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1. Introduction

This chapter focuses on the conceptual domain known in developmen-
tal psychology as “conservation of guantity”. Acquisition of quantity
conservation constitutes a fundamental part of cognitive development,
and hundreds of studies have been published in which children’s “nat-
urally acquired”" conservation concepts are assessed, or in which at-
tempts are made to teach such concepts to children. We review some
of the major regularities emerging from this literature, and then we
describe one particular training study in detail. Following that, we de-
scribe Q-S0AR, a computational model that simulates the acquisition
of number-conservation knowledge.

The particular study that we examine is Gelman’s {1982) training
of three and four year old children, and we use Q-Soar to model the
learning behavior exhibited by children in this study. This model is
constrained by a unified theory of cognition, which is the SoAR archi-
tecture (Lewis et al., 1990; Newell, 1990). The version of Q-S0AR to be
described in this chapter accounts only for the learning that occurs in
Gelman's study. However, we will suggest that chunking, SOAR’s leamn-
ing mechanism, which is the only learning process included in Q-SoAR,
could account for the acquisition of all conservation knowledge.
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Qur study of conservation leamning and human development can be
viewed as an instance of research in concept formation. The nature of
knowledge acquisition in cognitive development is consistent with the
concerns of work on incremental processing. In addition, the feedback
that is naturally available during development rarely has the explicit na-
ture that is assumed in supervised learning models (Fisher & Pazzani,
Chapter 1, this volume). In fact, studies of conservation training (such
as Gelman's) demonstrate that more explicit forms of feedback consider-
ably accelerate the acquisition of conservation concepts. However, even
under training conditions, the type of learning that is discussed here
is in line with theory-driven approaches to concept formation {Fisher
& Pazzani, Chapter 6, this volume), notably the construction of ad hoc
concepts (Barsalou, 1983) and ezplanation-based methods (Mooney, this
volume). We now turn our attention to conservation learning, and then
to the particular system that we have developed to model it.

2. The Phenomenon of Conservation

A central tenet of Piagetian theory (Piaget, 1952, 1070) is that the
acquisition of conservation knowledge is a crucial step in the child’s
development of mature conceptual capabilities. Piaget (1968, p. 978)
defines conservation as follows:

We call “conservation” (and this is generally accepted) the in-
variance of a characteristic despite transformations of the object
or of a collection of objects possessing this characteristic. Con-
cerning number, a collection of objects “eonserves” its number
when the shape or disposition of the collection is modified, or
when it is partitioned into subsets.

Children’s knowledge about the effects of transformations must be em-
pirically derived in the first instance because all transformations have
different effects on different physical dimensions of the transformed ma-
terial. For example, whether or not the pouring transformation con-
serves quantity depends on what is poured and what is measured:

If we pour a little sugar into red sugar water, we do not change
temperature, amount, height, width, or redness, but we increase
sweetness. If we add more of an identical concentration, we
do not change temperature, redness or sweetness; however the
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amount increases, as does liquid height, but not width (in a rigid
container). On the other hand, if we add water, we increase
two extensive quantities (amount, liquid height), reduce two in-
tensive quantities (redness, sweetness), and leave one unchanged
(temperature) (Klahr, 1982, pp. 68-69).

Therefore, a central component of what must be learned, either in train-
ing studies or “naturally acquired” by the child outside the laboratory,
are the linkages between transformational attributes and their dimen-
sional effects as measured in a wide variety of contexts.

The centrality of conservation concepts to most theories of cognitive
development has produced a vast database of empirical results. Nev-
ertheless, a computational model that can account for the regularities
has yet to be fully specified. There have been both structural and
processing accounts of the knowledge used by a child who “has” con-
servation, as well as global characterizations of the acquisition of that
knowledge, such as Piaget’s assimilation and accommodation processes,
Klahr and Wallace’s (1976) time-line processing, and Halford’s (1982)
levels of cognitive systems. However, neither these nor any other ac-
counts have completely stated a set of operations and their interaction
with a specified learning mechanism and shown this to produce the pat-
tern of behavior observed in children acquiring conservation knowledge.

Q-SoAR is a model of the acquisition of conservation knowledge de-
signed to meet several desiderata for computational models of develop-
mental phenomena:

1. Such models should be based on a principled cognitive architecture,
rather than as a set of arbitrary and ad hoc mechanisms. For Q-
SoAR, the architecture is SOAR, to be desciibed in Section 5.

2. Computational models should be constrained by the general regu-
larities in the relevant empizical literature. There are a number of
such regularities, i.e., findings that are consistently reported and for
which there is little or no disconfirming evidence.

(a) Young children in the three to four year age range can consis-
tently obtain accurate specific quantitative values for small sets
of objects (up to four) (cf. Fuson, 1988).

{b) Young children in this age range cannot consistently obtain ac-
curate specific quantitative values for large sets of objects (more
than five or six) (cf. Fuson, 1988).
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(c) Children from three years of age are able to correctly produce
a cardinal value for thriee or four items in under one second by
the process of subitizing? (Campbell, Cooper, & Blevins-Knabe,
1988; Chi & Klahr, 1975; Svenson & Sjoberg, 1983).

(d) Subitizing has a limit of four items in these children (Campbell
et al., 1988; Chi & Klahr, 1975; Svenson & Sjoberg, 1983).

(e) Childien who have not fully acquired conservation knowledge
can still correctly answer conservation questions when they can
obtain a specific quantitative value for the objects concerned
{cf. Siegler, 1981).

(f) Children who have not fully acquired conservation knowledge
do not correctly answer the conservation question when they
cannot obtain a specific quantitative value for objects concerned
(<. Halford & Boyle, 1985).

(g) Young children can respond correctly and provide explanations
for tests of conservation of quantity when discrete materials are
used {such as counters or cookies) before they can do this on
tests involving materials with continuous properties, such as

columns of water or areas of space (cf. Gelman & Baillargeon,
1983).

3. Computational models should generate the same behavior as do the
children in the specific domain being modeled. More specifically,
they should compute an approximation of subjects’ final knowledge
states, given an approximation of initial states and external inputs
like those imposed by experimental and/or natural conditions.

Although more than 20 years have passed since Klahr and Wallace
(1970) proposed an information-processing approach to cognitive devel-
opment, as yet there are no computational models of any major de-
velopmental transitions that satisfy all of these criteria. The Klahr
and Wallace work on the development of quantitative concepts (Klahr,
1973, 1984; Klahr & Wallace, 1973, 1976) consists of verbal descriptions,
flow charts, and production-system models of distinct performance lev-
els in the general domain of quantitative reasoning, including subitizing,
counting, estimation, class inclusion, transitive reasoning, and quantity
conservation. However, with respect to transition processes, their most

1. Subitizing is a fast and accurate process of determining the numerosity of small
sets of entities,
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fully developed model (Wallace, Klahr, & Bluff, 1987) goes only as far
as a partially specified architecture for supporting developmental tran-
sitions.

More recent computational accounts of developmental phenomena
have been of two kinds:

1. One type of account is highly constrained by data from empirical
studies of children’s acquisition of knowledge in a domain, but the
computational model itself is not constrained by any theoretical prin-
ciples. Instead, it is based on pragmatic decisions about how to
implement a set of assumed mechanisms (e.g., Siegler, 1991).

2. The other type of account is based on a very broad set of theoretical
assumptions that are consistent with a wide range of specific imple-
mentations, such as the adaptive production system used by Halford
et al. (1991) to model the acquisition of transitive inference or the
connectionist model used by McClelland (1991) to model the acqui-
sition of balance scale rules. Computational models of this type,
while suggesting interesting learning mechanisms, tend to be rela-
tively unconstrained by any particular empirical results on children’s
knowledge acquisition.

The purpose of our approach is to formulate a model that is tightly
constrained by both a general theory of the cognitive architecture and a
specific set of empirical results. Q-SoaR’s challenge is to demonstrate
that it can model the learning reported in Gelman's {1982} training
study, which we describe next. The further issue of explaining the gen-
eral developmental regularities listed above is addressed in the final
section of the chapter.

3. A Training Study

In constructing a simulation of training studies, we were faced with the
choice of modeling either our own arbitrary view of the essential prop-
erties of a typical training situation, or one specific training situation
chosen from the vast conservation training literature. The problem with
the former choice is that there is no “typical” training study. Detailed
examination of the literature on conservation training studies reveals
that they vary along so many potentially relevant dimensions that it is
nearly impossible to get agreement even on a prototypical training study,
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let alone a set of defining properties. For example, Field's (1987) review
organizes a collection of 25 recent conservation training studies with
preschoolers along nine dimensions and three theoretical orientations.?
Without any principled basis on which to construct a typical study, we
chose to simulate a specific training study with well-defined procedures
and clear quantitative outcomes.

3.1 Gelman's Training Procedure

As noted, we chose a training study reported by Gelman (1982) in which
three and four year olds were trained in a brief session using small
collections of discrete objects (N = 3 — 4) in both equivalence (two
rows of equal number) and inequivalence (two rows of unequal number)
relations, and in which the transfer test included both small (N = 4~5)
and large (N = 8 — 10) collections. Gelman trained one group and used
two types of control groups. Children in the Experimental group were
trained with two types of collections in counterbalanced order. Half the
children were first shown an equivalence relation (two rows of four items
each), and the other half were first shown an inequivalence relation (one
row of four and one row of three). In both equivalence and inequivalence
collections, the items were initially placed in one-to-one correspondence.

For each type of collection there were nine steps, as illustrated in
Figure 1: (1) The display was presented in one-to-one correspondence
and the child was instructed to count the number of items in one of the
rows. (2) That row was covered by the experimenter and the child was
asked, “How many are under my hands?” (3) The child was instructed
to count the number of items in the other row. (4) That row was cov-
ered by the experimenter and the child was asked, “How many are under
my hands?” (5) The child was asked to judge whether the two uncov-
ered rows contained “the same number or a different number"” of items.
(6) While the child watched, the length of one of the rows was spread or
compressed. (7) The experimenter pointed to the altered (or unaltered)
row and asked, “Are there still N here?” (8) The experimenter pointed
to the other row and asked the same question. (9) The child was asked

2. The procedural dimensions were design, pretest, training, materinls, reinforce-
ments, verbal rule instruction, post-test, justifications, and delnyed post-test.
The theoreticel orientztions were specific experience, copnitive readiness, and
perceptual readiness. Space does not permit an elaboration of these “guiding
models”, as Field calls them, but it is clear that training studies vary widely
along both procedurnl and theoretical dimensions.
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STEP INSTRUCTION DISPLAY

Count e
1
How Many 7
2
3 Count
4 How Many 7

5 Same or Different Number ?

6  (Child WatchesTransformation)

Stiil Four ? ——

Still Four ? it

Same or Different Number ?
9 Explain

Figure 1. Graphical representation of the BExperimental procedure.
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whether the pair of rows had the same number or a different number
of items, and to explain his/her judgment. All children answered the
questions above correctly (except for one three year old who needed a
slight extra prompt).

Gelman used two control groups. Children in the Cardinal-Once
group were exposed to only one row (of three or four items). For that
one row, they were exposed to steps 1-2 and 6-7 listed above. (Each
row was altered four times to provide a comparable number of counting
trials between the Experimental and control groups.) The other control
group (No-Cardinal) simply counted single rows of three or four items,
but the children in that group were not asked to “indicate the cardinal
value rendered by the count”.

3.2 Conservation Test

Immediately following the Experimental or other procedures, conserva-
tion tests were administered. Each child was given four different con-
servation tasks (large or small set size, and equal or unequal numbers
of items in the two rows). Small sets included either four and five or
five and five items, and large sets included either eight and ten or ten
and ten items.

The order of presentation of large and small set sizes was counter-
balanced as was the order of conservation of equality and inequal-
ity tasks within a set-size range. The equal arrays were equal in
length prior to the transformation and unequal in length after
being transformed. The reverse was true for the nonequivalent
arrays: before being transformed they were unequal in length
and then equal in length after the transformation. The conserva-
tion trials were run in the standard way older children are tested,
and included requests for explanations. Likewise, children were
discouraged from counting. (Gelman, 1982, p. 213)

Because children were discouraged from counting, and because one or
both of the rows had at least five itemns, and because children of this
age do not count beyond three or four items very reliably (Fuson, 1988),
it is likely that the equivalence (or non-equivalence) of both large and
small arrays was established by one-to-one correspondence.
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Table 1. Proportion of correct conservation judgments (over all four judgments
and all subjects) in each condition, derived from Table 1 in Gelman

(1982).
Age & Ser Si1zB Txp'l, Carp'L-OncE No-CaARD'L
(n=32) (w=24) (n=16)
3’s ON SMALL SET SIZE 71 11 13
4’s ON SMALL SET 5i1z8 75 58 16
3's ON LARGE SET BIZE 72 8 0
4’s oN LARGE SET SiZE 65 34 13
OVERALL THREES 71 9 6
QVERALL FOURS T0 46 15

3.3 Resulis

For both the large and small sets, there was almost no difference in the
equal and unequal set sizes, so those results will be collapsed in the
following discussion. Table 1 shows the overall proportion of correct
judgments on conservation tasks. The effect of condition is striking:
overall, the Experimental groups passed about 70% of the conservation
trials, compared to passing rates from 0% to 15% for the “untrained”
(No-Cardinal) groups. Trained threes and fours did equally well on large
and small sets.

The interesting difference between the threes and fours occurred in the
Cardinal-Once groups. For threes, Cardinal-Once training had no effect,
but for fours it had a substantial effect when tested on both small and
large set sizes. This is important, because the children in the Cardinal-
Once group were trained only in identity conservation (transforming
a single row), rather than equivalence conservation {transforming one
of a pair of rows).? That is, they were never trained to notice that
the relation between two different collections remained the same under
a perceptual transformation, nor could they use one-to-one correspon-

3. See Klahr (1984) for a full discussion of the difference between identily couser-
vation (IC) and equivalence conservation (EC). Note that Klakr's account of the
acquisition of conservation rules is presented entirely in terms of the simple 1C
situation.
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Table 2. Reference to transformation or one-to-one correspondence of Gel-
man's explanation categories.

TRANSFORMATION ONE-TO-ONE

IRRELEVANT TRANSFORMATION %
ADDITION/SUBTRACTION %
Intriat EQUALITY /INEQUALITY X
ONE-T0-ONE CORRESPONDENCE X

dence to reason about the effects of the transformations to which they
were exposed. Instead, they could only learn that the initial and final
cardinal value of a collection remained unchanged under certain kinds
of transformations (i.e., spreading and compressing). Apparently, many
four year olds, though few three year olds, were able to learn about
transformations without the further help of one-to-one correspondence.

Gelman’s categorization of children’s explanations for their correct
responses are presented in Table 2 in terms of (our interpretation of)
whether the explanation makes reference to the transformation or to
one-to-one correspondence. (Gelman gives examples of two categories:
Irrelevant transformation (“They just moved.”) and Addition/Subtrac-
tion (“You need another one to make them the same.”) explanations.
Initial equality/inequality of number explanations presumably stated
that the original value still held, while the content of One-to-One Cor-
respondence explanations is-obvious. The majority of the children’s
explanations referred to the transformation, and there were many more
of these transformationally referenced explanations than there were ex-
planations in terms of one-to-one correspondence. More specifically, for
the Experimental threes, Experimental fours, and Cardinal-Once fours,
the proportion of transformationally referenced explanations was 61%,
81%, and 65%, respectively, while for the same groups, one-to-one cor-
respondence was used for only 21%, 9%, and 15% of the explanations.

Three year olds did not benefit from Cardinal-Once training, and
four year olds in the Experimental group benefited more than did their
age-mates in the Cardinal-Once group. Rather than attribute these dif-
ferences to the role of one-to-one correspondence, we note that subjects
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in the Experimental group, but not in the Cardinal-Once group, got
repeated exposure to observations of the following transitive relation.
When, for example, two Tows of objects have the same number, and af-
ter spreading the transformed row has the same number as before, then
the untouched row and the transformed row still have the same number
of objects.

Note that it is not difficult for the child to compute the effect of
the transformation. TFirst, each set was counted before and after the
transformation for the Experimental trials, rendering one-to-one match-
ing redundant. Second, in Experimental trials, the pre- and post-
transformation information is visible in the form of a transformed and
an untransformed row after the transformation has taken place. How-
ever, in the Cardinal-Once trials, memory of the pre-transformation
information is always required to compute the transformation’s effect.
All of the three year olds and some of the four year olds apparently
needed this additional information (and reduction of processing) that
was provided to the Experimental group.

4. A Theory of Number Conservation Knowledge

We can summarize our view of the important difference between the
Experimental group and the Cardinal-Once group as follows. Subjects
in the Experimental group were exposed to equivalence (or inequiva-
lence) conservation trials in which they observed and encoded an ini-
tial quantitative relation between two collections, and then observed
a quantity-preserving transformation on one of the collections. They
then requantified both collections and noted that the relation had not
changed. In contrast, subjects in the Caz dinal-Once group, because they
were dealing with only one collection, rather than two, were in an iden-
tity conservation situation. That is, they had to judge, after observing
a spreading or compressing transformation, whether the quantity fol-
lowing the transformation was the same as the quantity preceding it;
they could not simply requantify and compare the two rows.

In both situations, acquired knowledge stemmed primarily from the
discovery that certain types of transformations have no effect on the
numerosity of an object set, even though the transformations may affect
other properties, like the spatial density or length of the set. This
conclusion is independent of the number of objects in the set that was
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measured when the new knowledge was created. In other words, what
was learned was a characterization of the quantity-preserving aspects of
the transformation in question.

(3-Soar was built to model this piece of knowledge acquisition. In
order to do this, the system must be able to specify:

1. The knowledge state prior to the training (i.e., a non-conserving
child);

2. The encoding of the collection(s) prior to transformation. This will
include salient features such as number, length, and density, as well
as other features that may ultimately be irrelevant for the task at
hand;

3. The encoding of the relation between collections (for the Experimen-
tal group);

4. The encoding of the collection(s) following transformation;

5. The encoding of the physical aspects of the transformation (e.g.,
salient motion, how objects were moved, how many were moved,
direction of movement}; and

6. New knowledge acquired from repeated trials of the kind presented
to both the Experimental group and the Cardinal-Once group.

The model will have two variants, and each variant will be exposed to
the three kinds of stimulus presentations (corzesponding to the Experi-
mental, Cardinal-Once, and No-Cardinal groups): Q-SoAnr-4 will model
the four year olds, who learn from both the Experimental manipulations
and the Cardinal-Once manipulations. Q-S0AR-3 will model the three
year olds, who learn only from the Experimental condition.

This set of general hypotheses about the essential mechanisms in-
volved in the child’s acquisition of number conservation can be called Q
Theory, to distinguish it from Q-SoAR, which conjoins Q Theory with
the assumptions of a particular cognitive architecture (SoAR) to form
a more complete operational theory. A full theory of conservation will
ultimately contain assumptions about the nature of the environments
in which development takes place. Indeed, it is the lack of justifiable
assumptions that can be made about naturally occurring conservation
experiences that forces us to focus entirely on training studies.
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5. The SoAR Architecture

This section describes the relevant aspects of the SoAR architecture.
More detailed accounts of it exist elsewhere (Laird, Newell, & Rosen-
bloom, 1987; Laird, Swedlow, Altmann, & Congdon, 1989; Newell,
1990). Besides being an operational architecture, SOAR is also a theory
of cognition that has been shown to explain a wide variety of psycho-
logical phenomena. No attempt can be made to desciibe that wider
background here (cf. Lewis et al.,, 1990; Newell, 1990).

All tasks are formulated in SOAR as search in problem spaces, where
operators are applied to states in an attempt to attain a goal state.
Problem spaces can be thought of as packages of knowledge about dif-
ferent tasks. The operators within a given space (and knowledge about
constraints on legal states) define the problem solver’s competence for
a task. For example, a complete problem space for the Missionaries and
Cannibals puzzle contains the necessary operators to carry out moves,
knowledge about the goal state, and knowledge about legal and illegal
moves. Problem solving proceeds sequentially by decisions that select
problem spaces, states, and operators. This processing gathers knowl-
edge from a long-term recognition memory that is implemented as a pro-
duction system. This memory matches structures in working memory
and retrieves knowledge that elaborates the existing state and suggests
preferences for the next step to take.

If SoAR cannot malke a decision, an impasse occurs. In this case, SOAR
automatically generates a subgoal in which a new problem space can be
used to find the required knowledge. A major reason that SoAR exhibits
the impasse and subgoal pattern is that not all of the knowledge required
to carry out a task can be searched for within a single problem space. For
example, should the goal arise in the Missionaries and Cannibals context
to explain why the boat does not sink, there will be no knowledge in
the problem space to implement that process. In 1esponse, an impasse
will arise and in the 1esulting subgoal, SoAR will select a problem space
for solving such an explanatory problem, since this is a different task
requiring different knowledge. Once that knowledge is found, subgoals
are resolved and processing continues where it left off (Newell, 1990).

SoaR has a single learning mechanism, called chunking, that learns
new productions, or chunks, for resolved impasses. When similar situa-
tions are encountered, the knowledge generated by the previous subgoal
processing is retrieved automatically so that the impasse is not recre-
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ated. The chunk will apply in a wider set of circumstances than the ex-
act conditions under which it was created. This is because the chunking
mechanism carries out an analysis that is a form of explanation-based
learning (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney,
1986G; Rosenbloom & Laird, 1986; Mooney, this volume) to determine
the critical features of the situation that led to the creation of the new
knowledge. In future situations these act as cues to make the new knowl-
edge available. The behavioral implication of chunking is that SoAR ex-
hibits a shift from deliberate to automatic processing as the situations
that it encounters become increasingly familiar. In other words, knowl-
edge becomes compiled from search-based retrieval to recognition-based
retrieval (Anderson, 1987; Rosenbloom & Newell, 1986).

6. The Acquisition of Number Conservation Knowledge

The knowledge and processes that enable Q-SoAR to acquire number
conservation knowledge are implemented as a set of problem spaces
that are depicted in Figure 2. The figure shows the problem spaces
that are selected to carry out processing in response to given deficien-
cies in available knowledge; these deficiencies are stated as labels on
the downward-pointing sides of the arrows. Once sufficient knowledge
is returned (as depicted by the upward-pointing side of the arrows), the
original processing can continue. The new knowledge becomes imme-
diately accessible on later occasions in the form of chunks. The top
panel depicts the knowledge required to interpret task instructions and
to establish initial values before a transformation is applied. The lower
panel depicts the knowledge involved in determining the quantitative
effects of transformations.

The figure also distinguishes between task-motivated problem spaces
(unshaded) and theory-motivated problem spaces (shaded). The un-
shaded spaces contain those operations that any task analysis of the
training studies would deem to be necessary for its successful comple-
tion. These processes include the ability to understand instructions,
create responses, and determine zelative or absclute values for the ob-
jects used in training and testing. The shaded problem spaces contain
operations that we, as theorists, assert are necessary to enable the cog-
nitive architecture, SOAR, to achieve the behavior and learning that
constitute the attainment of number conservation as shown by children
in the three to four year old age range.
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Pre-Transformation
Phase

Comprehend

Post-Transformation
Phase

Key
Tusk-motivated Theory-motivated
problem space problem spove

Figure 2. Problem spaces for the Q-Soan model of conservation behavior.
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Q-SoaR’s design presumes that young children acquire number con-
servation knowledge by measurement and comparison of values to de-
termine the effects of transformations on small collections of discrete
objects. Having been shown a transformation to a set of objects, the
child first categorizes the transformation and then initiates a conserva-
tion judgment about the transformation’s effect. Ideally, categorization
will identify the observed transformation as an instance of a larger class,
with effects that are known to be associated (through chunking) with
this class. If not, then pre- and post-transformation values created
by measurement processes are compared to determine the effect of the
transformation. The learning over this processing creates new knowl-
edge about this kind of transformation, which will become available on
future occurrences in similar contexts.® Now the transformation’s ef-
fects can be stated without the need for any empirical processing. In
other words, the necessity of the effects is recognized.

6.1 Theoretical Assumptions

The behavior exhibited by Q-SOAR is determined, in part, by five as-
sumptions that we make about the knowledge and strategies used by
three and four year old children in the context of conservation experi-
ments. The five assumptions are:

1. The numerical value of a row of objects will not change if the row is
not transformed. Gelman (1977) has shown in her “magic studies”
that children as young as two years of age operate with the assump-
tion that the numerical value of a set of objects will remain constant
in the absence of any observable manipulation of the set.

2. The numerical value of a row of objects is very likely to change if the
row is visibly transformed by an ezperimenter. Many experiments,
notably those of Donaldson (1978), have shown that the act of an
experimenter making explicit physical changes to a set of objects
suggests to young children that some significant change will result
from the action.

3. Four year olds have the knowledge that they can verify whether as-
sumption 2 is true or false where measurement is possible. By mea-

4. The notion of similarity involved is the oceurrence in the new situation of the
snme essential features used in the prior sitnation. There is no similarity metric
involved.
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suring the numerical value of the objects before and after the trans-
formation, a determination can be made as to whether the action
changed the number of the objects.

4. Three year olds do not have the knowledge that e transformation’s
effects can be verified but they may be motivated to measure a irans-
formation’s effects if faced with two conflicting sources of evidence.
If one source of information suggests that the value of the objects
has changed while another suggests that it has not, three year olds
will attempt to determine the true effect of the transformation where
measurement is possible,

5. Three and four year olds have the capacity to store and recell pre-
and post-transformation values but only four year olds do so system-
atically. Four year olds have the knowledge that it is important to do
this in order to determine the effect of a transformation. There is a
sizable literature on young children’s strategic use of their mnemonic
capacity which indicates that, even if three year olds have the same
capacity for remembering as older children and adults, they have
little knowledge about how to exploit that capacity and thus their
untutored memory performance is poor (Brown, Bransford, Ferrara,
& Campione, 1983).

Q-S0AR’s behavior in simulating the training study is described below
in sections that correspond to the problem spaces involved. References
will be made to the example procedure in Figure 1 so that the reader can
keep track of both the current subproblem that 3-SOAR is attempting
to solve and the arrangement of the objects concerned. The description
will be presented using the Experimental procedure since it is a superset
of the other two control conditions. The actual behavior that Q-SoAR
produces during this procedure, and its subsequent behavior on one of
the test conditions, is presented in the appendix to this chapter. {Recall
that the Cardinal-Once group only experienced steps 1-2 and 6~7 and
the No-Cardinal group experienced only step 1.)

6.2 Conservation Task Operations

To carry out a conservation task, five basic processes are required.
These correspond to SOAR operators in the CONSERVATION problem
space: COMPREHEND-INSTRUCTION, CATEGORIZE-TRANSFORMATION,
DETERMINE-RESPONSE, RETURN-RESPONSE, and WAIT.
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All operators process internal representations in working memory.
These representations correspond to aspects of the external situation to
which the model is attending. There is a focus of attention, which is
determined partly by external sources, such as the experimenter asking
questions or drawing attention to the experimental materials. It can also
be determined by internal processing, such as attention to individual
items during counting. The internal representations are in the form of
annotated models (Lewis, Newell, & Polk, 1989}, which are descriptions
of attended aspects of the external situation expressed symbolically as
objects with parts, properties, and relations to other objects. These
models are manipulated by operators and augmented with knowledge
from memory and from the external situation via perception.

Each step in the Experimental (and other} procedures is carried out
in response to an instruction or request from the experimenter; we shall
refer to these as insiructions. When an instruction is perceived, its
meaning must be represented as an annotated model. This model is
constructed by a COMPREHEND-INSTRUCTION operator in the manner
of an existing system, called NL-S0AR, which is implemented in the
COMPREHEND problem space; Lewis, Newell, and Polk (1989) give a
description of this process. COMPREHEND-INSTRUCTION operators pro-
duce a representation of a request called a behavior-model object. In
step 1 of Figure 1, for example, the child is requested to count the
row of circles. In this case, the COMPREHEND-INSTRUCTION opera-
tor would produce a behavior-model object 1epresenting the operation
“measure”, the argument “circles”, and the dimension “number”. Thus
a behavior-model object is a child’s representation to himself/herself of
what behavior should be carried out to achieve the task. In general,
the child is perfectly capable of behaving without such a plan, but in
the case of an experiment, he/she must represent (and remember) the
instruction to be carried out. These representations also play a role in
mediating the speed of acquisition of conservation knowledge.

Once the instruction has been comprehended and represented, Q-
SOAR must still produce a response. To do so, it selects the DETERMINE-
RESPONSE operator. Q-SOAR implements steps 1 and 2 (and then steps
3 and 4) in Figure 1 with a single DETERMINE-RESPONSE operator,
which is augmented with the instructions represented on the behavior-
model object. If the response is not immediately available, then there
will be an impasse and other problem spaces will be selected to compute
the response. When the system has created a response that satisfies the
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instructions {such as the value “four” for steps 1 and 2}, it selects the
RETURN-RESPONSE operator to output the answer and then waits for
the next instruction by selecting the WAIT operator.

Q-SoAR’s first response to observing a transformation (step 6} is to
categorize it. This is done before responding to post-transformation
questions by selecting the CATEGORIZE-TRANSFORMATION operator.
The categorization process is described in Section 6.6.

6.3 Response Determination

If the DETERMINE-RESPONSE operator in the CONSERVATION space
cannot immediately produce a response to the counting instructions of
steps 1 and 2, there will be an impasse. The RESPOND space will always
be selected when the DETERMINE-RESPONSE operator impasses, since
it contains the three operators that are required to create responses
in the conservation task: MBASURE, COMPARE, and RECALL. In the
case where steps 1 and 2 have been comprehended as requiring a mea-
surement, the MEASUREMENT operator is selected. Depending on the
number of objects and their representation (see Section 6.5.1}, either
the QUANT- C or ESTIMATE space is selected to carry out this measure-
ment. That measurement is Teturned as the result of the MEASURE
operator and, in turn, it is also returned as the result of the top-level
DETERMINE-RESPONSE operator.

Once Q-SoAR has created and returned a measurement for the cir-
cles and squares, it perceives and comprehends the question “same or
different number?" in step 5. The resulting DETERMINE-RESPONSE
operator will be angmented with the instruction “compare”, the argu-
ments “circles” and “squares”, and the dimension “number”. Since this
is the first time the instruction has been encountered, there will be no
immediately available response and, in the resulting subgoal, the Com-
PARE operator will be selected in the RESPOND space. This operator
tests whether the values for the measurements of the two rows match,
since only a “same” or “different” response is required. In the current
example, that processing will be carried out in the QUaNT-C space if a
value for that comparison is not immediately available.

Once the comparison has been created and returned, and the trans-
formation has been observed and categorized (step 6 and lower panel
of Figure 2), the experimenter asks, “Are there still NV objects?” fox
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each row (where N is the number of objects in the row). These in-
structions are treated in a similar way to steps 2 and 4, by selecting
a DETERMINE-RBSPONSE operator. However, the operator is now aug-
mented with the operation “recall”. If no answer to the question is
immediately available, that operator will impasse and the RECALL op-
erator will be selected in the RESPOND space. The implementation of
this operator differs when it is applied to rows that have been trans-
formed. The alternatives depend on the model variant (Q-SoAR-3 or
Q-S0AR-4) and training condition (Experimental or Cardinal-Once), as
discussed in Section 6.4. Responses to the “Are there still N?” ques-
tion with respect to an untransformed row {e.g., step 7 in Figure 1) are
dealt with in the following way. Recall that assumption 1 {in Section
6.1) stated that the numerical value of a row of objects will not change
if the row is not transformed. This means that the value for the row in
question is assumed to be the same before and after the transformation
of the other row. Q-SoAR-4 is able to recall the pre-transformation
value and return it as the answer to this question. This is not the case
for Q-SoAR-3 (see assumption 5 in Section 6.1). However, even without
retrieving the correct value with the RECALL operator, Q-SoAR-3 can
answer the question correctly by requantifying the objects in question.
This can be done by subitizing since no row has more than four ob jects.

6.4 Effect Determination

The way that Q-SoAR responds to the "Are there still N?” question for
transformed rows is not only to produce a post-transformation value but
also to determine the effect of the transformation. The DETERMINE-
ErrecT problem space js selected if the RECALL operator impasses,
because no effect of the transformation is immediately available. In or-
der to learn about the effect of the transformation, the system must
compare the pre- and post-transformation values for the row. Also,
some role must be attributed to the transformation for the value of that
comparative judgment. This can be as simple as identifying it as the
action that created the post-transformation array. In other words, this
process creates the knowledge to answer the implicit question, “What
change did the transformation make to the naumber of objects?” This
new knowledge states that, whenever such a transformation is applied,
the relation between the pre- and post-transformation values that have
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just been computed will hold for the dimension in question. For exam-
ple, the response to step 9 in Figure 1 is that a spreading transformation
causes no change because it produces an identical value to the one that
existed before it was applied, namely “four squares” in both cases.

6.4.1 EFFeECT DETERMINATION IN Q-SOAR-4

Q-S0aR-4 determines the effect of transformations in the same way
for both the Experimental and Cardinal-Once conditions. Although
assumption 2 in Section 6.1 stated that children believe that the value
of a row will change when it is transformed, assumption 3 stated that
four year olds have the knowledge that this can be verified when it is
possible to measure the materials before and after a transformation is
applied. This is the case in both of these conditions because of the small
number of discrete objects. Thus, in all cases, Q-50AR-4 makes a pre-
and post-transformation value comparison to determine the effects of
ohserved transformations,

6.4.2 BErFECT DETERMINATION IN {J-S0AR-3

Q-SoAR-3 behaves differently in the Experimental and Cardinal-Once
conditions. In the Experimental condition its behavior is like that of
Q-S0AR-4, due to assumption 4. This assumption stated that three
year olds do not possess knowledge about verifying a transformation’s
effect but may be induced to do so if they are faced with two conflict-
ing sources of evidence. This is always the case with the Experimental
condition. Before transformations, the two rows are in one-to-one cor-
respondence so equal trials have equal-length rows and unequal trials
have unequal-length rows. In other words, perceptual information and
quantitative information are not in conflict. However, “transformations
on unequal trials yielded rows of the same length; equal trials involved
rows of different lengths” (Gelman, 1982, p. 212). In other words, af-
ter transformation, quantitative information, which was available via
subitizing, and perceptual information were in conflict: unequal rows
were the same length and equal rows were different lengths. This con-
flict leads Q-S0AR-3 to recall the pre-transformation value it measured
and check it against the post-transformation value of the row.

In the Cardinal-Once condition, no such conflict exists. There is a
single row of objects which, when transformed, takes on a new visual
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appearance. There is nothing in the visual array to suggest that the
assumed change in its numerical value should be doubted. Thus Q-
SoAR-3 makes no attempt to compare pre- and post-transformation
values of rows. As with the untransformed row, it answers the ques-
tion “Are there still N7” by requantifying. Since no comparison is
made to the original value, no learning can take place as to whether the
transformation has had any effect on the numerical value of the row.

6.4.3 EFFEcT DETERMINATION OPERATIONS

There are two operators in the DETERMINE-EFFEGT space. The RE-
CALL operator recalls a pre-transformation value for comparison to the
post-transformation value. The DETERMINE-EFFECT operator matches
pre- and post-transformation values for the transformed row as de-
scribed above. The process is a simple match that tests whether the
values are the same or not. A requested determination of the mag-
nitude or direction of the change will require accessing quantification
knowledge. The result of this match is returned by the DETERMINE-
EFFECT operator as the effect of the transformation, and the basis of its
determination (e.g., that pre- and post-transformation values matched)
constitutes an explanation. This will be the result of the RECALL oper-
ator in the RBSPOND space and, ultimately, the DETERMINE-RESPONSE
operator in the CONSERVATION space. The chunks that are built when
this new knowledge is returned enable immediate retrieval of the ef-
fect of the current transformation. These chunks will fire in response
to selection of the DETERMINE-RESPONSE operator, letting Q-SoARr
immediately return the effect and explanation of the transformation.
This demonstrates the shift in conservation performance from empirical
examination of materials to direct explanation of the transformation's
effects.

6.5 Quantification and Estimation

In the preceding sections we showed how the acquisition of number
conservation knowledge in Q-SoAR is founded on empirical processing,
whose results are then used by the effect determination process. In this
section we examine the quantification and estimation abilities available
to Q-SoARr that implement the measurement and comparison processes.
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6.5.1 QUANTIFICATION

The primary measurement capability that is possessed by young chil-
dren is quantification. This quantification subsystem, which we call
Quant-C, for “quantification in conservation”, includes only capabil-
ities that produce cardinal values for small sets of entities. Thus it
includes subitizing and counting of small sets.

In cases where values are to be determined in terms of number, the
QuANT-C problem space may be selected to implement the measure-
ment. Selection of the space depends on two factors. The first is whether
the conservation property represented on the MEASURE operator sug-
gests the use of Quant-C processes (e.g., in the case of discrete objects
but not liquid). The second is the suitability of the representation for
the application of operators in the QUANT-(C problem space.

Even in cases where the conservation property suggests Quant-C pro-
cesses for determining equivalence, the problem solver may still be un-
able to use it. In order to select the QUANT-C space, the representation
of objects to be measured must be in the form of symbols represent-
ing discrete objects that are in one-onto-one mapping (hereafter onto)
with their external referents. We assume such representations are only
possible for set sizes within the range that young children can subitize:
a limit of four objects. Above this limit, a much looser one-into-one
mapping (hereafter into) is used.

The process of subitizing in the QuANT-C space is not controlled by
an operator: it is simply that of creating an onto representation of up to
four external referents. This approach is based on the view that there
is a special code for the representation of discrete quantities which is
primitive to the architecture and which differs from the formal code used
to communicate about numbers with words such as “three” o1 symbols
like “3”. We call this primitive representation the basic quantitative code
(Simon & Newell, 1990} and assume that it provides the agent with an
ability to represent quantity in a primitive form.

There are six operators in the QUANT-C space: ATTEND, INITIALIZE,
FercH-NexT, CounT-NEXT, COMPARE, and MEMORIZE. The Ar-
TEND operator attends to the objects specified in the behavior-model
object and sets up an onto representation. All of the other operators
are involved only if counting and not subitizing is to be carried out. The
INITIALIZE operator selects a mark for identifying objects to be counted,
selects an initial word from the counting string to be used, and selects
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an initial object to be processed. The CounT-NEXT operator assigns a
selected count word to a marked object and, where cardinal responses
(Fuson, 1988) are to be returned, assigns that label to the cardinality
of the set. FETCcH-NEXT obtains a next item to be counted, marks it,
and obtains a next count word to be assigned. The COMPARE operator
can be used to test either the relative similarity or diflerence of val-
ues created by MEASURE operators. The MEMORIZE operator carries
out a deliberate act of memorization on the final response to a pre-
transformation and post-transformation instruction, so that the results
are stored in long-term memory and are available for the processes that
determine the effect of the transformation.

None of these operations can be directly applied to into representa-
tions. However, one can count large collections of objects if perceptual
and motor operations can be carried out to serially map individual itemns
onto their external referents, thereby creating transitory onto represen-
tations for up to four items at a time. If this cannot be done or if a
decision is made against doing so, the only recourse is to use estimation
operations.

6.5.2 PERCEPTUAL ESTIMATION

Perceptual estimation in the children modeled by Q-SoAR is unidimen-
sional — the relative number of two numerous rows of objects is de-
termined either by length or by density, but not both. Siegler (1981}
showed that a child’s ability to integrate more than one dimension to
solve a range of problems does not develop until around eight years of
age. Thus, estimation in conservation settings is inaccurate, since one
dimension is often inadequate for an accurate guantitative judgment.

The EsTIMATION problem space is selected to obtain values for ma-
terials under a number of conditions. As discussed in Section 6.5.1,
Q-SOAR may be requested to create a relative quantity judgment where
there are too many objects to create an onto representation. In this
case the model uses perceptual estimation, in which the primary cue as
to quantity is the length of the rows. A MATCH operator carries out
a type of one-to-one matching called end matching (Klahr & Wallace,
1976), which tests whether the end items of each row are above or below
the end items of the other row. If this is not the case, the longer row is
assumed to be more numerous. A MEMORIZE operator stores the result
of this processing, just as in the QUANT-C space.
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6.6 Categorization

As mentioned earlier, Q-SOAR categorizes observed transformations.®
This means that it identifies critical features that are common to indi-
vidual transformations, such as that all spreading actions move things
further apart irrespective of the objects in question. Chunks created
from processing in the DETERMINE-EFFECT problem space associate
the new effect with the category of the transformation, not to the spe-
cific instance. As a result, invariance effects will be cued by any new
transformation that can be identified as a member of that category.
This enables novel situations to cue knowledge acquired about other
members of the same category.- Thus we assume that all novices, espe-
cially young children, form concepts to facilitate plausible generaliza-
tions about novel instances. Chunking models this desirable behavior,
as do some other methods of explanation-based learning. As noted by
Mooney (this volume}, categorization need not be limited to a single di-
mension, but it should be sensitive to current goals. For example, when
confronted with studies of number conservation like Gelman’s, Q-50AR
may “CATEGORIZE" spreading, compressing, piling, and distributing
together since they have no numeric effect. In contrast, if the concern
is with spatial density, then compressing and piling would constitute
a category with the opposite effect of spreading and distributing. The
imposition of conceptual cohesiveness by goals or effects is related to
ad hoc categorization introduced by Barsalou (1983) and discussed by
Fisher and Pazzani (Chapter 6, this volume). '

Q-Soar selects the CATEGORIZE problem space when there is a trans-
formation represented on the state and the CATEGORIZE-TRANSFOR-
MATION operator in the CONSERVATION space cannot retrieve a type
for it. The categorization process identifies in the representation of the
transformation a set of features that are predictive of a certain clas-
sification. It is implemented as a recognition task. If a new instance
is not immediately recognized as a member of a known class, features
are progressively abstracted out of the instance description until the
instance is recognized as a known class member. If no class is retrieved,
then a new one is formed using the set of features in the new instance.
For example, when all the features common fo all spreading transfor-

5. The cuzrent version of Q-SOAR does not fully implement this process. Iustead,
the structures that would be created by an existing system calied AL-SOAN
(Miller & Laird, 1990) are fed inte working memory.
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mations are present, and none that are indicative of some other type
of action (like compressing) are represented, the transformation will be
treated the same way that other spreading transformations would be
in the current context. This strategy is straightforward and sufficient
to model Gelman’s study, though a more general theory of conserva-
tion development will likely require more flexible principles of feature-
discriminating power, like those found in Chapters 1 through 5 of this
volume,

6.7 Learning Conservation Knowledge in Q-50AR

The above subsections presented the problem spaces and operators that
comprise Q-Soar. How then do these components combine to create
the number conservation knowledge that is the result of the effective
training procedures? The answer is that they are called upon to con-
tribute knowledge as Q-SOAR experiences impasses during problem solv-
ing. These impasses arise dynamically from the particular task that
Q-SoAR is working on and the knowledge it brings to bear on each task
at a given time. Thus, the conservation knowledge that the system has
depends of what problems it has tried to solve and what knowledge it
had available when it tried to solve them.

For example, if the knowledge required to respond to the question
about the relative quantity of the two rows of objects in the initial array
is not available, an impasse will arise. Q-SoOAR will have already quan-
tified the two values, but no comparative value will exist. The resulting
series of impasses ground out in the selection of the COMPARE opera-
tor in the QUANT-C space. The successful creation of that compatative
value resolves the impasse and creates a new piece of information that is
available for later instances of the same problem. This kind of process-
ing is Tepeated for every impasse that the system encounters. Soine of
these chunks simply reduce the amount of search that Q-SOAR engages
in on subsequent trials (such as chunks that implement the instruction
comprehension operators). Other chunks, such as those that arise from
compare operators in the QUANT-C space, not only reduce search but
also directly contribute to the ultimate conservation judgments that the
system makes.

The result of one such impasse is the chunk (hereafter the conser-
vation chunk) marked in the appendix that produces the conservation
response. Due to the explanation-based nature of chunking, some gen-
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eralization will occur with respect to the applicability of the chunk.
Specifically, only features that existed before the impasse arose can be-
come conditions for chunks. This is to ensure that an impasse for the
same problem will not recur. However, not all of the pre-existing fea-
tures will become conditions; only those that are used to compute the
result in the subgoal will be selected. This means that the chunked
result will be retrieved in a wider set of circumstances than the one in
which it was formed. However, it does not mean that Q-SoAR exhibits
conserving responses after one trial. When simulating human cognition,
SoAR builds chunks only for the results created from the lowest goal in
a subgoal stack. This bottomn-up chunking causes the architecture to ex-
hibit a gradual progression from deliberate (search-based) to automatic
(recognition-based} behavior.

In the case of Q-SOAR, the conservation chunk at first only imple-
ments the response to the DETERMINE-EFFECT operator because that
was the operator that led to the final impasse from which the chunk
was created. Only after a series of trials is there a single subgoal caused
by the top-level DETERMINE-RESPONSE operator. Then the informa-
tion in the original chunk becomes available to implement that operator
and thus enable a recognitional response to the effect of an observed
transformation, as in the case of a conserving child.

By acquiring conservation knowledge in this way, Q-SoARr does not
create any single knowledge structure that represents a “conservation
concept”. Instead, it builds a series of chunks that, when appropri-
ately cued, enable the system to exhibit number conservation. In other
words, rather than learning concepts that define the features of con-
serving transformations, Q-SOAR acquires generalized knowledge about
the effects of observed transformations that is cued by other, similar
transformations in similar contexts. As already described, these pieces
of knowledge are acquired incrementally as problems are solved by the
system with different amounts of available knowledge. In this particular
modeling study, Q-SoAR was led to acquire its conservation knowledge
by the use of a training regime. However, this was not a supervised
concept-learning situation in which pre-classified examples of concepts
are presented for the system to learn. Indeed, Q-SOAR is never pre-
sented with the concept of conservation; it is merely asked to solve a
series of problems that were experimentally demonstrated to result in
the acquisition of conservation knowledge. These kinds of problems can
be encountered and solved without supervision and, as can be seen in
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the next section, we claim that Q-SOAR should be capable of learn-
ing conservation knowledge without training but at a slower speed than
demonstrated here.

7. Toward a Full Theory Of Conservation

Q-SoAR successfully models the acquisition of conservation knowledge
attained by subjects in Gelman’s training study in an implementation
within SOAR’s unified cognitive theory. In this final section, we de-
scribe the behavior of Q-S0OAR before and after training. We also de-
scribe what we anticipate as the necessary steps toward a full theory of
conservation in other domains.

Ultimately, one can evaluate an enterprise such as the one presented
here in terms of Piaget’s (1964) well-known criteria for “real” conser-
vation:

But when I am faced with these facts [that learning of structures
seems to obey the same laws as the natural development of these
structures], I always have three questions which I want to have
answered before I am convinced.

The first question is, “Is this learning lasting? What remains two
weeks or a month later?” If a structure develops spontaneously,
once it has reached a state of equilibrium, it is lasting, it will
continue throughout the child’s entire life. When you achieve
the learning by external reinforcement, is the result lasting or
not and what are the conditions for it to be lasting?

The second question is, “How much generalization is possible?”
... When you have brought about some learning, you can always
ask whether this is an isolated piece in the midst of the child’s
mental life, or if it is really a dynamic structure which can lead
to generalizations.

Then there is the third question, “In the case of each learning ex-
perience what was the operational level of the subject before the
experience and what more complex structures has this learning
succeeded in achieving?”

To these three questions, we add a fourth: How can subjects (and Q-
SoaR) learn so rapidly from a brief training study, when untrained
subjects take several years to acquire the same knowledge?
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7.1 Durability and Robustness of Learning

With respect to Piaget’s first question, Q-SOAR makes a specific the-
oretical claim: a chunk, once learned, is always available, and will be
evoked whenever the context-specific information that was included in
the original chunk is recognized and encoded. For the SoaR architec-
ture, chunking is an automatic acquisition mechanism that is applied
to all processing that takes place. Thus, by undertaking the processing
that is induced by the externally driven training procedure, the learning
of conservation knowledge will occur.

The empirical prediction associated with this claim is not straightfor-
ward. The general pattern of results with increasingly remote post-tests
is that, for a while, performance declines as a function of intervening
time between training and testing, but then performance improves as
one would expect with the “natural” acquisition of conservation. At
present we have no principled explanation of this in terms of chunking.

7.2 Generalization

The second question refers to the specificity of learning from experi-
ence. This is a well-established empirical fact and is predicted by the
chunking mechanism (Laird, Rosenbloom, & Newell, 1986). In the con-
text of Q-SoaR, chunking predicts little generalization from learning
about certain transformations of discrete objects to other transforma-
tions of different materials (e.g., the pouring of water). Indeed, this is
what one usually finds from conservation training studies: very little
generalization to other kinds of quantity conservation.

Transfer from small to large number tasks is achieved by the gen-
eralization inherent in SOAR's chunking mechanism. The actual ob-
jects that are measured in determining a conservation judgment are not
tested when it is retrieved from memory. There are tests for the kind
of transformation and the conservation property {in this case, number)
and these delimit the scope of transfer. If that were not so, Q-S0AR
would predict unrealistically fast learning: to transformations of quan-
tities that are not affected in the same way as the one measured.

In addition, transfer is also limited with respect to continuous guan-
tities such as volumes of liquid. Acquiring knowledge about continuous
quantity is not addressed by Q-SOAR. Nevertheless, having acquired
conservation knowledge based on small number measurement, a prob-
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lem solver must come to appreciate what is common to transformations
like lengthening and the pouring of liquids. This requires that these
transformations be represented as actions that neither add nor remove
any of the materials that they manipulate.

Finally, we suggest that the problem solving that enables the identifi-
cation of the common features of different transformations and materials
can best be described as a discovery process. The learner operates with
a set of expectations based on current knowledge. This will at some
point create a violation of the expected effects of a transformation. The
learner’s task then is to generate an hypothesis of what caused that
violation, to devise ways of testing that hypothesis, and to integrate
the results either into new hypotheses or modified knowledge. Research
on scientific reasoning (Klahr & Dunbar, 1988}, instructionless learning
(Shrager, 1987), and analogy (Gentner, 1983) provides good explana-
tions of the nature of such processes, Mediating factors in the effec-
tiveness of that problem solving are the selection and combination of
features that are considered for inclusion in the analysis (Bransford,
Stein, Shelton, & Owings, 1981).

7.3 Operational Level and Structural Change

With respect to Piaget’s third question, Q-S0AR makes explicit stale-
ments about the “complex structures” arising {rom the training of con-
servation responses. These can be seen by examinations of Q-50AR-3
and Q-Soar-4 before and after training.

7.3.1 Q-S0AR-3 AND Q-50AR-4 BEFORE TRAINING

Before experiencing the three conditions of Gelman’s training study,
both versions of Q-SOAR are able to execute all the steps of the three
experimental conditions. The only difference between the two versions
is that Q-SoAR-3 does not start out with the knowledge that the ef-
fects of transformations can be verified by comparing pre- and post-
transformation values. Apart from this difference, both versions have
all the capabilities described in Section 6.

However, since neither variant has undergone any training and has
not learned about the effects of any transformations, both versions of Q-
Soar fail all of the conservation tests that Gelman used. Neither system
can accurately measure the large number of objects in the tests to yield
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the correct comparative answers. They must use estimation, a process
that results in the assertion that a longer row contains more objects
than a shorter row. Finally, both untrained variants of Q-S0AR-3 and
Q-SoaR-4 are unable to determine the effects of the transformations
and so cannot state an explanation. Before training, then, both are
true non-conservers. We will now examine their behavior after training.
Since the No-Cardinal condition is not expected to induce any change
in behavior, we will discuss only the results of the other two conditions.

7.3.2 Q-S0AR-3 AFTER CARDINAL-ONCE TRIALS

Without employing its memorization capability to recall and compare
pre- and post-transformation values, Q-SoAR-3 cannot learn anything
about the numerical effect of observed transformations. Thus, based on
assumption 2 in Section 6.1, it always assumes that the value of the
row changes. Since this is never the case in the experiment, Q-S0AR-3
is always wrong and it fails the conservation tests. As can be seen in
Table 1, three year olds produced few correct responses.

7.3.3 Q-S0AR-3 AFTER EXPERIMENTAL TRIALS

As explained in Section 6.4, the conflicting information in Experimental
trials after a transformation induces Q-S0AR-3 to recall and compare
values in the same way as Q-S0AR-4. Thus, Q-S0AR-3 can construct a
correct comparison and explanation from such trials. These can then be
recalled later, enabling it to pass the conservation tests. The behavior of
Q-S0AR-3 after the Experimental condition produces correct responses
and explanations, and thus is consistent with the pattern of results in
Table 1. It seems likely that the experience of this conflict and the
resulting recall and comparison of values provide the means by which
three year olds acquire the effect-verification knowledge that we have
assumed to be available to four year olds and which we provided for
Q-SO0AR-4.

7.3.4 Q-Soar-4 AFTER BorH TRIALS

Having produced a quantitative response before a transformation (e.g.,
step 4 in Pigure 1), Q-Soar-4 selects the MEMORIZE operator to store
the computed values in long-term memory. Then, in the DETERMINE-
EFFECT problem space, it selects the RECALL operator to enable it to
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compare pre- and post-transformation values to determine the effect
of the transformation and create an explanation. This knowledge can
then be recalled in the tests, enabling Q-SOAR-4 to pass the conserva-
tion tests after experiencing both the Experimental and Cardinal-Once
procedures. This pattern of results is also consistent with that in Table
1. The higher proportion of correct responses in the Experimental group
may reflect the fact that not all four year old childven had acquired the
effect-verification knowledge that we assumed for Q-SoAR-4. Those that
had not would be expected to perform less well in the Cardinal-Once
condition, just as was the case for three year olds.

7.4 Learning Speed

In Section 4 we stated that Q Theory is designed to account for the nat-
ural development of conservation, while Q-SoARr simulates only conser-
vation learning in a single training study. Therefore, we should explain
how the same processes can learn very quickly under experimental situ-
ations and yet take a few years to reach the same point during natural
development. Two obvious factors are the differences in exposure and
the availability of feedback. Intensive exposure to important features
and informative feedback are characteristic of training studies, but nei-
ther of these is the case in unsupervised everyday activity.

However, we suggest that the greatest influence on learning speed is
what we shall call the goal versus encoding interaction. A learner may
activate the goal of measuring the effects of transformations. Alter-
natively, that learner’s processing may be in the service of some other
goal, such as building towers out of blocks. Even if the measurement
goal has been activated, the learner may not attend to a property of the
transformed materials that will reveal any number-invariance knowl-
edge, such as the spatial density of a pile of blocks. Only if the child
simultaneously has the goal of measurement and the encoding of num-
ber as the feature to be measured will he/she acquire number conser-
vation. Well-designed training studies, such as Gelman’s, foster just
such optimal conditions, and in Q-SOAR these aspects are explicit in
the representation of comprehended instructions. Similar directiveness
appears to be provided for the child in relatively natural mother-child
interactions, as set up by Saxe, Gearhart, and Guberman (1984). We
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know of no evidence to suggest that the goal and property combination
optimal for number conservation learning would be chosen by the child
any more or less often than any other, although it is evident that chil-
dren often set themselves the goal of counting things. Thus, three of the
four types of opportunities for learning number conservation knowledge
would not produce conservation learning in Q-SOAR.

8. Conclusion

In this chapter we presented Q-SOAR, a computational model of the ac-
quisition of conservation knowledge as reported in a single experimental
training study. This is the first such account to present a set of mecha-
nisms, constrained by a unified theory of cognition, that can be shown
to acquire conservation knowledge. Furthermore, we demonstrated not
only that Q-SoAR can account for the rapid learning observed in the
Gelman (1982) training study but also that, without modification, it
may also be able to explain the slower, more opportunistic acquisition
of invariance knowledge that is characteristic of a young child’s everyday
unsupervised learning experiences. Much remains to be done before we
can claim that Q-SOAR gives a complete account of the acquisition of
conservation knowledge. There exist many other training studies (Field,
1987) whose results should also be explicable by the mechanisms of Q
Theory. The transfer to conservation of continuous quantity remains to
be explained, and an account of “natural” conservation development is
still an important goal. Nevertheless, we believe that the work reported
in this chapter represents real progress in the creation of computational
theories of conceptual development.
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Appendix: Sample Q-S0AR Run

Here we illustrate how the problem spaces described in Section 6 gen-
erate behavior when Q-SOAR is presented with a task. The following
trace is an abstracted version of the steps presented in Figure 1, which
show Q-SOAR in operation for the first time. The second trace shows
the model’s successful performance on a conservation test.

The traces retain only the critical information, showing the problem
spaces (denoted by P) and operators {denoted by Q) that are selected
in response to the impasses that arise. An impasse is shown by process-
ing in a subgoal (G) being indented under the operator that produced
the impasse. When an impasse is resolved, processing continues at the
highest level at which an operator can be selected. The operators are
augmented with the instruction that led to their initiation or by the
objects on which they are focused.

External arrays and instructions are depicted to the right of the trace
in lower case and Q-S0AR’s output is given in the center in upper case.
The trace is marked with ‘%’ at the points in the run where the key
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conservation chunk is acquired and where it is evoked. Chunks are
created continually throughout the run (one or more when returning
from each impasse), but these are not shown,

ABSTRACTED RUN OF Q-SOAR DURING ITS FIRST OPERATION

OO0
oooaon
P: (CONSERVATION)
How many circles?
0: (COMPREHEND~INSTRUCTIONS)
O0: (DETERMINE-RESPONSE)
==>G: (OPERATOR NO-CHANGE)
P: (RESPOND)
0: (MEASURE)
==>G: (OPERATOR NO-CHANGE)
P: (QUAKT-C)
0: ((CIRCLE) ATTEND)
0: (INITIALIZE)
0: ((CIRCLE) COUNT-NEXT) Counting item: ONE
0: ((CIRCLE) FETCH-NEXT)
0: ((CIRCLE) COUNT-NEXT) Counting item: THWD
0: ((CIRCLE) FETCH-NEXT)
0: ((CIRCLE) COUNT-NEXT) Counting item: THREE
0: ({CIRCLE) FETCH-NEXT)
O: ((CIRCLE) COUNT-KEXT) Counting item: FOUR
0: (MEMORIZE)
U: (RETURN-RESPONSE) Answer FDUR
How many squares?
0: (COMPREHEND-INSTRUCTIONS)
0: (DETERMINE-RESPONSE)
==>Q: (OPERATOR NO-CHANGE)
P: (RESPOND)
0: (MEASURE)
==>@: (OPERATOR NO-CHANGE)
P: (QUANT-C)
((SQGUARE) ATTEND)
{INITIALIZE)
({SQUARE) COUNT-NEXT) Counting item: ONE
((SQUARE) FETCH-NEXT)
: ((SQUARE) COUNT-NEXT)} Counting item: TWO
((SQUARE) FETCH-NEXT)
((SQUARE) COUNT~NEXT) Counting item: THREE
+ {(SQUARE) FETCH-NEXT)

s e

oo oaooaond
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0: ({SQUARE) COUNT-NEXT) Counting item: FOUR
0: (MEMORIZE)
0: (RETURN-RESPONSE) Answer FOUR
Same or different number?
0: (COMPREHEND-INSTRUCTIONS)
0: (DETERMINE-RESPONSE)
==>G: (OPERATOR NO-CHANGE)
P: (RESPOKD)
0: (COMPARE)
==>G: (OPERATOR NO-CHANGE)

P: (QUANT-C)
0: (COMPARE)
0: (RETURN-RESPONSE) - Answer SAME
0000
o n ]

8till four circles?
D: (CATEGORIZE-TRANSFORMATION)
0: (CONPREHEND-INSTRUCTIONS)
0: {DETERMINE-RESPONSE)
==>G: (DPERATOR NO-CHANGE)
P: (RESPOND)
0: (RECALL)
0: (RETURN-RESPONSE) Answer FOUR
Still four squarss?
0: (COMPREHEND-INSTRUCTIONS)
0: (DETERMINE-RESPONSE)
==>G; (OPERATOR NO-CHANGE)
P: (RESPOND)
g: (RECALL)
==>G: {OPERATOR NO-CHANGE)
P: (DET-EFFECT)
0: (RECALL)
D: (DETERMINE-EFFECT)#**
0: (RETURN-RESPONSE) Answer FOUR
Same or different number?
0: {COMPREHEND-INSTRUCTIONS)
0: (DETERMINE-RESPONSE)
==>G: (OPERATOR NO~CHANGE)
P: (RESPOND)
0: (COMPARE)
0: (RETURN-RESPONSE) Answer SAME
VALUES MATCH BEFORE AND AFTER THIS TRANSFOGRMATION.

End -- Explicit Halt
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