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Abstract 
An extension of Klahr and Dunbar's (1988) Dual space model 
of scientific discovery is presented. We propose that, in 
addition to search in an experiment space and a hypothesis 
space, scientific discovery involves search in two additional 
spaces: the space of data representations and the space of 
experimental paradigms. That is, discoveries often involve 
developing new terms and adding new features to descriptions 
of the data, and the also often involve developing new kinds 
of experimental procedures. The 4-space model was 
motivated by the analysis of human performance in a 
discovery microworld. A brief description of the data is 
presented. In addition to the general 4-space framework, a 
description of the component processes involved in each of 
the four search spaces is also presented.  
 

Overview 
One fruitful characterization of scientific discovery is to 
view it in terms of search in two problem spaces: a space of 
hypotheses and a space of experiments (Klahr & Dunbar, 
1988; Simon & Lea, 1974). This characterization can be 
used to classify discovery models into three groups. First, 
there are those that address the processes of hypothesis 
generation and evaluation (e.g., the BACON models 
(Langley, Simon, Bradshaw, & Zytkow, 1987), COPER 
(Kokar, 1986), and ECHO (Thagard, 1988)). Second, there 
are those that address the process of experiment generation 
and evaluation (e.g., DEED (Rajamoney, 1993), and DIDO 
(Scott & Markovitch, 1993)). Third, there are those that 
address both processes (e.g., KEKADA (Kulkarni & Simon, 
1988), STERN (Cheng, 1990), and SDDS (Klahr & Dunbar, 
1988)). 

Based on our analysis of subject performance in a 
complex computer microworld, we have extended the 
2-space framework to a 4-space framework. In the new 
framework, what was previous conceived as the hypothesis 
space has now been divided into a data representation space 
and a hypothesis space. In the data representation space, 
representations or abstractions of the data are chosen from 
the set of possible features. In the hypothesis space, 
hypotheses about causal relations in the data are drawn 
using the set of features in the current representation. 
Similarly, the old experiment space is now divided into an 
experimental paradigm space and an experiment space. In 
the experimental paradigm space, a class of experiments 
(i.e., a paradigm) is chosen which identifies the factors to 

vary, and the components which are held constant. In the 
experiment space, the parameters settings within the 
selected paradigm are chosen. 

We made these changes as we began to scrutinize the 
human performance data from several discovery 
microworlds in preparation for the computational 
implementation of the 2-space model. It became clear that, 
during the course of their investigations of the domain, 
subjects often acquired new data representations, and 
developed new kinds of experiments. Furthermore, 
representation and paradigm selection appear to require 
different mechanisms from those necessary for hypothesis 
and experiment selection. 

Our goal is to produce a model of processing in all 4 
problem spaces. This model will consist of separate 
components corresponding to processing in each of the four 
problem spaces. However, as indicated in Figure 1, 
processing within each space is dependent upon the current 
state of the search in the other spaces. For example, 
experiment space search depends upon the available 
experimental paradigms as well as the current hypothesis. 
The arrows between the four spaces are those implied by the 
processes that we have found to exist—others connections 
may also exist. Given these strong interdependencies, there 
is great advantage to implementing each of the components 
in a unified model. 

 

Experiment

Space

Representation

Space

Paradigm

Space

Hypothesis

Space  
 

Figure 1: Information flow between the 4 search spaces. 
 

Before presenting the details of the model, we will 
provide a brief description of the task and data that lead to 
the new model. 

The Discovery Task 
The task that contributed the data for our model design is a 
complex computer microworld called MilkTruck (Schunn & 
Klahr, 1992, 1993), in which subjects conducted 
experiments to discover the action of a complex mystery 



 

function. In the microworld, a “milk truck” executed a 
sequence of actions associated with a dairy delivery route. 
At any of 6 different locations along its route, it could beep 
its horn, deliver milk or eggs, or receive money or empties. 
A program consisted of a sequence of up to 14 action-
location pairs. After the route had was entered, the subject 
pressed ‘RUN’ and the milk truck executed its route on the 
screen. The milk truck went to each location on the 
programmed route in the order that it was programmed, and 
animated icons demonstrated what transpired at each loca-
tion. 

In this task, subjects were given a great deal of external 
memory support. As subjects entered their programs, the 
steps were displayed on the screen in the program listing. 
Also, as the route was completed, a trace listing displayed in 
program format what transpired during the run (see figure 
2). The subjects were also given access to all previous 
programs and traces. 

The subject’s task was to discover the function of a 
mystery command called δ (delta), which was a complex 
function with three arguments: a number (1 – 6), a triangle 
(white or black), and a Greek letter (α or β). When δ was 
not used, the trace listing was identical to the program 
listing. However, δ could change the order of delivery, and 
the resultant route execution and its associated trace would 
then be discrepant from the program listing. The effect of δ 
was to reorder the execution of part of the program 
according to the values of its three arguments (see Table 1).  

 
Table 1: For the last N steps in the program, δ reorders the 

execution sequence of the program by... 
 

 
(increasing) (decreasing) 

α  
(item) 

...item in increasing 
keypad order. 

...item in decreasing 
keypad order. 

β  
(house) 

...house in increasing 
number order. 

...house in decreasing 
number order. 

 

The subjects were Carnegie Mellon University 
undergraduates. Subjects typically took part in a single, 1 hr 
session. Following an introduction to the basics of the 
MilkTruck domain, the syntax of δ was described, and the 
goal of discovering the effect of δ was presented to the 
subjects. In the discovery phase, subjects designed, 
conducted, and analyzed experiments with the goal of 
discovering the role of δ and its arguments.1 The subjects 
worked at the discovery task until they had solved it, or they 
wished to give up. 

The Data 
Data was collected from over 100 subjects across various 
conditions. Both key-stroke and verbal protocols were 
collected. Here, we present a very brief description of the 
characteristics of subjects' behavior that led us to the 
creation of the 4-space model. In particular, we will focus 
on the evidence which suggested the addition of the 
experimental paradigm and data representation spaces. Data 
motivating the details of the experiment and hypothesis 
space processes can be found elsewhere (e.g., Schunn & 
Klahr, 1992, 1993, 1995). 

The primary evidence for activity in the data 
representation space involved changes in subjects’ 
descriptions of experimental outcomes. Early in the 
sessions, subjects typically described experimental 
outcomes in terms of series of movements of single steps. 
For example, with program 2 of figure 2, subjects early on 
in the discovery session would describe this outcome as 
follows: the third step moved to the fourth position, the 
fourth step moved to the fifth position, and the fifth step 
moved to the third position. Later in the sessions, subjects 
began to give descriptions for, and hypothesize about, the 
same kinds of experimental outcomes in terms of 
movements of segments of the program. For example, with 
program 2 of figure 2, subjects later on in the session would 
describe this outcome as follows: the last five steps were 
reorganized by increasing house number. While one might 
argue that these changes were merely redescriptions or 
reorganizations of the same features, subjects also added 
completely novel features to their descriptions (e.g., the 
number of times the milk truck changed directions during 
the route; the number of times the milk truck driver jumped 
up and down at the end of the route). This kind of evidence 
led us to hypothesize that subjects changed the way in 
which the basic data was used by adding and deleting 
features to their data representations. 

The primary evidence for activity in the experimental 
paradigm space derived from subject statements about their 
plans for experiment selections and changes in these plans 
over the course of the problem-solving session. Initially, 
subjects had very few kinds of experiments from which to 
select. Their typical programs simply involved selecting a 

  
1 In this context, a program is an “experiment” and a statement 
about how the parameters work is a “hypothesis”. 
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Figure 2: Two example programs and outcomes. 



 

small number of houses and items without further 
constraints or forethought (e.g., program 1 of figure 2). 
Later in the session, subjects began to develop more 
complex kinds of experiments. For example, a subject might 
design a program of the following type: a long program with 
two more steps than the δ number argument, houses and 
items all different and not in order (e.g., program 2 of figure 
2). Subjects also developed multi-program paradigms. For 
example, a subject might decide to conduct a sequence of 
five programs with the same base program, varying only the 
δ number parameter. Subjects learned to generate these 
complex, very deliberately chosen experiments quite 
rapidly, indicating that their were choosing experiments 
from a newly compiled database of experiment types. 

The Model 
The 4-space model consists of more than just the four search 
spaces; there are also the constituent search processes within 
each space (see Table 2). A brief description of the 
processes that we have found to occur within each of the 
spaces is presented below (although there are likely to be 
many more than this). These descriptions also serve to 
further illustrate the relationships between the four spaces. 
 
Table 2: The component processes within each of the search 

spaces of the 4-space model. 
 

Space Process 
 hypothesis testing 
Experimental analogy 
Paradigm error analysis 

 rep/ hyp change 
 theory orientation 
Experiment complexity management 
 risk regulation 
 notice-invariants 
Data Representation analogy 
 brute-force search 

 piecemeal induction 
Hypothesis representational mapping 
 pop-out 

 

The Experimental Paradigm Space 
On occasion, making an important discovery involves 
finding a new method for gathering data—a new 
experimental paradigm.2 It is unlikely that his new method 

  
2The most popular use of the term “paradigm,” typically associated 
with Kuhn (1970), refers to a much larger entity than we are 
considering.  In fact, Kuhn used the word “paradigm” in two 
senses (which he acknowledges in the postscript of the second 
edition): the large scale paradigm of a whole field, and the smaller 
scale experimental paradigms that are used in particular 
experiments (e.g., the paired-associates paradigm, or Sperling’s 

for gathering data is some new domain-general induction 
method (e.g., Mill’s inductive cannons); instead it is likely 
to be a method unique to that field of inquiry (e.g., changing 
the temperature in a particular order, instructing subjects in 
a particular way). These developments are typically not new 
instruments being developed (although they can be); rather 
they are typically new methods for using the same 
instruments. The issue at hand is how such new methods are 
created. Our model includes several domain-general 
heuristics for the creation of such new methods. 

Paradigms are primarily created in the service of testing a 
hypothesis. The hypothesis embodies a set of assumptions 
about what features of the experiment are of interest. An 
experimental paradigm is created that emphasizes the 
features of interest. For example, to test the hypothesis that 
the number of steps in the route matter, the subject would 
create a paradigm in which the number of steps was an 
explicit feature of the paradigm. The corollary of this 
paradigm creation process is that paradigms are also created 
to de-emphasize features which are hypothesized not to 
matter (either by holding those features constant, or by 
removing them entirely from the experiment). 

Paradigms can also be created through analogy to other 
paradigms. For example, subjects in the MilkTruck task 
developed the paradigm of holding delivery item constant 
from the paradigm of holding house number constant. These 
analogous, example paradigms can be ones acquired 
through observation, or ones generated by oneself in other 
situations. Paradigms may also be created by analyzing the 
cause of failed experiments. For example, if an experiment 
produces an ambiguous outcome, a new paradigm can be 
created to disambiguate the outcome. In the MilkTruck 
domain, many subjects ran one experiment in which two 
steps in the program were identical (e.g., program 2 of 
figure 2)—subjects noticed that this kind of experiment 
produces an ambiguous outcome and rarely ran that kind of 
experiment again. Furthermore, these new paradigms may 
be created through an error analysis of thought experiments 
rather than actual experiments. 

The Experiment Space 
Many costs and risks are associated with conducting 
experiments (e.g., mental effort, money spent, and potential 
loss of face for a failed experiments), and one practical goal 
of experimentation is to minimize these costs and risks. 
Experimentation also has theoretical goals related to the 
acquisition of information about the world. For example, it 
is desirable to design experiments relevant to the question at 
hand, with easily-interpreted and unambiguous results. How 
are these often conflicting goals achieved in particular 
experiments? 

In our model, the theoretically oriented processes of 
experiment selection are achieved using two main 
heuristics: the examination heuristic and the discrimination 

                                                                                  
iconic memory paradigm).  We will use the term to refer to 
experimental paradigms of the second, smaller, kind. 



 

heuristic. The examination heuristic selects experiments 
which directly demonstrate the hypothesized effect. For 
example, a hypothesis about the behavior of acids in the 
presence of water leads to the selection of an experiment 
involving water. This tendency produces what has been 
called the +H test bias (Klayman & Ha, 1987) in rule 
discovery tasks: rules of the form “X’s are a member of the 
concept” will lead to the selection of X’s, rather than things 
that are not X’s, to test the rule. The discrimination heuristic 
selects experiments which can discriminate among 
competing hypotheses under consideration. This heuristic is 
used only when multiple hypotheses are being considered. 
Therefore, there is no bias to select highly discriminating 
experiments (experiments which discriminate among many 
potential hypotheses) in the absence of multiple, specific, 
active hypotheses. However, risk regulation does take into 
account expected information content. 

The practical goals of experiment selection are met 
through processes of complexity management and risk 
regulation. These experiments selection processes derived 
from the following phenomena in the MilkTruck domain. 
Firstly, using verbal protocol data, it was found that subjects 
choose shorter experiments when they were confused 
(unsuccessful at explaining experimental outcomes), and 
they choose longer experiments when they were highly 
confident (successful at explaining experimental outcomes). 
Secondly, using computer keystroke timing data, it was 
found that when recent experiments were easy to design 
(indexed by quick keystrokes), subsequent experiments 
were more likely to be longer. Conversely, when recent 
experiments were difficult to design (slow keystrokes), 
subsequent experiments were more likely to be shorter. 

Complexity management involves regulating experiment 
design and interpretation complexity, where complexity is 
defined relative to the current state of understanding and 
experimental expertise. For example, longer experiments are 
more difficult to generate when few operators for generating 
long experiments exist, and the longer experiments are more 
difficult to interpret when the knowledge of relevant 
dimensions is small. 

Risk regulation involves choosing experiments based on 
their perceived probability of producing an informative 
outcome. In many cases, this involves choosing between 
experiments which have a low probability of being 
successful, yet would be very informative if they are suc-
cessful, and experiments which have a high probability of 
being successful even though they contain little potential 
information.3 For example, conducting experiments which 
vary few features from the previous experiment are likely to 
behave exactly as predicted, whereas experiments in which 
many features have been varied have the potential of 
producing very novel results yet carry the risk of producing 
uninterpretable results. 

  
3 A successful experiment is one that can be meaningfully 
predicted or postdicted. 

Complexity management and risk regulation are often in 
opposition. For example, more complex experiments are 
more likely to be informative, but are also much more 
difficult to generate and interpret. These two factors are 
combined to produce an expected utility, which determines 
the final experiment choice. The balance between 
complexity management and risk regulation varies with 
expertise. For example, with experience, longer programs 
become more easily generated and interpreted, and so, all 
subjects in the MilkTruck domain wrote longer programs 
towards the end of the problem-solving session. 

The Data Representation Space 
How does one choose or change a data representation? 
Finding the general solution to these questions is a difficult 
task because there is no known universal language for 
describing data representations, nor is there a known 
universal generator of representations. As a partial solution 
to these questions, we present three heuristics used for se-
lecting representations from a previously existing repertoire. 

In our model, data representation change occurs through 
the following mechanisms: Notice Invariants, Analogy, and 
Brute-force search. Notice Invariants works as follows. 
Experience with experimental outcomes within a domain 
leads to the noticing of certain regularities. New 
representations are chosen which emphasize these 
regularities. This behavior is exemplified in the MilkTruck 
task as subjects begin to notice that the first part of the 
program rarely changes. They then change their data 
representations to include changing and unchanging 
segments of the program. 

Analogy produces representations by analogy to 
previously understood phenomena. For example, such 
analogies might include: computers are like programmable 
calculators, and atoms are like the solar system. The features 
used in the analogical source are applied to the analogical 
target. This process is similar to a categorization process. 
One kind of situation that triggers this process is the 
occurrence of salient, expectation-violating events, which 
force the recategorization of objects and events. 

Brute-force search is a process of searching haphazardly 
through the set of possible representations of objects in the 
environment (i.e., by considering each object, and all the 
features and feature clusters of each object). This is the 
method by which subjects in the MilkTruck domain tended 
to add features to their data representations. The order of 
search may be constrained by the salience or availability of 
the possible representations. The process of brute-force 
search typically occurs when the individual believes that the 
current representation may not include the causally-
predictive features. 

The Hypothesis Space 
In our model, the fundamental character of search in the 
hypothesis space is the piece by piece construction of 
hypotheses. This process, called piecemeal induction, was 



 

the method by which all subjects in the MilkTruck domain 
developed their hypotheses. In the first stage of piecemeal 
induction, a hypothesis is generated (either from memory or 
from data). Then, a scoping processes determines the 
generality or scope of the hypothesis. For example, a subject 
in the MilkTruck domain might hypothesize that the δ key 
reorders the last N steps only when a black triangle is 
selected (in contrast to concluding that the δ key reorders 
the last N steps no matter which triangle is selected). The 
dimensions used to form the scope are chosen from the 
current data representation. On each dimension, the most 
general scope value is preferred in the absence of counter-
evidence. 

With one or more particular hypotheses as input, 
abstraction processes generate more general hypotheses. For 
example, in the MilkTruck domain, subjects often abstract 
the hypothesis that the last N steps of the program are 
reordered from the particular hypotheses that there is no 
change with N=1, and the last two steps are changes with 
N=2. The number of particular cases that are sufficient to 
warrant a generalization is dependent upon expectations 
about the variability in the domain of study (which can be 
modified with experience). 

There are many candidate mechanisms for the generation 
of hypotheses. In the domains that we have studied, two 
main processes have been found: representational mapping, 
and pop-out. Representational mapping is mapping of 
objects (e.g., the triangles in the MilkTruck task) onto 
actions or parts of actions (e.g., the order direction of the 
step rearrangement), where both the object and the actions 
(and action parts) are already in the current representation. 
Representational mapping is similar to a memory search. 
The representations in memory are searched for 
correspondences. The more complex the mapping (i.e., 
greater number of predicates), or the less salient the to-be-
mapped feature, the lower the probability that the mapping 
will occur.  

Representational mapping uses two heuristics: unique-
function, and same-type. The unique-function heuristic 
favors mapping objects with no other known function onto 
actions or components of actions with no other known 
cause. The same-type heuristic favors mapping objects onto 
things of the same dimensionality. For example, binary 
object factors (e.g., black and white triangles) tend to be 
mapped onto inherently binary output factors (e.g., forward 
and reverse order). No actual experimental outcomes are 
necessary for representational mapping, since repre-
sentational mapping can work with abstract schemata as 
well as particular objects. Therefore, this mechanism is 
typically used for generating initial hypotheses in the 
absence of evidence. 

Pop-out occurs through automatic, categorization 
processes. When certain evidence presents itself, certain 
relationships are uniformly entertained. For example, exact 
similarity (whether coincidental or not) is automatically 
noticed. This automatic process is dependent upon represen-

tational factors. For example, if a feature is not encoded, no 
similarity involving that feature can be noticed. 

Comparison to Previous Work 
The details of our model are similar in many respects to 
other discovery models. The search space with the greatest 
degree of similarity is the hypothesis space. In particular, 
our piecemeal induction processes are very similar to the 
quantitative and qualitative rule induction processes of the 
BACON models (Langley, et al., 1987). FAHRENHEIT 
(Zytkow, 1987) is the intellectual precursor of our scoping 
processes. 
The pop-out mechanism we use is a very generic 

computational principle. Many production systems models 
have domain-specific productions which immediately 
recognize and hypothesize about certain kinds of relations 
and correspondences. For example, KEKADA (Kulkarni & 
Simon, 1988) immediately recognizes mixed or additive 
effects given certain kinds of data. In another domain, 
STERN (Cheng, 1990) immediately recognizes power 
functions in quantitative data. 
Turning to experiment space processes, there are no 

models of discovery that explicitly address the issue of 
complexity management. In contrast, several discovery 
systems have methods for ordering the experiment space 
search such that experiments likely to produce useful 
information are considered first. For example, AM (Lenat & 
Brown, 1984) focuses attention on concepts that produce 
novel results. In a similar fashion, DIDO (Scott & 
Markovitch, 1993) uses a curiosity heuristic which favors 
experiments testing the maximally uncertain part of the 
hypothesis. However, DIDO regulates whether experiment 
outcomes are considered further or ignored rather than 
regulating which experiments are conducted.  
The examination principle is implicit in many models (e.g., 

LIVE (Shen, 1993), AM (Lenat & Brown, 1984), 
EURISKO, DIDO (Scott & Markovitch, 1993), and DEED 
(Rajamoney, 1993)), but explicit only in IE (Shrager, 1985). 
The discrimination principle is also taken from Shrager’s IE 
model. However, there are similar principles in several other 
systems, including DEED (Rajamoney, 1993), and ABD-
Soar (Johnson, Krems, & Amra, 1994). 

Very few discovery systems create new experimental 
paradigms, and fewer still have considered this search space 
explicitly. STERN (Cheng, 1990) is one of the few such 
models. It has only one very simple paradigm creation 
mechanism. The most important difference between the 
paradigm construction in STERN and our model is that 
STERN creates new paradigms in order to try something 
new, whereas our model creates new paradigms because 
some feature of the new paradigm is desired. 

Data representation change also has rarely been modeled. 
However, Kaplan’s SWITCH (1989) presents a few 
heuristics for representation change, and they are different 
from the three heuristics explicitly postulated here (e.g., 
change grain size on failure, and pursue hot ideas). 
Furthermore, there are several programs capable of 



 

proposing new intrinsic properties, which might be 
construed as one form of data representation change. For 
example, BACON.4 (Langley et al., 1987) discovers the 
intrinsic property gravitational mass from the properties of 
force and distance by searching for constant relations among 
factors. There are also several kinds of conceptual hierarchy 
discovery programs that discovery new categories (i.e., new 
representations) by searching for feature invariance (e.g., 
Fisher’s COBWEB (1987)). However, there has been little 
previous treatment of the process by which features and 
objects are deleted from the data representation nor of the 
process of adding completely novel features (rather than 
creating new features by combining existing features). 

Conclusion 
 We have presented a general framework for 

understanding scientific discovery: the 4-space model of 
experimental paradigm, experiment, data representation, and 
hypothesis. This framework is a significant extension to the 
experiment and hypothesis space focus of the great majority 
of previous models of discovery, and we expect it to be 
applicable to many discovery domains. 

We also have outlined the way in which searches in these 
four spaces interact. These interdependencies make it 
advantageous to consider all four spaces. In particular, 
previous models of discovery may have been trying to solve 
the difficult problems of data representation and 
experimental paradigm search in the process of dealing with 
hypothesis and experiment space issues, and may have been 
confounding separate issues in the process. By considering 
these issues as conceptually distinct factors, and by studying 
their interrelations, we may gain further insight into the 
modeling of scientific discovery processes. 

The discovery task may be more computationally 
tractable by considering the experimental paradigm and data 
representation spaces explicitly. For example, rather than 
trying to consider all possible experimental paradigms while 
designing an experiment, it is easier to simply select from a 
small set of currently available experimental paradigms, and 
make the small number of decisions available in the selected 
paradigm. This set of experimental paradigms may be 
modified with experience in the discovery domain. 
Similarly, rather than trying to develop hypotheses using a 
very complete data representation containing all possible 
objects and features, simply select from the small number of 
objects and features in the current data representation. This 
data representation is also modified with experience in the 
domain. Thus, in both cases, very large search spaces are 
converted into several, much smaller search spaces. 

As of yet, we have not discussed the control processes 
that coordinate search between the four spaces. Part of this 
coordination is driven by the sequential structure of the task: 
first experiments are created and run, then they are 
analyzed. The remainder of this coordination is driven by 
the logical relationships between the four spaces: 
experimental paradigms must be selected/created before 
experimental details are selected; and data representations 

must be selected before hypotheses are evaluated and 
modified. However, there are some exceptions to this simple 
scheme: occasionally experimental paradigms are evaluated 
for their effectiveness immediately after an experiment is 
conducted; and new data representations are occasionally 
created in response to a failure to develop a new hypothesis 
using the existing representation. 

While our model has some features in common with other 
discovery models (although there are many novel features), 
the details of our model derive from detailed, on-line human 
performance data. This is in contrast to the majority of the 
existing discovery models that are motivated primarily by 
Artificial Intelligence goals or by historical analyses. It is 
interesting to note the similarities in underlying processes 
between our model and these other models despite the 
different modeling goals. 

The goal of our future computational work will be to 
pursue the complete implementation of our model, and 
assess the tractability of our theoretical model, as well as its 
generalizability to other domains. Furthermore, we wish to 
match our model more precisely to the empirical data 
obtained from our studies with the MilkTruck task. 
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