions are discussed in detail and are
integrated in Table 7.3. The top half of the table relates the regularities (R1
to 6) to 3- and 4-year-olds’ abilities and tendencies to quantify, and to their
abilities to correctly answer conservation questions about sets of different
sizes. The lower half of the table maps the competencies provided for our
Q-Soar models of 3- and 4-year-olds onto those abilities and it shows the
role played by the theoretical assumptions we made.

Six critical regularities define the requirements for the behavior of
Q-Soar:

R1. Young children in the 3- to 4-year age range can consistently obtain
accurate specilic quantitative values for small sets of objects (up to three or
four: cf. Fuson, 1988; Starkey, 1992).

R2. Young children can execute a counting procedure for larger numbers
when requested and can accurately monitor the counts of others. However,
children below the age of 4 do not spontancously use counting as an
effective method for solving a range of quantitative problems, including
comparing the relative numerosity of two sets of objects (Briars & Siegler,
1984; Fuson, 1988; Sophian, 1987, Starkey, 1992; Wynn, 1990).

TABLE 73.
Regularities and Assumptions Underlying the Construction of Q-Soar

Solve Conservation

Accurate Count to Quantily or of Discontinuous
Quantification? Compare Set Sizes? Quantity?
Age n <4 4 <n =< 16 Spoptancously On Demand n <4 d<nsx10
3 yes RIR3 noR2Z no R2 yes RZ yesR4R6  no RJ
4 yes RIR3  no R2 yes Rz yes R2 yesR4R6  no RS

Verfy Cwicome
Cuantitatively?

Spontanecusly  Via Conflict

Q-Soar-3 yes no no Ad ves Ad yes Al-AF no
Q-Soar—4 yes no ves Al ves A3 A4 yes AI-AS no
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R3. children from an early age are able to accurately and rapidly
enumerate three or four items by the process of subitizing (Chi & Klahr,
1975; Svenson & Sjoberg, 1983; van Loosbroek & Smitsman, 1990).

R4. Children who have not fully acquired conservation knowledge can
still correctly answer conservation questions when they can obtain a specific
guantitative value for the objects concerned (cf. Siegler, 1981).

R5. Children who have not fully acquired conservation knowledge do
not correctly answer the conservation question when they cannot obtain a
specific guantitative value for objects concerned (cf. Halford & Boyle,
1985).

R6. Young children can respond correctly and provide explanations for
tests of conservation of quantity when discrete materials are used (such as
counters or cookies) before they can do this on tests involving materials
with continuous properties, such as columns of water or areas of space (cf.
Gelman & Baillargeon, 1983).

There are five assumptions underlying the construction of Q-Soar. The
first two concern the typical expectations held by young children about the
behavior of sets of objects under transformation in the context of conser-
vation experiments. The remaining three are our modeling assumptions
about how these first two are implemented in Q-Soar in terms of knowledge
and processes:

Al. Young children assume that the numerical value of a row of objects
will not change if the row is not transformed. Gelman (1977) showed in her
“magic studies” that children as young as 2 years of age operate with the
assumption that the numerical value of a set of objects will remain constant
in the absence of any observable manipulation of the set.

A2, Young children assume that the numerical value of a row of objects
is likely to change if the row is visibly transformed by an experimenter.
Many experiments, notably those of Donaldson (1978), showed that the act
of an experimenter making explicit physical changes to a set of objects
suggests to young children that some significant change will result from the
action.

A3. Four-year-olds know that they can use measurement to verify
whether Assumption 2 is true or false. By measuring the numerical value of
the objects before and after the transformation, a determination can be
made as to whether or not the action changed the number of the objects.
Sophian (1987) showed that by this age, children are beginning to sponta-
neously use counting to solve quantitative problems. However, all 4-year-
olds can verify outcomes using subitizing where set sizes are small enough.

A4. Three-year-olds do not typically attempt to verify the effects of a

o
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transformation, but they may be motivated to creale a measurement if
faced with two conflicting sources of evidence. If one source of information
suggests that the value of the objects has changed whereas another suggests
that it has not, 3-year-olds will attempt to determine the true effect of the
transformation where measurement is possible. Sophian (1987) showed
little spontaneous use of counting in relevant tasks for children of this age.

AS5. Three- and 4-year-olds have the capacity to store and recall pre- and
posttransformation values, but only 4-year-olds systematically do so.
Four-year-olds have the knowledge that it is important to do this in order to
determine the effect of a transformation. There is a sizable literature on
young children’s strategic use of their mnemonic capacity that indicates
that, even if 3-year-olds have the same capacity for remembering as older
children and adults, they have little knowledge about how to exploit that
capacity and thus, their untutored memory performance is poor (Brown,
Bransford, Ferrara, & Campione, 1983).

Q-Soar's behavior in simulating the training study is described in sections
that correspond to the problem spaces involved. References are made to the
example procedure in Fig. 7.1, so that the reader can keep track of both the
current subproblem that Q-Soar is attempting to solve and the arrangement
of the objects concerned. The description is presented using the experi-
mental procedure because it is a superset of the other two control
conditions. The actual behavior that Q-Soar produces during this proce-
dure, and its subsequent behavior on one of the test conditions, is presented
in the Appendix. (Recall that the cardinal-once group only experienced
Steps 1-2 and 6-7 and the no-cardinal group experienced only Step 1.)

Conservation Task Operations

To carry oul a conservation task, five basic processes are required These
correspond to Soar operators in the CONSERVATION problem
space: COMPREHEND-INSTRUCTION, CATEGORIZE-TRANSFORM-
ATION, DETERMINE-RESPONSE, RETURN-RESPONSE, and WAIT.

All operators process internal representations in working memory. These
representations correspond to aspects of the external situation to which the
model is attending. There is a focus of attention, determined partly by
external sources, such as the experimenter asking questions or drawing
attention to the experimental materials. It can also be determined by
internal processing, such as attention to individual items during counting.
The internal representations are in the form of annotated models (Lewis,
Newell, & Polk, 1989)—descriptions of attended aspects of the external
situation symbolically expressed as objects with parts, properties, and
relations to other objects. These models are manipulated by operators and
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augmented with knowledge from memory and {rom the external situation
via perception.

Each step in the experimental (and other) procedures is carried out in
response Lo an instruction or request from the experimenter; we refer to
these as instructions. When an instruction is perceived, its meaning must be
represented as an annotated model. This model is constructed by a
COMPREHEND-INSTRUCTION operator in the manner of an existing
system, called NL-Soar, which is implemented in the COMPREHEND
problem space; Lewis ct al. (1989) described this process. COMPREHEND-
INSTRUCTION operators produce a representation of a request called a
behavior-model object. In Step 1 of Fig. 7.1, for example, the child is
requested to count the row of circles. In this case, the COMPREHEND-
INSTRUCTION operator would produce a behavior-model object repre-
senting the operation measure, the argument circles, and the dimension
number. Thus, a behavior-model object is a child's representation to
himself or herself of what behavior should be carried out to achieve the
task. In general, the child is perfectly capable of behaving without such a
plan, but in the case of an experiment, he or she must represent {and
remember) the instruction to be carried out. These representations aiso play
a role in mediating the speed of acquisition of conservation knowledge.

Once the instruction has been comprehended and represented, Q-Soar
must still produce a response. To do so, it selects the DETERMINE-
RESPONSE operator. Q-Soar implements Steps 1 and 2 (and then Steps 3
and 4)in Fig. 7.1 with a single DETERMINE-RESPONSE operator, that is
augmented with the instructions represented on the behavior-model object.
If the response is not immediately available, then there will be an impasse
and other problem spaces will be selected to compute the response. When
the system has created a response that satisfies the instructions (such as the
value four for Steps 1 and 2), it selects the RETURN-RESPONSE operator
to output the answer and then waits for the next instruction by selecting the
WAIT operator.

Q-Soar’s first response to observing a transformation (Step 6) is to
categorize it. This is done before responding to posttransformation ques-
tions by selecting the CATEGORIZE-TRANSFORMATION operator. The
categorization process is described in a later section.

Response Determination

If the DETERMINE-RESPONSE operator in the CONSERVATION space
cannot immediately produce a response to the counting instructions of
Steps 1 and 2, there will be an impasse. The RESPOND space wili always
be selected when the DETERMINE-RESPONSE operator impasses, be-

-



JOBNAME:

b
1

PAGE: 335 SEBG: 12 Thu Dec 1 @B8:22:28 13834

t
© mxycemn/ati jopz/CLE 1 ea/GRP_book /JUB_s i man/DiV_chap?
i

7. COMPUTATIONAL THEORY 335

cause it contains the three operators that are required to create responses in
the conservation task: MEASURE, COMPARE, and RECALL. In the case
where Steps 1 and 2 have been comprehended as requiring a measurement,
the MEASUREMENT operator is selected. Depending on the number of
objects and their representation, either the QUANT-C or ESTIMATE space
is selected to carry out this measurement. That measurement is returned as
the result of the MEASURE operator and, in turn, it is also returned as the
result of the top-level DETERMINE-RESPONSE operator.

Once Q-Soar has created and returned a measurement for the circles and
squares, it perceives and comprehends the question “same or different
number?” in Step 5. The resulting DETERMINE-RESP ONSE operator will
be augmented with the instruction compare, the arguments circles and
squares, and the dimension number. Because this is the first time the
instruction has been encountered, there will be no immediately available
response and, in the resuiting subgoal, the COMPARE operator will be
selected in the RESPOND space. This operator tests whether or not the
values for the measurements of the two rows match, because only a same or
different response is required. In the current example, that processing will
be carried out in the QUANT-C space if a value {or that comparison is not
immediately available.

Once the comparison has been created and returned, and the transfor-
mation has been observed and categorized (Step 6 and lower panel of Fig
7 2), the experimenter asks, “Are there still N objects?” for each row (where
N is the number of objects in the row). These instructions are treated in a
similar way to Steps 2 and 4, by selecting a DETERMINE-RESPONSE
operator. However, the operator is now augmented with the operation
recall. If no answer to the question is immediately available, that operator
will impasse and the RECALL. operator will be selected in the RESPOND
space. The implementation of this operator differs when it is applied to
rows that have been transformed. The alternatives depend on the model
variant (Q-Soar-3 or Q-Soar—4} and training condition (experimental or
cardinal-once), as discussed in the next section. Responses to the “Are there
still N?” question with respect to an untransformed row (e.g., Step 7 in Fig.
7.1) are dealt with in the following way. Recall that Assumption 1 stated
that the numerical value of a row of objects will not change if the row is not
transformed. The value for the row in question is assumed to be the same
before and after the transformation of the other row. Q-Soar—4 is able to
recall the pretransformation value and return it as the answer to this
question. This is not the case for Q-Soar-3 (see Assumption AS). However,
even without retrieving the correct value with the RECALL operator,
Q-Soar-3 can correctly answer the question by requantifying the objects
This can be done by because because no row has more than four objects.
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1,1

Eflfcct Determination

The way that Q-Soar responds ta the “Are there still N?” question for
transformed rows is not only to produce a posttransformation value, but to
determine the effect of the transformation. The DETERMINE-EFFECT
problem space is selected if the RECALL operator impasses, because no
effect of the transformation is immediately available. In order to learn
about the effect of the transformation, the system must compare the pre-
and posttransformation values for the row. Also, some role must be
attributed to the transformation for the value of that comparative judg-
ment. This can be as simple as identifying it as the action that created the
posttransformation array. In other words, this process creates the knowl-
edge to answer the implicit question, “What change did the transformation
make to the number of objects?” This new knowledge states that, whenever
such a transformation is applied, the relation between the pre- and
posttransformation values that have just been computed will hold for the
dimension in question. For example, the response to Step 9 in Fig. 7.1 is
that a spreading transformation causes no change because it produces an
identical value to the one that existed before it was applied, namely four
squares in both cases.

Effect Determination in Q-Soar—4. (Q-Soar—4 determines the effect of
transformations in the same way for both the experimental and cardinal-
once conditions. Although Assumption A2 stated that children believe that
the value of a row will change when it is transformed, Assumption A3
stated that 4-year-olds have the knowledge that this can be verified when it
is possible to measure the materials before and after a transformation is
applied. This is the case in both of these conditions because of the small
number of discrete objects. Thus, in all cases, Q-Soar~4 makes a pre- and
posttransformation value comparison to determine the effects of observed
transformations.

Effect Dertermination in Q-Soar-3. Q-Soar-3 behaves differently in the
experimental and cardinal-once conditions. In the experimental condition
its behavior is like that of Q-Soar-4, due to Assumption A4. This
assumption stated that 3-year-olds do not readily engage in verifying a
transformation’s effect, but may be induced to do so if they are faced with
two conflicting sources of evidence, This is always the case with the
experimental condition. Before transformations, the two rows are in
one-to-one correspondence so equal trials have equal-length rows and
unequal trials have unequal-length rows. In other words, perceptual
information and quantitative information are not in conflict. However,
“rransformations on unequal trials vielded rows of the same length; equal
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trials involved rows of different lengths™ (Gelman, 1982, p. 212). Aflter
transformation, quantitative information, which was available via subitiz-
ing, and perceptual information were in conflict: Unequal rows were the
same length and equal rows were different lengths. This conflict leads
Q-Soar-3 to recall the pretransformation value it measured and check it
against the posttransformation value of the row.

In the cardinal-once condition, no such conflict exists. There is a single
row of objects that, when transformed, takes on a new visual appearance.
There is nothing in the visual array to suggest that the assumed change in its
numerical value should be doubted. Thus, -Soar-3 makes no attempt to
compare pre- and posttransformation values of rows. As with the untrans-
formed row, it answers the question “Are there still N?” by requantifying.
Because no comparison is made to the original value, no learning can take
place regarding whether or not the transformation has had any effect on the
numerical value of the row.

Effect Determination Operations.  There are two operators in the
DETERMINE-EFFECT space. The RECALL operator recalls a pretrans-
formation value for comparison to the posttransformation value. The
DETERMINE-EFFECT operator matches pre- and posttransformation
values for the transformed row as previously described. The process is a
simple match that tests whether or not the values are the same. A requested
determination of the magnilude or direction of the change will require
accessing quantification knowledge. The result of this match is returned by
the DETERMINE-EFFECT operator as the effect of the transformation,
and the basis of its determination {e.g., that pre- and postiransformation
values matched) constitutes an explanation. This will be the result of the
RECALL operator in the RESPOND space and, ultimately, the
DETERMINE-RESPONSE operator in the CONSERVATION space. The
chunks that are buiit when this new knowledge is returned enable immediate
retrieval of the effect of the current transformation. These chunks will fire
in response 1o selection of the DETERMINE-RESPONSE operator, letting
Q-Soar immediately return the effect and explanation of the transforma-
tion. This demonstrates the shift in conservation performance from empir-
ical examination of materials to direct explanation of the transformation’s
effects.

Quantification and Estimation

In the preceding sections, we showed how the acquisition of number
conservation knowledge in Q-Soar is founded on empirical processing,
whose results are then used by the effect determination process. In this

]
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section, we examine the quantilication and estimation abilities available to
Q-Soar that implement the measurement and comparison processes.

Quantification. The primary measurement capability that is possessed
by young children is quantification. This quantification subsystem, which
we call Quant-C, for “quantification in conservation,” includes only
capabilities that produce cardinal values for small sets of entities. Thus, it
includes subitizing and counting of small sets.

In cases where values are to be determined in terms of number, the
QUANT-C problem space may be selected to implement the measurement.
Selection of the space depends on two factors, The first is whether the
conservation property represented on the MEASURE operator suggests the
use of QUANT-C processes {e.g., in the case of discrete objects, but not
liquid). The second is the suitability of the representation for the applica-
tion of operators in the QUANT-C problem space.

Even in cases where the conservation property suggests Quant-C pro-
cesses for determining equivalence, the problem solver may still be unable
to use it. In order to select the QUANT-C space, the representation of
objects to be measured must be in the form of symbols representing discrete
objects that are in one-onto-one mapping (hereafter onto) with their
external referents. We assume such representations are only possible for set
sizes within the range young children can subitize: a limit of four objects.
Above this limit, 2 much looser one-info-one mapping (hereafter into) is
used. The process of subitizing in the QUANT-C space is not controlled by
an operator: it is simply that of creating an onto representation of up to
four external referents. This approach is based on the view that there is a
special code for the representation of discrete quantities that is primitive to
the architecture and that differs from the formal code used to communicate
about numbers with words such as three or symbols like 3. We call this
primitive representation the basic quantitative code (Newell, 1990) and
assume that it provides the agent with an ability to represent quantity in a
primitive form.

There are six operators in the QUANT-C space: ATTEND, INITIAL-
IZE, FETCH-NEXT, COUNT-NEXT, COMPARE, and MEMORIZE.
The ATTEND operator attends to the objects specified in the behavior-
model object and sets up an onto representation. All of the other operators
are involved only if counting and not subitizing is to be carried out. The
INITIALIZE operator selects 2 mark for identifying objects to be counted,
selects an initial word from the counting string to be used, and selects an
initial object to be processed. The COUNT-NEXT operator assigns a
selected count word to a marked object and, where cardinal responses
(Fuson, 1988) are to be returned, assigns that label to the cardinality of the
set. FETCH-NEXT obtains a next item to be counted, marks it, and obtains

—_———
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a next count word to be assigned. The COMPARE operator can be used to
test either the relative similarity or difference of values created by MEA-
SURE operators. The MEMORIZE operator carries out a deliberate act of
memorization on the final response to a pretransformation and posttrans-
formation instruction, so that the results are stored in long-term memory
and are available for the processes that determine the effect of the
transformation.

None of these operations can be directly applied to info representations.
However, one can count large collections of objects if perceptual and motor
operations can be carried out to serially map individual items onto their
external referents, thereby creating transitory onto representations for up to
four items at a time. If this cannot be done or if a decision is made against
doing so, the only recourse is to use estimation operations,

Preceptual Estimation. Perceptual estimation in the children modeled
by Q-Soar is unidimensional—the relative number of two numerous rows of
objects is determined either by length or by density, but not both. Siegler
(1981) showed that a child's ability to integrate more than one dimension to
solve a range of problems does not develop until around 8 years of age.
Thus, estimation in conservation settings is inaccurate, because one dimen-
sion is often inadequate for an accurate quantitative judgment.

The ESTIMATION problem space is selected to obtain values for
materials under a number of conditions Q-Soar may be requested to create
a relative quantity judgment where there are too many objects lo create an
onto representation. In this case, the model uses perceptual estimation, in
which the primary cue as to quantity is the length of the rows. A MATCH
operator carries out a type of one-to-one matching called end matching
(Kiahr & Wallace, 1976), that tests whether the end items of each row are
above or below the end items of the other row. If this is not the case, the
longer row is assumed to be more numerous. A MEMORIZE operator
stores the result of this processing, just as in the QUANT-C space.

Categorization

As mentioned earlier, Q-Soar categorizes observed transformations.® This
means that it identifies critical features that are common to individual
transformations, such as that all spreading actions move things further
apart irrespective of the objects in question. Chunks created from pro-
cessing in the DETERMINE-EFFECT problem space associate the new

4 The current version of Q-Soar does ot [ully implement this process. Instend, the structures
that would be created by an existing system calied AL-Soar (Miller & Laird. 1990) are fed into
working memory



HDBN&HE:

PAGE: 348 SESS: 12 Thuy Dec 1 B8:22:28 1894

bxgcommial%jcbz/CLSWiea/GRP_poek/dDB_s%mon/D[V_chaD7
|

340 SIMON AND KLAHR

effect with the category of the transformation, not to the specific instance.
As a result, invariance effects will be cued by any new transformation that
can be identified as a member of that category. This enables novel situations
to cue knowledge acquired about other members of the same category. Thus
we assume that all novices, especially young children, form concepls to
facilitate plausible generalizations about novel instances. Chunking models
this desirable behavior, as do some other methods of explanation-based
learning. As noted by Mooney (1991), categorization need not be limited to
a single dimension, but it should be sensitive to current goals. For example,
when confronted with studies of number conservation like Gelman's,
Q-Soar may “CATEGORIZE" spreading, compressing, piling, and distrib-
uting together because they have no numeric effect. In contrast, if the
concern is with spatial density, then compressing and piling would consti-
tute a category with the opposite effect of spreading and distributing. The
imposition of conceptual cohesiveness by goals or effects is related to ad
hoc categorization introduced by Barsalou (1983).

O-Soar selects the CATEGORIZE problem space when there is a
transformation represented on the state and the CATEGORIZE-
TRANSFORMATION operator in the CONSERVATION space cannot
retrieve a type for it. The categorization process identifies in the represen-
tation of the transformation a set of features that are predictive of a certain
classification. It is implemented as a recognition task. If a new instance is
not immediately recognized as a member of a known class, features are
progressively abstracted out of the instance description until the instance is
recognized as a known class member. If no class is retrieved, then a new one
is formed using the set of features in the new instance. For example, when
all the features common to all spreading transformations are present, and
none that are indicative of some other type of action (like compressing) are
represented, the transformation will be treated the same way that other
spreading transformations would be in the current context.

Learning Conservation Knowledge in Q-Soar

The preceeding subsections presented the problem spaces and operators that
comprise Q-Soar. How then do these components combine to create the
number conservation knowledge that is the result of the effective training
procedures? The answer is that they are called upon to contribute knowl-
edge as Q-Soar experiences impasses during problem solving. These im-
passes arise dynamically from the particular task that Q-Soar is working on
and the knowledge it brings to bear on each task at a given time Thus, the
conservation knowledge that the system has depends on what problems it
has tried to solve and what knowledge it had available when it tried to solve
them.
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For example, if the knowledge required to respond to the question about
the relative quantity of the two rows of objects in the initial array is not
available, an impasse will arise. Q-Soar will have already quantified the two
values, but no comparative value will exist. The resulting series of impasses
ground out in the selection of the COMPARE operator in the QUANT-C
space. The successful creation of that comparative value resoives the
impasse and creates a new piece of information that is available for later
instances of the same problem. This kind ol processing is repeated for every
impasse that the system encounters. Some of these chunks simply reduce the
amount of search that Q-Soar engages in on subsequent trials (such as
chunks that implement the instruction comprehension operators). Other
chunks, such as those that arise from COMPARE operators in the
QUANT-C space, not only reduce search but also directly contribute to the
ultimate conservation judgments the system makes.

The result of one such impasse is the chunk (hereafter the conservation
chunk), marked in the Appendix, that produces the conservation response.
Due to the explanation-based nature of chunking, some generalization will
occur with respect to the applicability of the chunk. Specifically, only
features that existed before the impasse arose can become conditions for
chunks. This is to ensure that an impasse for the same problem will not
recur. However, not all of the preexisting features will become conditions;
only those that are used to compute the result in the subgoal will be selected.
This means that the chunked result will be retrieved in a wider set of
circumstances than the one in which it was formed. However, it does not
mean that Q-Soar exhibits conserving responses after one trial. When
simulating human cognition, Soar builds chunks only for the results created
from the lowest goal in a subgoal stack. This bottom-up chunking causes
the architecture to exhibit a gradual progression from deliberate (search-
based) to automatic (recognition-based) behavior.

In thecase of Q-Soar, the conservation chunk ar first only implements the
response to the DETERMINE-EFFECT operalor because that was the
operator that led to the final impasse from which the chunk was created.
Only after a series of trials is there a single subgoal caused by the top-level
DETERMINE-RESPONSE operator. Then the information in the original
chunk becomes available to implement that operator and thus enable a
recognitional response to the effect of an observed transformation, asin the
case of a conserving child.

By acquiring conservation knowledge in this way, Q-Soar does not create
any single knowledge structure that represents 2 conservation concept.
Instead, it builds a series of chunks that, when appropriately cued, enable
the system to exhibit number conservation. In other words, rather than
learning concepts that define the features of conserving transformations,
Q-Soar acquires generalized knowledge about the effects ol observed
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transformations that is cued by other, similar transformations in similar
contexts. As already described, these pieces of knowledge are acquired
incrementally as problems are solved by the system with different amounts
of available knowledge. In this particular modeling study, Q-Soar was led
to acquire its conservation knowledge by the use of a training regime.
However, this was not a supervised concept-learning situation in which
preclassified examples of concepts are presented for the system to learn.
Q-Soar is never presented with the concept of conservation; it is merely
asked to solve a series of problems that were experimentally demonstrated
to result in the acquisition of conservation knowledge., These kinds of
problems can be encountered and solved without supervision and, as can be
seen in the next section, we ¢laim that Q-Soar should be capable of learning
conservation knowledge without training but at a slower speed than
demonstrated here.

TOWARD A FULL THEORY OF CONSERVATION

(-Soar successfully models the acguisition of conservation knowledge
attained by subjects in Gelman’s training study in an implementation within
Soar's unified cognitive theory. In this final section, we describe the
behavior of Q-Soar before and after training. We also describe what we
anticipate as the necessary steps toward a full theory of conservation in
other domains.

One can evaluate an enterprise such as that presented here in terms of
Piaget’s (1964) well-known criteria for “real” conservation:

But when T am faced with these facts {that Jearning of structures seems to obey
the same laws as the parural development of these structures], [ always have
three questions which I want to have answered before [ am convinced

The first question is, “Is this learning lasting? What remains two weeks or
a month jater?” If a strucrure develops spontaneously, once it has reached a
state of equilibrium, it is lasting, it will continue throughout the child’s eatire
life. When you achieve the learning by external reinforcement, is the result
lasting or not and what are the conditions for it to be lasting?

The second question is, “How much generalization is possible?” When you
have brought about some learning, you can always ask whether this is an
isolated piece int the midst of the chiid’s mental life, or if it is really a dynamic
structure which can lead to generalizations.

Then there is the third question, “In the case of each learning experience
what was the operational leve] of the subject before the experience and whait
more complex structures has this learning succeeded in achieving?”

To these three questions, we add a fourth: How can subjects {and
Q-Soar) learn so rapidly from a brief training study, when untrained
subjects take several years to acquire the same knowledge?
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Durability and Robustness of Learning

Witl respect to Piaget's first question, Q-Soar makes a specific theoretical
claim: A chunk, once learned, is always available, and will be evoked
whenever the context-specific information that was included in the original
chunk is recognized and encoded. For the Soar architecture, chunking is an
automatic acquisition mechanism that is applied to all processing that takes
place. Thus, by undertaking the processing that is induced by the externally
driven training procedure, the learning of conservation knowledge will
occur.

The empirical prediction associated with this claim is not straightfor-
ward. The general pattern of results with increasingly remote postiests is
that, for awhile, performance declines as a function of intervening time
between training and testing, but then performance improves as one would
expect with the natural acquisition of conservation. At present, we have no
principled explanation of this in terms of chunking.

Generalization

The second question refers to the specificity of learning from experience.
This is a well-established empirical fact and is predicted by the chunking
mechanism (Laird, Rosenbloom, & Newell, 1986). In the context of Q-Soar,
chunking predicts little generalization from learning about certain transfor-
mations of discrete objects to other transformations of different materials
(e.g., the pouring of water). Indeed, this is what one usually finds from
conservation training studies: little generalization to other kinds of quantity
conservation.

Transfer from small to large number tasks is achieved by the generaliza-
tion inherent in Soar’s chunking mechanism. The actual objects that are
measured in determining a conservation judgment are not tested when it is
retrieved from memory. There are tests for the kind of transformation and
the conservation property (in this case, number) and these delimit the scope
of transfer. If that were not so, Q-Soar would predict unrealistically fast
learning: to transformations of quantities that are not affected in the same
way as the one measured.

In addition, transfer is also limited with respect to continuous quantitics,
such as volumes of liquid. Acquiring knowledge about continuous quantity
is not addressed by Q-Soar. Nevertheless, having acquired conservation
knowledge based on small number measurement, a problem solver must
come to appreciate what is common to transformations like lengthening and
the pouring of liquids. This requires that these transformations be repre-
sented as actions that neither add nor remove any of the materials that they
manipulate. In other words, this is a problem of representation change. The
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child must move from domain-specilic characterizations of the effects of
transformation classes in terms of discrete number to representations where
the effect is separated from the dimension that it impacts. This would allow
commonalities between transformations that have a “more” or a “same”
effect to be noticed, irrespective of what it is that they are affecting. In their
account of the development of analogical reasoning, Gentner, Ralterman,
Markman, and Kotovsky (chap. 6,this volume) present a transition mech-
anism that is concerned with precisely this sort of representation change.

Finally, we suggest that the problem solving that enables the identifica-
tion of the common features of different transformations and materials can
best be described as a discovery process. The learner operates with a set of
expectations based on current knowledge. This will at some point create a
violation of the expected effects of a transformation. The learner’s task is to
generate a hypothesis of what caused that violation, to devise ways of
testing that hypothesis, and to integrate the results either into new hypoth-
eses or modified knowledge. Research on scientific reasoning (Klahr
& Dunbar, 1988), instructionless learning (Shrager, 1987), and analogy
(Gentner, 1983) provided good explanations of the nature of such pro-
cesses. Mediating factors in the effectiveness of that problem solving are the
selection and combination of features that are considered for inclusion in
the analysis (Bransford, Stein, Shelton, & Owings, 1981).

Operational Level and Structural Change

With respect to Piaget's third question, Q-Soar makes explicit statements
about the complex structures arising from the training of conservation
responses. These can be seen by examinations of Q-Soar-3 and Q-Soar-4
before and after training.

Q-Soar-3 and Q-Soar—4 Before Training. Before experiencing the three
conditions of Gelman’s training study, both versions of Q-Soar are able to
execute all the steps of the three experimental conditions. The only
difference between the two versions is that Q-Soar-3 does not start out with
the knowledge that the effects of transformations can be verified by
comparing pre- and posttransformation values. Apart from this difference,
both versions have all the described capabilities.

However, because neither variant has undergone any training or learned
about the effects of any transformations, both versions of Q-Soar fail all of
the conservation tests that Gelman used. Neither system can accurately
measure the large number of objects in the tests to yield the correct
comparative answers. They must use estimation, a process that results in the
assertion that a longer row contains more objects than a shorter row.
Finallv, both untrained variants of Q-Soar-3 and Q-Soar-4 are unable to
determine the effects of the transformations and so canpot state an



(0BNANE :

PAGE: 345 GSEGS: 12 Thu Dec 1 @8:22:28 1894

pxgcomp!alljobz/CLS_lea/GRPwpcck/JUBdsimon/DIV_chap7
S
t

7. COMPUTATIONAL THEORY 345

explanation. Before training, then, both are true nonconservers., We now
examine their behavior after training. Because the no-cardinal condition is
not expected to induce any change in behavior, we discuss only the results
of the other two conditions.

Q-Soar-3 After Cardinal-Once Trials. Without employing its memori-
zation capability to recall and compare pre- and posttransformation values,
Q-Soar-3 cannot learn anything about the numerical effect of observed
transformations. Thus, based on Assumption A2, it always assumes that
the value of the row changes. Because this is never the case in the
experiment, Q-Soar-3 is always wrong and it fails the conservation tests. As
can be seen in Table 7.1, 3-year-olds produced few correct responses.

Q-Soar-3 After Experimental Trials. As explained, the conflicting
information in experimental trials after a transformation induces Q-Soar-3
to recall and compare values in the same way as does Q-Soar-4. Thus,
Q-Soar-3 can construct a correct comparison and explanation from such
trials. These can then be recalled later, enabling it to pass the conservation
tests. The behavior of Q-Soar-3 after the experimental condition produces
correct responses and explanations, and is thus consistent with the pattern
of results in Table 7.1. Tt seems likely that the experience of this conflict and
the resulting recall and comparison of values provide the means by which
3-year-olds acquire the effect-verification knowledge we have assumed to be
available to 4-year-olds and that we provided for Q-Soar-4.

()-Soar-4 After Both Trials. Having produced a quantitative response
before a transformation (e.g., Step 4 in Fig. 7.1), Q-Soar-4 selects the
MEMORIZE operator to store the computed values in long-term memory.
Then, in the DETERMINE-EFFECT problem space, it selects the RE-
CALL operator to enable it to compare pre- and posttransformation values
to determine the effect of the transformation and create an explanation.
This knowledge can then be recalled in the tests, enabling Q-Soar-4 to pass
the conservation tests after experiencing both the experimental and cardinal-
once procedures. This pattern of results is also consistent with that in Table
7.1. The higher proportion of correct responses in the experimental group
may reflect the fact that not all 4-year-old children had acquired the
effect-verification knowledge that we assumed for Q-Soar-4. Those that
had not would be expected to perform less well in the cardinal-once
condition, just as was the case for 3-year-olds.

Learning Speed

We stated that Q Theory is designed to account for the natural development
of conservation, whereas Q-Soar simulaies only conservation learning in a
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single training study. Therefore, we should explain how the same processes
can learn quickly under experimental situations, and yet take a few years (o
reach the same point during natural development. Two obvious factors are
the differences in exposure and the availability of feedback. Intensive
exposure to important features and informative feedback are characteristic
of training studies, but neither of these is the case in unsupervised everyday
activity.

However, we suggest that the greatest influence on learning speed is what
we call the goal versus encoding interaction. A learner may activate the goal
of measuring the effects of transformations. Alternatively, that learner’s
processing may be in the service of some other goal, such as building towers
out of blocks. Even if the measurement goal has been activated, the learner
may not atlend to a property of the transformed materials that will reveal
any number-invariance knowledge, such as the spatial density of a pile of
blocks. Only if the child simultaneously has the goal of measurement and
the encoding of number as the feature to be measured will he or she acquire
number conservation. Well-designed training studies, such as Gelman's,
foster just such optimal conditions, and in Q-Soar these aspects are explicit
in the representation of comprehended instructions. Similar directiveness
appears to be provided for the child in relatively natural mother—child
interactions, as set up by Saxe, Gearhart, and Guberman (1984). We know
of no evidence to suggest that the goal and property combination optimal
for number conservation learning would be chosen by the child any more or
less often than any other, although it is evident that children often set
themselves the goal of counting things. Thus, three of the four types of
opportunities for learning number conservation knowledge would not
produce conservation learning in Q-Soar.

CONCLUSION

In this chapter we presented Q-Soar, a computational model of the
acquisition of conservation knowledge as reported in a single experimental
training study. This is the first such account to present a set of mechanisms,
constrained by a unified theory of cognition, that can be shown to acquire
conservation knowledge. The central concept in our theory is that conser-
vation learning is premised on young children’s ability to make and use
measurements. These measurements are used to make conservation judg-
ments—evaluations of the quantitative effects of observed transformations.
Therefore, the first kinds of conservation processing that children carry out
are empirical. Young children's measurement capabilities are limited to
small, discrete quantities and so the first kind of quantity for which
vonservation judgments can be made is number. The results of these



PUBNF\HE:

PAGE: 347 SESS: 13 Thu Dec 1 ©8:22:28 1884

Expcomp/all} obz/CLS_tea/GRP_book/.J08_s imon/OIV_chen?

7. COMPUTATIONAL THEORY 347

number conservation judgments are turned, by a learning mechanism, into
new conservation knowledge Due to the nature of the learning mechanism,
that new knowledge applies to more cases than just Lhe one it was
constructed [rom. When similar new number conservation problems are
attempted, the new knowledge is immediately retrieved and no effect-
determination is required.

Thus, we demonstrated a developmental shift where the child moves from
empirically determining the effect of transformations via measurement, to
making direct inferences about the necessity of conservation based on prior
knowledge. This reverses the logical relationship between measurement and
conservation that existed in Piaget’s theory and now makes measurement a
prerequisite for conservation learning. We also identified transformations
involving small discrete collections as the learning events that children use
to acquire number conservation knowledge. This opposes Piaget's view that
conservation is a domain-independent principle that children acquire, by
demonstrating that it arises from and initially applies only to domain-
specific experiences with transformations relating to number. Furthermore,
we demonstrated that Soar's chunking mechanism is sufficient to account
for significant developmental transitions, such as the acquisition of number
conservation knowledge. This challenges the Piagetian view that develop-
mental change mechanisms are distinct from simple learning mechanisms.
Chunking in Soar began as a model of practice effects in human learning
and has since been extended to a wide range of cognitive phenomena (Lewis
et al., 1990).

Finally, we showed that not only can Q-Soar account for the rapid
learning observed in the Gelman (1982} training study, but also, without
modification, it may be able to explain the slower, more opportunistic
acquisition of invariance knowledge that is characteristic of a young child’s
everyday unsupervised learning experiences. Much remains to be done
before we can claim that Q-Soar gives a complete account of the acquisition
of conservation knowledge There exist many other training studies (Field,
1987) whose results should also be explicable by the mechanisms of Q
Theory. The transfer to conservation of continuous quantity remains to be
explained, and an account of natural conservation development is still an
important goal. Nevertheless, we believe that the work reported in this
chapter represents progress in the creation of computational theories of
conceptual development.

APPENDIX: SAMPLE Q-SOAR RUN

Here we illustrate how the problem spaces generate behavior when Q-Soar
is presented with a task. The followiny trace is an abstracted version of the
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steps presented in Fig. 7. 1, which show Q-Soar in operation for the [irst
time. The second trace shows the model’s successful performance on a
conservation test.

The traces retain only the critical information, showing the problem
spaces (denoted by P) and operators (denoted by Q) that are selected in
response to the impasses that arise. An impasse is shown by processing in a
subgoal (G) being indented under the operator that produced the impasse.
When an impasse is resolved, processing continues at the highest level at
which an operator can be selected. The operators are augmented with the
instruction that led to their initiation or by the objects on which they are
focused.

External arrays and instructions are depicted to the right of the trace in
lower case and Q-Soar’s output is given in the center in upper case. The
trace is marked with ** at the points in the run where the key conservation
chunk is acquired and where it is evoked. Chunks are created continually
throughout the run (one or more when returning from each impasse), but
these are not shown.

ABSTRACTED RUN OF -SOAR DURING {TS FIRST OPERATION

0000
nunn
P: (CONSERVATION)
How many circles?
O {COMPREHEND-INSTRUCTIONS)
O (DETERMINE-RESPONSE)
= = > G:(OPERATOR NO-CHANGE)
i (RESPOND)
O: (MEASURE)
==>0 (OPERATOR NQO-CHANGE)
P (QUANT-C})

O: ((CIRCLE) ATTEND)
O: (INITIALIZE)
O: {(CIRCLE) COUNT-NEXT) Counting item: ONE
O: ((CIRCLE) FETCH-NEXT)
O ((CIRCLE) COUNT-NEXT) Counting item: TWO
O ((CIRCLE) FETCH-NEXT)
O: ((CIRCLE) COUNT-NEXT) Counting item: THREE
O: ((CIRCLE) FETCH-NEXT)
O: ((CIRCLE) COUNT-NEXT) Counting item: FOUR
O: (MEMORIZE})
O (RETURN-RESPONSE) Answer FOUR
How many squares?
O: (COMPREHEND-INSTRUCTIONS)
O: (DETERMINE-RESPONSE)
= = > G:(OPERATOR NO-CHANGE)
P: (RESPOND)
O: (MEASURE)
= = > G:{OPERATOR NO-CHANGE)
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P (QUANT-C)
O: ((SQUARE) ATIEND)
O: (INITIALIZE)
©: ((SQUARE) COUNT-NEXT) Counting item: ONE
0: ((SQUARE) FETCH-NEXT)
O: ((SQUARE) COUNT-NEXT) Counting item: TWO
Q: {{SQUARE) FETCH-NEXT)
0O: ((SQUARE) COUNT-NEXT) Counting item: THREE
O: ((SQUARE) FETCH-NEXT)
O: ((SQUARE) COUNT-NEXT) Counting item: FOUR
O: (MEMORIZE)
O: (RETURN-RESPONSE) Answer FOUR
Same or different number?
O: (COMPREHEND«INSTRUCIIONS)
O: (DETERMINE-RESPONSE)
= = » G:(OPERATOR NO-CHANGE)

P: (RESPOND)
O: (COMPARE)
= = > G:(OPERATOR NO-CHANGE)
P: (QUANT-C)
O: (COMPARE)
O: (RETURN-RESPONSE) Answer SAME
0000
gaot
Still four circles?

O: (CATEGORIZE-‘TRANSFORMATION)
O (COMFREHEND-INSTRUCHONS)
O: (DETERMINE-RESPONSE)
= = » G{{OPERATOR NO-CHANGE)
P: (RESPOND)
O: (RECALL)
O: (RETURN-RESPONSE) Answer FOUR
Still four squares?
O: (COMPREHEND-INSTRUCTIONS)
O: (DETERMINE.-RESPONSE)
= = > G{OPERATOR NO-CHANGE)

P: (RESPOND)
O: (RECALL)
= = > G:(OPERATOR NO-CHANGE)
P: (DET-EFFECT)
o (RECALL)
o (DETERMINE-EFFECT)""
O: (RETURN-RESPONSE) Answer FOUR

Same or different number?

O; (COM?REHEND-INSTRUCHONS}
o {DEIERMINE—RESPONSE)
= = > G:(OPERATOR NO-CHANGE)

P: (RESPOND)

O: (COMPARE)
O: (RETURN-RESPONSE) Answer SAME

VALUES MATCH BEFORE AND AFTER THIS TRANSFORMATION

End - Explicit Haklt
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The following rule paraphrases the chunk that Q-Soar learns at the point marked *° in this
run and that applies at the point marked *® in the {ollowing trace, Pattern-match variables
are preceded by question marks.

If Goal ?G1 has State 751 and Cperator 701,
and State ?S1 has Translormation 7I1 marked on i,
and Transformation 7T1 is Spreading,
and Operator 701 is Determine-Response,
Then mark State 751 with Effect ?E1 of Transformation 711,
where 7E1 states that 7T1 has the effect NONE on the propeny
Number, because pre- and posttransformation numerical values matched

Q-SOAR RUN ON A CONSERVATION TEST AFTER LEARNING

00000000
gogaoano

Same or different number?

P: (CONSERVATION)

O: (COMPREHEND-INSTRUCTIONS)
O: (DETERMINE-RESPONSE)
= = > G:(OPERATOR NO-CHANGE)

P: (RESPOND)
O: (COMPARE)
= = > G:(OPERATOR NO-CHANGE)
P: (ESTIMATE)
o: (MATCH-1-10-1)

One-10-one end-match: SAME
O (MEMORIZE)
Q: (RETURN-RESPONSE) Answer SAME

00000000
IRIRRIRIBIRIRY

Same or different number?
Explain
O: (CATEGORIZE-TRANSFORM)
O: (COMPREHEND-INSTRUCTIONS)
O: {DETERMINE-RESPONSE)"*
O: (RETURN-RESPONSE) Answer SAME
VALUES MATCH BEFORE AND AFTER THIS TRANSFORMATION.
End — Explicit Halt
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