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Chapter Seven

Discovering the Present by
Predicting the Future

David Klahr

Remember that the future is neither ours nor wholly not ours, so that we may
neither count on it as sure to come nor abandon hope of it as certain not to
be

(Epicurus, 300 BC)

If 2 man carefully examine his thoughts he will be surprised to find how much
he lives in the future His well-being is always ahead Such a ereature is probably
immortal

{Ralph Waldo Emerson, 1827)

Marshall Haith solicited contributions to this volume with a claim and a
challenge. His claim was that contemporary psychologists have had a
“dearth of concern” with future-oriented phenomena. His challenge was
for us to view our own work in such terms.

My initial response to the claim was skepticism: “Certainly people
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have grappled with the psychology of the future,” I thought. But as the
opening quotations suggest, most of what has been said on the topic has
come from philosophers rather than psychologists (although one might
anachronistically interpret Epicurus’s statement as a comment on deci-
sion making under uncertainty and Emerson’s as relevant to metacogni-
tion). And though there is an extensive literature on the psychology of
time (Friedman, 1990, estimates thousands of articles in the last 100
years), little of it has addressed the psychology of thinking about the
future, and much of it tends to be inconsistent and inconclusive {see
Benson's summary, this volume).

Before writing this chapter, I had not thought about my own research
areas-—problem solving and scientific discovery—in terms of future-
oriented processes. However, Haith's challenge motivated me to reflect
on the extent to which the behaviors I was studying involved future-
oriented thinking. In so doing, I attempted to lay out a framework for
classifying future-oriented processes within which I could locate my own
work (and ultimately work in other domains). Therefore my present goal
is to review some of my research on the development of problem solving
and scientific discovery skills and to recast that work in terms of what it
suggests about how adults and children think about the future.

In the first section, I propose a framework for considering future-
oriented processes. In the second, I lay the groundwork for discussing
future orientation in terms of problem solving. In the next two sections
I summarize two lines of research that are based on this problem-solving
orientation, and I interpret the results of those studies in terms of future-
oriented processing: the third section summarizes some investigations
of preschool children’s ability to think ahead in the context of simple,
well-defined puzzles, and the fourth summarizes research on the devel-
opment of scientific reasoning skills. Here the problem-solving formula-
tion is extended to the domains of hypothesis formation and experimen-
tal design. In the final section, I return to the framework and attempt
to summarize the important future-oriented attributes of the processes
of problem solving and scientific discovery.

Before closing this introductory section, I must explain the somewhat
cryptic title I have chosen. It derives from considering the future-
oriented implications of the work on scientific discovery to be described
in the fourth section. Attempts to predict the future behaviors of a
complex system are successful only insofar as its underlying principles—
operating in the present—have been discovered. To the extent that our
predictions turn out to be incorrect, we must revise our characterization
of the current situation. That is, we discover the present by predicting
the future.
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Figure 71 Five-disk Tower of Hanoi puzzle The goal is to move all the
disks from peg A to peg C subject to the following constraints: (a) only one
disk can be moved at a time; (b) a larger disk can never be placed above a
smaller disk. The minimum path requires 31 moves. (In general, an n-disk
problem requires 2" —1 moves )

A FRAMEWORK FOR CONSIDERING FUTURE-ORIENTED
PROCESSES

Future-oriented processes appear to differ in the following critical attri-
butes: uncertainty, control, contingency, abstraction, social dependency,
and grain of abstraction. I can best explain these attributes by example.
Suppose you are thinking about making the first move in a puzzle like
the well-known Tower of Hanoi (TOH), shown in Figure 7.1. One could
ask the following questions about your thought processes:

Uncertainty. How certain can you be about the possible outcomes of
the move? In principle, deterministic puzzles with perfect information—
such as the TOH—have no uncertainty. You simply consider every possi-
ble first move you could make, all possible second moves, and so on,
until you have reached the goal Then you make the first move leading
to a minimum path solution. However, even in simple puzzles the combi-
natorics of this approach may require considering an enormous number
of moves, and such computations would overwhelm the limited human
cognitive capacity. Thus, even in a formally deterministic puzzle, the
degree of uncertainty depends on both the demands of the external
environment and the limitations of the human system. In contrast, some
situations are inherently uncertain, such as predicting the roll of dice,
or the deal of a hand of cards.

Control. To what extent are you in control of the current and future
situation? In two-person games like chess, control is only partial, because
your opponent’s possible moves must form a part of your view of the
future In contrast, in the TOH there is no adversary. Once you make
a legal move, you can be sure of reaching the state that move is supposed
to produce. As noted, even in the TOH, planning a full solution path
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involves some uncertainty, but there is no agent beyond you that will be
making any of the moves.

Type of contingency What kind of environmental response will be
evoked by your move? In zero-sum games like chess and checkers, it is
clear that the response will be adversarial. The opponent will attempt
to undermine your attempt to determine the future course of events In
the TOH there is no such contingent reaction. Nothing in the context
responds to whatever state you may reach. In collaborative or joint
problem-solving situations, the contingency is supportive There are
other agents in the context who will support and guide your outcomes.

Abstraction. Is the “grain”—the level of detail—of your thinking at
the same level as the grain of the relevant events? One function of a
plan is to suppress detail so that a rough sketch of the solution path can
be formulated. In chess one can suppress detail and make a general plan
(center control, queen side attack, etc.), but each of these plans
is ultimately unpacked into finer-grain units that eventuate in a legal
move.

Social Do you have to consider the future orientation of other people
in your own deliberations? This is related to the contingency issue listed
earlier, but it is focused entirely on the impact that other human problem
solvers, and your representation of their decision-making and problem-
solving situation is required in your own. This would involve some esti-
mate of their own goals and priorities. (The classic Prisoner’s Dilemma
paradigm for studying cooperation and conflict exemplifies the issues
here.)

Temporal extent What is the order of magnitude of the temporal
interval involved? Thinking about the future can be limited to very brief
intervals or extend to planning one’s life. It may be that the cognitive
processes involved for vastly different temporal extents are quite distinct.
For example, the range of future-oriented processes discussed in this
chapter varies from a couple of seconds to an hour or so, and real
scientific reasoning can go on for months and years.

At this point in the development of the taxonomy, it is likely that these
attributes are neither mutually exclusive nor exhaustive nor independent.
Nevertheless, I offer them as a useful starting point in the endeavor. 1
will attempt to answer the questions listed above in the context of re-
search on the development of problem-solving and scientific reasoning
skills. The projects to be described are based on the view that a wide
range of higher-order cognitive processes can be viewed as different
types of problem solving. Therefore I will preface the description of
those projects with a few general comments on what I mean by a
problem.
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PROBLEM SOLVING

Newell and Simon (1972) define a problem as comprising an initial state,
a goal state, and a set of operators that allow the problem solver to
transform the initial state into the goal state via a series of intermediate
states. Operators have constraints that must be satisfied before they can
be applied. The set of states, operators, and constraints is called a “prob-
lem space,” and the problem-solving process can be characterized as a
search for a path that links the initial state to the goal state. (But the
search need not be constrained to start with the initial state. Indeed,
working backward—f{rom goal state to initial state—is an appropriate
procedure in some situations.)

Weak Methods

In all but the most trivial problems, the problem solver is faced with a
very large set of alternative states and operators, so the search process
can be demanding. For example, if we represent the problem space as
a branching tree of m moves with b branches at each move, then there
are b™ moves to consider in the full problem space. As soon as m and b
get beyond very small values, exhaustive search for alternative states
and operators is beyond human capacity,' so effective problem solving
depends in large part on how well the search is constrained. Newell and
Simon (1972) divided different approaches to search constraint into two
broad categories: strong methods and weak methods.

Strong methods are algorithmic procedures, such as those for long
division or for computing means and standard deviations The most im-
portant aspect of strong methods is that—by definition—they guarantee
a solution to the problem they are designed to solve. However, strong
methods have several disadvantages for human problem solvers. First,
they may require extensive computational resources. For example, a
strong method for minimizing cost (or maximizing protein) of a list of
grocery items subject to other dietary and budget constraints is to apply
a standard linear-programming algorithm (Hadley, 1962). Of course do-
ing this in one’s head while pushing a shopping cart is hardly feasible.
Second, strong methods may be difficult to learn because they may
require many detailed steps (for example, the procedure for inverting a
matrix, or computing a correlation coefficient by hand). Finally, strong
methods, by their very nature, tend to be domain specific and thus have
little generality

1. For example, Newell and Simon (1972, p. 669) note that in chess ‘there are some-
thing like 10'® continuations to be explored, with much less than 10* nanoseconds avail-
able in a century to explore them "
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Weak methods are heuristic: they may work or they may not, but
they are highly general The trade-off for the lack of certainty associated
with weak methods is that they make substantially lower computational
demands, are more easily acquired (indeed, some may be innate}, and
are domain general. Newell and Simon (1972) describe several kinds
of weak methods, used by both human problem solvers and artificial
intelligence systems. I will describe only four such weak methods and
comment on the differences in their “future orientedness.”

Generate and Test

The generate and test method is commonly called “trial and error.”
It consists of simply applying some operator to the current state and
then testing to determine if the goal state has been reached. If it has
been, the problem is solved. If it has not, then some other operator is
applied. In the most primitive generate and test methods, the evaluation
function is binary: either the goal has been reached or it has not, and
the next “move” does not depend on any properties of the discrepancy
between the current state and the goal state or the operator that was
just unsuccessfully apph’ed An example of a “dumb” generating process
is searching in a box of keys for a key to fit a lock, and sampling with
replacement: tossing failed keys back into the box without noting any-
thing about the degree of fit, the  type of key that seems to fit partially,
and so forth. A slightly “smarter” generator would, at the least, sample
from the key box without replacement.

It is difficult to attribute much of a future orientation to this method,
beyond noting that the goal state is something that has not yet happened
and that, if it does occur, it will occur in the future. Neither progress nor
history is represented in the most primitive generate and test methods.

Hill Climbing

The hill climbing method gets its name from the analogy of at-
tempting to reach the top of a hill whose peak cannot be directly per-
ceived (imagine a foggy day with severely limited visibility). One makes
a tentative step in each of several directions, then heads off in the direc-
tion that has the steepest gradient More generally, the method com-
putes an evaluation function whose maximum value corresponds to the
goal state. Potential moves are generated, and the evaluation function is
applied to each potential state. The state that maximizes the increment
to the evaluation function is chosen, that move is made, and then the
process iterates from the new state.

Hill climbing utilizes more information about the discrepancy be-
tween the current state and the goal state than does generate and test.
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Instead of a simple all-or-none evaluation, it computes a measure of
goodness of fit between the two and uses that information to constrain
search in the problem space. However, its representation of the future—
the evaluation function—is primitive in two regards. First, it is very local
because it anticipates only the next step in the solution path. Second, it
is at an aggregate level that does not include any details about the struc-
ture of future states.

Means-Ends Analysis

Of all the weak methods, perhaps the best known is means-ends
analysis (Dunker, 1945; Newell & Simon, 1972). Means-ends analysis
compares the current state with the goal state and describes any differ-
ences. Then it searches for operators that can reduce those differences.
It selects an operator designed to reduce the most important differences
and attempts to apply it to the current state. However, it may be that
the operator cannot be immediately applied because the conditions for
doing so are not met. Means-ends analysis then formulates a subproblem
in which the goal is to reduce the difference between the current state
and a state in which the desired operator can be applied. Then it recur-
sively attempts to solve the subproblem.

As a homely example, consider the problem I faced in getting from
my office at Carnegie Mellon University to the conference room in
Breckenridge, Colorado, where I first presented the talk this chapter is
based on. The “difference” was one of distance, and among the set of
distance-reduction operators were flying, walking, biking, and so forth.
Flying was the operator of choice, but I could not fly directly from
my office to Breckenridge. This presented the subproblem of creating
conditions for flying (getting to an airport). Getting to the airport could
best be done by taxi, but there was no tax at Carnegie Mellon. The
sub-subproblem involved making a phone call to the cab company. But
all the university phones were out of order for the day during a transition
to a new system: only the pay phones worked. An even deeper subprob-
lem: make a call on a pay phone. But I could not apply that operator
(no pun intended) because I had no change. A Coke machine was handy,
however, and it accepted dollar bills and gave change. So I bought
a Coke in order to get on the solution path to transport myself to Col-
orado.

Means-ends analysis constructs a hierarchy of goals and subgoals, with
the parent node for a state corresponding to why something is being
done and the descendants of a node corresponding to how it will be
done. Because means-ends analysis computes a qualitative evaluation of
the difference between the current state and the goal state, and because
it generates a goal tree, it requires a highly articulated representation of
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both the present and the future. Of the methods described thus far,
means-ends analysis has the greatest future orientation.

Planning

Newell and Simon (1972) define planning® as another problem-solving
method consisting of:

1. forming an abstract version of the problem space by omitting cer-
tain details of the original set of states and operators;

2. forming the corresponding problem in the abstract problem space;

3. solving the abstracted problem by applying any of the methods
listed here (including planning);

4. using the solution of the abstract problem to provide a plan for
solving the original problem;

5. translating the plan back into the original problem space and exe-
cuting it

If we apply the planning method to the problem of getting to Breck-
enridge, we might produce a three-step plan: (1) take taxi to airport; (2)
fly to Denver; (3) drive rental car to Breckenridge. This plan contains
none of the details about phone calls, change, and Coke machines. Be-
cause planning suppresses some of the detail in the original problem
space, it is not always possible to implement the plan, for some of the
simplifications result in planned solution paths that cannot be effected.
For example, there might be no rental cars at the Denver airport.

Of the four methods described here, planning has the strongest future
orientation in its broad sweep from the current state to the goal state
It actually produces a sketch of the solution before the solution itself is
executed and in that sense anticipates the future.

Weak Methods and the Attributes of Future Orientation

This set of weak methods can be applied in a wide variety of contexts
involving different levels of uncertainty, control, contingency, and so
on. That is, the weak methods can be crossed with the future-oriented
attributes listed in the previous section to form a large space of future-
oriented situations. In the following sections I describe a small subset

9 Planning has had a very wide variety of definitions, ranging from ’little computer
programs that program the mind to perform certain cognitive tasks, such as long division,
brushing your teeth, or generating a sentence” (Wickelgren, 1874, p. 357) to “any hierarchi-
cal process in the organism that can control the order in which a sequence of operations
is to be performed” (Miller, Galanter, & Pribram, 1960, p. 16) to “the predetermination
of a course of action aimed at achieving a goal” (Hayes-Roth & Hayes-Roth, 1979, p. 275).
An elaboration and discussion of the many definitions can be found in Scholnick and
Friedman (1987) 1 use the Newell and Simon (1972) version here because it is much
better defined than the others and fits nicely in the set of weak methods
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of this space, based on several investigations of problem solving and
scientific reasoning in children and adults.

PROBLEM-SOLVING METHODS USED BY PRESCHOOL
CHILDREN

The broad generality of these four methods (as well as several others)
raises the question of their developmental course To the extent that
these methods vary in their degree of future orientation, understanding
their developmental trajectory might give us some insight into children’s
ability to anticipate and represent the future

My interest in children’s problem solving was stimulated by what I
perceived to be a discrepancy between Piaget’s {1976) claims about the
limited problem-solving capacities of preschoolers and my observations
of my own young children. Piaget (1976) used two-, three-, and four-disk
TOH problems (see Figure 7.1} with children from about 5% to 12 years
old. He reported that most 5- and 6-year-old children “cannot move the
three-disk tower even after trial and error. They do succeed in moving
the two-disk tower, but only after all sorts of attempts to get around the
instructions and without being conscious of the logical links” (p. 288).
From this performance Piaget concluded that “none of these subjects
make a plan or even understand how they are going to move the tower”
(p. 290); and later, “There is . . a systematic primacy of the trial-and-
error procedure over any attempt at deduction, and no cognizance of
any correct solution arrived at by chance” (p- 291). In contrast, I could
see behavior in my children that strongly suggested a capacity to plan
modestly complex action sequences, such as using one kind of object to
facilitate getting another that could then be used to accomplish a goal
(Klahr, 1978). In this section I will describe two studies designed to
investigate the kinds of methods preschool children use when faced with
novel puzzles that require them to “think ahead.”

Preschoolers’ Problem Solving on the Tower of Hanoi

The first task I will describe is a modification of the Tower of Hanoi
shown earlier. This puzzle has been used extensively to study adults’
problem solving (Simon, 1975; Anzai & Simon, 1979). It conforms to
the definition of a well-defined problem given earlier in that it contains
unambiguous descriptions of an initial state, a final state, and legal moves
(operators). The difficulty lies in discovering the sequences of legal
moves that transform the initial configuration into the desired one. To
use this task with young children, we modified it in several ways that
changed its superficial appearance while maintaining its basic structure
(Klahr & Robinson, 1981).
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{Goul state} —w

Experimenter's side
{Initial siate) ——m

Figure 7.2 Child seated in front of “monkey cans” working on a one-move
problem (state 2 to state 1: see Figure 7 3).

Materials. We reversed the size constraint and used a set of nested
inverted cans that fit loosely on the pegs. When they were stacked up it
was impossible to put a smaller can on top of a larger can (see Figure
7.2). Even if the child forgot the relative size constraint, the materials
provided an obvious physical consequence of attempted violations:
smaller cans fell off bigger cans.

Externalization of final goal In addition to the initial configuration,
the goal configuration was always physically present. We arranged the
child’s cans in a goal configuration and the experimenter’s cans in the
initial configuration. Then the child was asked to tell the experimenter
what she (the experimenter) should do in order to get her (experi-
menter’s) cans to look just like the child's. This procedure was used to
elicit the child’s reasoning about several future states: children were
asked to describe the complete sequence of moves necessary to solve the
problem.

Cover story. Problems were presented in the context of a story in
which the cans were monkeys (large daddy, medium-size mommy, and
small baby), who jump from tree to tree (peg to peg). The child’s mon-
keys were in some good configuration, the experimenter’s monkeys were

“copycat” monkeys who wanted to look just like the child’s monkeys.
The cans were redundantly classified by size, color, and family member-
ship for easy reference. Children found the cover story easy to compre-
hend and remember, and they readily agreed to consider the cans as
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Figure 7.3 State space of all legal configurations and moves for three-can
problem. States are arbitrarily numbered from 1 to 27. The can that moves be-
tween one state and the next is indicated on the line connecting the states.
The minimum path solutions for all tower-to-tower problems (see text) are
seven moves Flat-to-flat problems enclosed by matching geometric shapes

(e g, state 17 to state 6) also have seven-move minimum path solutions.

monkeys. The remaining variations are best described after considering
some of the formal properties of this task.

Figure 7.3 shows the state space for this problem: all possible legal
states and moves. Each state is one move distant from its neighbors, and
the can that is moved is indicated by the number on the line connecting
adjacent states. The solution to a problem can be represented as a path
through the state space. For example, the minimum solution path for
the problem that starts with all three cans on peg A (state 1) and ends
with them on peg C (state 8) is shown along the right-hand side of the
large triangle in Figure 7.3. The first move involves shifting the largest
can (can 3) from peg A to peg C, producing state 2. The next move
places can 2 on peg B (state 3), followed by a move of can 3 to peg B
(state 4), and so on. The “standard” TOH problems always end with all
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the cans stacked up on one peg. We call these “tower-ending” (T-end)
problems In the six states indicated by the large squares, circles, and
hexagons in Figure 7 3, all pegs are occupied. We call any problem that
ends in one of these states “flat-ending” (F-end). We used F-end as well
as the more commonly used T-end problems. As we shall see, for the
children in this study, F-ends were much more difficult.

Subjects

Fifty-one children attending the Carnegie Mellon University Chil-
dren’s School participated in the study. There were 19 children each in
the 4-year and 5-year groups and 13 in the 6-year group. The children
came predominantly, but not exclusively, from white, middle-class back-
grounds. There were approximately equal numbers of boys and girls at
each age level

Frocedure

Children were familiarized with the materials shown in Figure 7.2,
in the context of the following cover story.

Once upon a time there was a blue river (experimenter' points to space
between rows of pegs) On your side of the river there were three brown
trees. On my side there were also . . ., ete. On your side there lived three
monkeys: a big yellow daddy (present yellow can and place on peg), a
medium size blue mommy (present and place), and a little red baby The
monkeys like to jump from tree to tree [according to the rules]; they live
on your side of the river. (Establish legal and illegal jumps.) On my side
there are also three: a daddy, [etc ] {introduce experimenter’s cans). Mine
are copycat monkeys They want to be just like yours, right across the
river from yours. Yours are all stacked up like so {state 1] mine are like
so [state 2 or state 21]. Mine are very unhappy because they want to look
like yours, but right now they are a little mixed up Can you tell me what
to do in order to get mine to look like yours? How can 1 get my daddy
across from your daddy [etc ]?

During the initial part of the familiarization phase, the child was allowed
to handle the cans but was gradually dissuaded from doing so and was
instead encouraged to tell the experimenter what she should do in order
to get her cans to look like the child’s.

The final procedural variation we used was designed to satisfy two
opposing constraints. On the one hand, in order to give a precise diagnos-
tic of children’s problem-solving strategies, we wanted to use a rule
assessment procedure (Siegler, 1981), but that required a relatively long
series of problems (up to 40). On the other hand, we wanted to minimize
test effects that might result from children’s learning about different
path segments in the state space. Therefore we proceeded as follows:
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for each problem the child told the experimenter the full sequence of
proposed moves, and the experimenter gave supportive acknowledgment
but did not move the cans. Then the next problem was presented.

We used a set of 40 problems: four problems having minimum path
lengths of one, two, three, and four, and eight problems each with path
lengths five, six, and seven. For each path length, half the problems
were T-end and half were F-end. Problems were presented in two blocks
with only T-end problems in one block, only F-end problems in the
other Children were randomly assigned to one of the two block orders
(F-T or T-F).

Within a given block increasingly difficult problems were presented
in order until the child appeared to reach his upper limit. There were
several indicators of this upper limit: (a) explicit statements of confusion
or inability to continue; (b) abrupt violation of rules of the game (e.g.,
putting monkey in the river); (c) sudden loss of motivation; (d) consistent
errors in planned moves. At this point the session was terminated

Scoring

Videotape recordings of children’s behavior were transcribed and
scored as shown in the two examples in Table 71 The child’s move
sequences were encoded as shown on the right side of the table. Recall
that no cans were actually moved during these protocols, so all the
configurations shown in the “results” column (except the initial and final
ones) are imagined rather than real. The two protocols shown in Table
7.1 were scored as perfect six-move solutions.

Results

The main question of interest is how far into the future a child could
“see” in describing move sequences To avoid overestimating this capac-
ity on the basis of a few fortuitous solutions, we used a very strict crite-
rion. A child was scored as able to solve n-move problems only after
proposing the minimum path solution for all four of the problems of
length n. For example, to be classified as having the capacity to see five
moves into the future, a child would have to produce the minimum path
solution for the four five-move problems.®

The proportion of subjects in each age group producing correct solu-
tions for all problems of a given length is shown in Figure 7.4a for
T-end problems and Figure 7 4b for F-end problems. It is important to
reempbhasize that the abscissa in Figure 74 is not overall proportion
correct, but rather a much more severe measure: the proportion of

3 The four five-move problems included the following initial-final states shown in
Figure 73: 23~1, 3-8, 22-8, and 6-1
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TABLE 7.1 Two Six-Move Protocols and Their Encodings

a1/~ 321/—/—
Initial Goal Result
(state 16) (state 1) Move  3/21/- {Inital)
What you do is you put the daddy (3)
What you do is you move the daddy (3) over this tree {points
to C)
and move and move the baby
and then you move the mommy {2)
Wait; where could you move the mommy (2) to?
Well first move the mommy (2) on this tree (points to C) 2BC 3/ 172
then put the daddy (3) on that tree (points to C) 3AC -/ 1/32
and put the baby (1) over there (points to A) iBA 1/ /32
Then how would the mother? .
And after you put the baby (1) over here (points to A)
you could put the daddy (3} (points to B) 3CB 1/ 32
then you could put the mommy (2} over the baby, 2CA 21 3
and the daddy over the mommy 3BA 321/
3/-/21 321/~
Initial Goal
{state 7) {state 1} 3/-21 (Initial)
Oh, that. QK. That's easy
Just take the yellow one (3) and put it on there (B)
Take the (pointing to 2{C]) and take . ., take the
ba
No, take the blue one (2), put it on there (B), 2CB 379
and the, then take the yellow (3)
and put it on the blue {points toward C, then to B), 3AB 39/ 1
and then take the red (1) one and put it on here (A) 1CA 1/32/
And then take the blue (2) one and
no, and then . . and then put the yellow (3} one here (C) 3BC /3
and then put the blue one (2) on the red one, 2BA 21/~1 3
and then put the yellow one on the blue one. 3CA 321/~/-

subjects with perfect solutions on all problems of a given length. For
example, 69% of the 6-year-olds were correct on all four of the five-move
problems, while only 16% of the 5-year-olds and 11% of the 4-year-olds
produced four flawless five-move solutions.

The absolute level of performance was striking, given the results of
previous studies with children on this task (e.g., Piaget, 1976). On the
T-end problems over two-thirds of the 5-year-olds and nearly all of the
B-year-olds consistently gave perfect four-move solutions, and over half
of the 6-year-olds gave perfect six-move solutions. Almost half of the
4-year-olds could do the three-move problems. Recall that these solu-
tions required that the child manipulate mental representations of future
states, because the cans were not moved during or after the child’s
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Figure 74 Proportion of children at each age level producing perfect solu-
tions: (a) T-end problems; (b) F-end problems

description of the solution sequence. Furthermore, all intermediate
states were different from, but highly confusable with, the two physically
present states (the initial and final configurations).

A different picture emerged with F-end problems. One-third of the
youngest children could not do anything beyond a one-move problem,
and barely one-third of the 5-year-olds could reliably do the three-move
problems. Although the 6-year-olds did much better than the two
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younger groups, their F-end scores were also substantially below their
T-end levels

Summary: Future Origntation in Preschoolers’ Solutions to the
Tower of Hanoi

Our analysis revealed two important results—one relating to absolute
performance, the other to the effects of goal configuration. First, it is
clear that many 6-year-olds and some 5-year-olds are able to look ahead
six moves into the future, even in a novel domain with arbitrary goals
and constraints, as long as the subgoals are easily ordered. This ability
appears to result from systematic application of both planning and
means-ends analysis, as suggested by the typical protocols shown in Ta-
ble 7.1.

Second, the relative difficulty of formally equivalent problems (same
materials, rules, state space, and path length) depends on the form of
the goal configuration. Consider the seven-move, F-end problem from
state 15 to state 3: Which can will reach its ultimate destination first? It
is not immediately apparent. In constrast, for the T-end problem that
goes in the opposite direction (from state 3 to state 15), it is clear that
the smallest can will have to reach the goal peg first, then the middle-size
can, and so on. More generally, our results suggest that when the surface
form of the problem did not suggest an unambiguous ordering of sub-
goals, children had a difficult time applying means-ends analysis.

How do these results bear on the attributes of future-oriented think-
ing listed earlier? Although there was no difference between T-end and
F-end problems with respect to control, contingency, social dependency,
or temporal grain, the two types of problems did differ with respect to
effective uncertainty and grain of abstraction On T-end problems, chil-
dren were able to minimize the uncertainty that might have been intro-
duced by their own inability to keep track of the future sequence of
states, because they could focus on the sequence in which objects had
to reach their final position in the goal state This unambiguous subgoal
ordering enabled children to apply both the planning method and
means-ends analysis. They could plan to achieve the subgoal sequence
(at a slightly abstracted level of analysis) and then “unpack” the plan
by applying means-ends analysis in order to execute the detailed move
sequence necessary to achieve that subgoal For F-end problems, the
ambiguous ordering of subgoals rendered planning difficult. This in turn
made it difficult to deal with the subgoals at a slightly abstracted level
(as in planning) and kept the solutions at a very low level. Given chil-
dren’s capacity limitations, this difficulty increased the uncertainty level
of move outcomes
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Figure 7.5 The apparatus for the Dog-Cat-Mouse problem. Each animal
must be moved to its favorite food: the dog to the bone, the cat to the fish,
and the mouse to the cheese. On each move, an animal must move all the
way from one corner to another

Preschoolers’ Problem Solving on the Dog-Cat-Mouse Problem

In the second study to be described here, I investigated preschoolers’
ability to solve problems in which both planning and means-ends analysis
were difficult to apply (see Klahr, 1985, for details). By using a problem
that precluded the use of subgoals, I was able to assess the extent to
which children used some of the other weak methods listed above. More
specifically, I sought evidence that they could use the “hill climbing”
method.

The Dog-Cat-Mouse (DCM) puzzle consists of three toy animals (a
dog, cat, and mouse) and three toy foods that “belong” to the animals
(a bone, a fish, and a piece of cheese). The animals and the foods were
arranged on the game board illustrated in Figure 7.5. The board had
four grooves running paralle] to each side of the square and a diagonal
groove between the upper left and lower right comers of the square
formed by the four outside grooves. The animals could move along the
grooves, but they could not be removed from the board. The foods could
be fastened to and unfastened from small patches of Velero glued to each
of the four corners. A problem consisted of an initial state—indicated by
the placement of each animal in a corner of the puzzle, and a final
state—indicated by some arrangement of the bone, fish, and cheese.
The goal of the problem was to move each animal to its corresponding

food.
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Figure 76 State space for the Dog-Cat-Mouse problem. Each node repre-
sents a unique configuration of the three animals Each arc is labeled with the
piece that is moved to change states

This puzzle was chosen for several reasons. First, and most important,
it has ambiguous subgoal ordering: the order in which the animals will
reach their foods is not at all obvious. Second, it has easily remembered
rules and a natural way to represent the goal state. Third, the puzzle has
a sufficiently wide range of levels of difficulty. Finally, it is novel, so
children are unlikely to have encountered similar puzzles.

The state space is illustrated in Figure 7.6. Each node represents one
of the legal configurations of the three animals at the corners of the
game board. Each arc label corresponds to the animal that was moved
to get from one state to its neighbor. For example, traversing the state
space between nodes 1 and 2 requires a move of the dog. All problems
are defined in terms of their initial states (determined by the arrange-
ment of the animals) and their final states (determined by the arrange-
ment of the foods). For example, the problem shown in Figure 7.5 starts
at node 11 and ends at node 20.

Several properties of the state space are relevant to our subsequent
discussion:

Path length The minimum number of moves required to get from
the initial state to the final state. Problems vary in path length from one
move to seven moves. (Example: 1-20 has a path length of seven.)

Problem type. Some problems {rotation problems} do not change the
cyclical ordering of the three objects, while other problems (permutation
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problems) require a change in the ordering by using the diagonal link
on the problem board (also represented as a change from the outer to
the inner hexagon in Figure 7.6) Permutation problems start and end
with different permutations of the three animals (e.g, D-C-M-D . . .
versus D-M-C-D) (Examples: 115, 22--3). Permutation problems gen-
erally have several minimum paths. For example, the minimum path
from node 1 to node 19 could cross from the outer to the inner loop at
nodes 2, 4, or 6.

The effect of problems that differ along these aftributes depends on
the processes subjects use to solve them If they use a lot of forward
search, then on average longer problems should be more difficult, and
for equal-length problems, those starting with open nodes (three possible
first moves) should on average be more difficult than those with closed
nodes (two possible first moves). Permutation problems should be easier
for two reasons: first, they usually have several minimum paths, and if
subjects are moving randomly they are more likely to find one; second,
if subjects are able to formulate subgoals, then a very useful one would
be to fix the permutation (use the diagonal) and then rotate to the goal.

Problems, Subjects, and Procedure

Eight problems varying in path length (from four to seven) and prob-
lem type (permutation or rotation) were used. They are listed in the
bottom section of Table 7.2. In addition, four three-move training prob-
lems were used to familiarize the children with the rules of the game.
They are shown at the top of Table 7.2, Forty children from the Carnegie
Mellon University Children’s School participated (mean = 4 years, 10
months, SD = 63 months) Children were tested individually in a small
playroom, adjacent to their regular classrooms, that was equipped with
videotape recording facilities. After being brought into the room, the
children were presented with the DCM puzzle in the context of the
following cover story.

This is a game about three hungry animals, and your job in the game will
be to make sure that each animal gets its favorite food T have a dog here
who loves to chew on bones—would you please give the dog his bone? I
have a cat who Joves to eat fish, and 1 have a mouse who loves cheese
[subject distributes food] In this game I will mix up the animals and the
food, and you will have to move each animal to its favorite food There
are three important rules about how you can move the animals:

First of all, the animals always sit in the corners next to these circles.
They can move along these blue lines—around the outside or up the
middle, backward or forward—but they always have to stop in a corper
by a circle. That means they can never stop in the middle of a line like

this
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TABLE 7.2 Problem Sets, Structural Variables, Subject Performance, and Model
Performance for Dog-Cat-Mouse Puzze

STRUCTURAL VARIABLES PERFORMANCE VARIABLES

Problem Initial Goal Path Problem Problem Model's
number state state? length type difficulty® performance’
Training set

Tl 1 4 3 Rotation

T2 7 23 3 Permutation

T3 12 9 3 Rotation

T4 2 17 3 Permutation
Froblem Set

1 17 21 4 Rotation 640 544

2 18 8 4 Permutation 950 869

3 11 20 5 Permutation 436 510

4 1] 3 5 Rotation 179 278

3 13 19 6 Rotation 184 399

6 24 18 6 Rotation 263 352

7 14 7 7 Permutation 436 740

8 15 8 7 Permutation 580 800

*See Figure 76
PBroportion of children finding minimum path by second attempt
“Probability of medel's finding minimum path within two attempts.

The second rule is that only one animal can be in a corer at a time
This is because my mouse is afraid of my cat, my cat is afraid of my dog,
and believe it or not, this big dog is afraid of mice. So they never sit
together in one place, and you must never move an animal into a corner
where another one is already sitting.

The third rule is easy to remember—they always move one at a time
While the dog moves the cat and the mouse wait, and while the mouse
moves the dog and the cat wait. Let’s start with a couple of easy ones,
and then they will get harder (Children were not explicitly instructed to
minimize the number of moves; nevertheless here, as in many other stud-
ies, they appear to spontaneously attempt to produce efficient solutions.)

Problems were presented in the order shown in Table 7.2, Children
were given two chances to produce a minimum path solution to each
problem. If a problem was solved in the minimum number of moves,
then the next problem in the sequence was presented. If it was solved
in more than the minimum number, or if it had not been solved after
twice the minimum number of moves had been made, or if the subject
gave up, then the same problem was presented a second time Regard-
less of whether the second trial produced the minimum path, a longer
solution path, or no solution, the next problem in the sequence was then
presented.
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As each problem was presented, the children were reminded to re-
arrange the animals so that each animal would get its favorite food. The
children were allowed to make their own moves; if they attempted an
illegal move, they were reminded of the rules*

Scoring and Results

For each problem, subjects were assigned a 1/0 score based on
whether they found a minimum path solution by the second presenta-
tion. Each subject was assigned a score based on the proportion of passes
across the eight problems. Each problem was assigned a score based on
the proportion of subjects passing it.

Relative subject performance. Subjects” performance varied widely: the
highest-performing subject solved all but one problem, and three sub-
jects failed all but one. Problem difficulty also varied widely, from nearly
all subjects’ passing the easiest problem to over 80% failing the hardest.
The top-ranked subjects tended to fail only the harder problems, and
the lowest-scoring subjects passed the easier rather than the harder prob-
lems. Although ages were fairly uniformly distributed between 50 and
65 months, age was not correlated with proportion correct.

Relative problem difficulty. The mean problem difficulty (defined as the
proportion of subjects finding the minimum path) is shown in Table 7.2.
Path length was a poor predictor of problem difficulty. The two easiest
problems (1 and 2) were also the shortest, but even though they both
have a path length of four, there was a 30% difference in the proportion
of subjects passing them. The two next easiest problems (7 and 8) were
the longest (seven moves). The four hardest problems were intermediate
in path length, and within that set there was a large difference between
the pairs with the same path length. Neither path length nor problem
type was significantly correlated with problem difficulty.

Both path length and problem type are structural variables: features
of the problem rather than of the problem-solving process. Even if they
are good predictors of difficulty, they leave unstated the underlying pro-
cesses they affect. But structural variables alone do not cause behavior
directly: they are mediated by underlying processes. In situations of even
modest complexity, such as the DCM puzzle, there are several plausible
processes—or components of weak methods—and their interactions can

4 The most common illegal moves were moving an animal only halfway between two
corners, moving two animals to the same corner, or attempting to rearrange the foods
rather than the animals However, illegalities occurred on fewer than 5% of trals and
tended to occur only on the training problems
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best be understood by formulating an explicit process model, In the next
section I consider some models that might account for these results.

Weak Methods on the DCM Puzzle

State evaluation. Each of the weak methods described earlier has the
ability to evaluate the quality of a proposed move. That is, each can ook
to the future, but they differ in how much information they extract from
it and how they use that information about the future to guide their
behavior in the present. In generate and test, the evaluation is binary: a
state either matches the goal or it does not. In contrast, the hill climbing
method uses an evaluation function that gives some measure of how well
the current state matches the goal state. For the DCM puzzle, consider
an evaluation function—EV(x, y)-that computes how many of the
pieces in state x are in the same positions in state y. For example, EV(1,
7) = 0 because none of the pieces are in matching positions, whereas
EV(24, 5) = 2 because hoth the cat and the dog are positioned the
same way in the two states (see Figure 7.6).

1f children used such an evaluation function, then we would see two
kinds of biases in their move patterns: one bias would show up as a
tendency to favor moves that increase the function over those that leave
it unchanged. For example, in problem 2 (18 — 8) a first move of the
cat increases the evaluation function, while moving the dog does not. (A
cat move also stays on the minimum path, while a dog move does not.)
Over all trials and all subjects, on this problem, the cat was moved 81%
of the time. Even more revealing are the “garden path” problems, in
which the evaluation function produces a local improvement for moves
off the minimum path In problem 4 (10 — 5), the minimum path
move is the mouse, which does not increase the evaluation function. In
contrast, moving the cat does increase the partial evaluation function,
and it was preferred on 66% of the trials even though it is off the
minimum path. Similarly, on problem 5 (13 — 19), the nonminimum
path move of the dog was preferred on 61% of the trials.

Another bias would be to prefer moves that leave the evaluation
function unchanged over those that reduce it. For example, on problem
3 (11 = 20) the minimum path sequence requires that the dog be
temporarily removed from its goal position even though this reduces the
evaluation function. On 65% of all trials with problem 3, subjects pre-
ferred to move the cat rather than the dog even though this took them
off the minimum path

To determine whether subjects were using hill climbing on this prob-
lem, for each subject, I computed an evaluation sensitivity score: the
proportion of trials on which, if such an evaluation function preferred
one move to another, then the subject chose (one of) the preferred
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alternative(s). All subjects showed a sensitivity to partial evaluation. Eval-
uation sensitivity scores ranged from .60 to 90 (mean = 69, SD =
.03). As noted, this sensitivity to local evaluation is not necessarily bene-
ficial, for on garden path problems it moves subjects away from the
minimum path. Indeed, evaluation sensitivity scores were negatively cor-
related with overall performance, suggesting that on this set of DCM
problems excessive reliance on hill climbing was dysfunctional.

Goal detection. Instead of a multivalue evaluation function, a problem
solver could use a simple binary evaluation in conjunction with the capac-
ity to search n moves ahead for the goal. Then we should see perfect
performance (no deviations from a minimum path) from n steps away.
To assess how far ahead each subject could “see,” 1 computed a goal
detection score based on the distance from the goal reached directly
100% of the time. For example, if a subject produced minimum path
solutions every time he or she was two moves from the goal state but
on only 85% of the occasions from three moves away, then the subject
would get a goal detection score of 2. Four subjects had goal detection
scores of 0, nine had scores of 1, 11 scores of 2, 13 scores of 3, and 2
scores of 4. Overall, two-thirds of the subjects could stay on the mini-
mum path when they were no more than two moves distant from the
goal, and one-third could do it even from three moves away.

Strategic analysis. Because subjects appeared to be using a combination
of methods, I attempted to capture their behavior by formulating a
simple model of how they might approach problems—such as the
DCM-—in which subgoal ordering is ambiguous. The model has three
parameters whose values were empirically determined. First I will de-
scribe the model, and then I will justify the parameter settings. The
model makes each move according to the following rules:

If there is an n-move sequence that can reach the goal state, then make
it, otherwise:

Generate all candidate moves On all but p;% of trials, delete the piece
just moved from the candidate set {e.g , backup is allowed with probability

p1)

If there is more than one candidate, then compute EV between each
candidate node and the goal node Choose the move with the maximum
EV on po% of trials. On (1 — py%) of the trials, or if the EVs for all
candidate moves are equal, choose among them randomly

The model is an imperfect hill climber The imperfections are that (a)
the model occasionally backs up, (b) it moves directly to the goal when
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Figure 7.7 Actual versus predicted problem difficulty. Circles show propor-
tion of all subjects passing by second trial. Squares show proportion of 460
cases that model passed by second trial

it is near, and (c) it does not always choose the move having the maxi-
mum EV. The imperfections are captured in the model’s parameters: n
is the depth of goal detection, p; is the backup probability, and p, is the
probability of being affected by EV. The values for these parameters
were empirically derived: n was set to 2, based on the goal detection
analysis, p, was set to 10, because 10% of all moves were double moves,
and p, was set to .69.°

The model was implemented as a computer program, and each prob-
lem was presented to the program 400 times. Each solution path was
scored as a 1 or 0 by the same criteria used for subjects’ performance.
Then the proportion of minimum path solutions (out of the 400} was
computed, and this was converted to a probability of solution by the
second attempt. The results are shown in the final column in Table 7.2
and Figure 7.7 The model accounts for over 70% of the variance in

problem difficulty.

Summary: Future Orientation in Preschoolers’ Use of Hill Climbing

Presenting preschoolers with problems having ambiguous subgoal or-
dering revealed what weak methods they could invoke when means-ends
analysis was not useful. One extreme possibility was that they would
resort to random trial and error. The other was that they would use a
more appropriate weak method The results of this study support the
latter alternative.

5 This equals the mean of the partial evaluation sensitivities described earlier
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The composite model described above embodies two kinds of future
orientation. When the short-term future (in this instance two moves
away) is certain, fully controlled, and noncontingent, the model moves
directly to the goal. Otherwise it computes the difference between the
desired future and the locally available options and chooses the best of
those. This sensitivity to incremental progress could degrade children’s
performance (as in the garden path problems). Nevertheless, it is reason-
able for children to attempt to use such information.

THINKING AHEAD IN SCIENTIFIC DISCOVERY:
DEVELOPMENTAL DIFFERENCES

The two problem-solving studies described so far use arbitrary tasks
designed to minimize the influence of children’s prior knowledge about
the world. At the other extreme of both complexity and the relevance
of prior knowledge lies the process of scientific discovery. Although it
can be viewed as a type of problem solving, scientific discovery has
several features that distinguish it from the simpler types of problems
described earlier.

First, the search process takes place in two spaces: a space of hypotheses
about the domain under investigation and a space of experiments in the
domain. Scientific discovery requires what we have called a “dual search”
in these two spaces (Klahr & Dunbar, 1988)

Second, the goal state is ill defined and complex. At the outset the goal
is simply “understand the domain,” and the constraints and parameters
of that understanding are developed during the discovery process itself
The complexity derives from the fact that the goal state is not a static
configuration like those used in TOH or DCM, but a state or rule of
nature that can only be inferred from the behavior of a complex, dynamic
system.

Third, there is mutuality between the states and operators in each space.
Moves from one hypothesis to another in the hypothesis space are effected
by “applying” experimental operators and interpreting the results of exper-
imental outcomes. Moves from one experiment to the next in the experi-
ment space are effected by attempts to evaluate the current hypothesis.

Fourth, prior knowledge plays an influential role in scientific discovery,
because subjects always come to the task with potentially relevant knowl-
edge about the domain. This prior knowledge influences the kinds of
hypotheses that are generated, the strength with which they are held, and
the experiments that are conducted to evaluate them.

These considerations led us to design a laboratory investigation of the
scientific discovery process. Given this goal, we faced the problem of
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searching our own experiment space. In doing this search, we imposed
some constraints on the kind of task we would use: (a) We wanted a
domain in which prior knowledge could influence both the initial hypoth-
eses that subjects might propose and the strength with which they held
them. (b} We wanted to allow subjects to design and evaluate their own
experiments rather than choose among a set of predetermined alterna-
tives. (¢) We wanted a domain in which the mapping between experi-
mental outcomes and hypotheses was not trivial. (d) We did not want to
play God with the subjects by telling them whether they had discovered
a true hypothesis. Instead, we wanted subjects to decide for themselves
when to terminate experimentation. (e) Finally, we wanted a task that
was interesting and challenging for a wide range of ages.

Future Orientation in Discovery Microworlds

Scientific discovery requires subjects to think about the future in three
senses: (a) they need to be future oriented in their specific predictions
about the outcome of the next experiment; (b) they need to consider
the future unfolding of the planned sequence of experiments that will
be used to evaluate currently held hypotheses; (c) they need to think
about the future of their own knowledge states and how they might be
changed by the results of their experiments. The studies to be described
below investigate the extent to which children and adults can think about
the future in these senses.

Laboratory Simulation of Scientific Discovery: BigTrak

The device we used is a computer-controlled toy robot tank called Big-
Trak. It is a battery-operated, programmable, self-contained vehicle ap-
proximately 13"" x 5'" x 8''. The BigTrak keypad interface is depicted
in Figure 7.8.° The basic execution cycle involves first clearing the mem-
ory with the CLR key and then entering a series of up to 16 instructions,
each consisting of a function key (the command) and a one- or two-digit
number (the argument). The five command keys are: 1 (move forward),
| (move backward), < (turn left), — (turn right), and FIRE When
the GO key is pressed BigTrak executes the program. For example,
suppose you pressed the following series of keys:

CLR 1 5«7 1 3~ I5FIRE2 | 8GO.

When the GO key was pressed, BigTrak would move forward five feet,
rotate counterclockwise 42° (corresponding to seven minutes on an ordi-
nary clockface), move forward three feet, rotate clockwise 90°, fire (its

6 Figure 78 actually shows the keypad from the BT microworld (to be described
shortly} based on the BigTrak toy
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Figure 7 8 Keypad used in BigTrak and BT studies. See text for details

“laser cannon”) twice, and back up eight feet. Our precedure had three
phases.

1. Subjects were introduced to BigTrak and instructed on the use of
each basic command. They were also instructed in how to generate
verbal protocols. During this phase the RPT key was not visible. Subjects
were trained to criterion on how to write a series of commands to accom-
plish a specified maneuver This phase corresponded to a scientist’s hav-
ing a basic amount of knowledge about a domain but not understanding
all its ramifications

9. Subjects were shown the RPT key. They were told that it required
a numeric parameter (N), and that there could be only one RPT N in a
program. They were told that their task was to find out how RPT worked
by writing programs and observing the results. This corresponded to a
new problem in the domain: an unresolved question in an otherwise
familiar context.

3. Subjects could formulate hypotheses about RPT and run experi-
ments to test them. This required decisions about hypotheses and deci-
sions about experiments. Subjects were never told whether they had
discovered how RPT worked They had to decide when to terminate
search.

In one of our studies (Dunbar & Klahr, 1989) we used two groups
of subjects: Carnegie Mellon University undergraduates and children
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TABLE 7.3 Common Hypotheses (in Decreasing Order of “Popularity”
or “Plausibility”)

‘BRPT N’ tells BigTrak to Role of N
I Repeat the entire program N times Counter
2 Repeat the last step N times Counter
3 Repeat the subsequent steps N times Counter
4 Repeat the entire program once Nil

5. Repeat the last N steps once Selector
6. Repeat the Nth step once Selector
7. Repeat the first N steps once Selector
8. Repeat the entire program f(N) Hmes Counter

between the ages of 8 and 11 years. Before I describe their performance,
here is how the RPT key works. It takes the N instructions preceding
the RPT N instruction, and it repeats that sequence one more time.
Because this rule is somewhat counterintuitive to the common interpre-
tation of “repeat,” it was not easy to discover.

Results: BigTrak Study

Only 2 of 22 children were successful, although 12 of the unsuccessful
children were sure they had discovered the correct rule and terminated
their experimentation quite satisfied with their discovery. In contrast,
nearly all the adults discovered the correct rule, but it was not a trivial
task for them. In fact, with respect to average time, number of hypothe-
ses, and number of experiments, the adults were not very different from
the children The explanation for these vastly different success rates
must lie at a deeper level. We need to look more closely at the nature
of the hypothesis space and the experiment space.

Subjects generated a variety of hypotheses during their experimental
phase. The more common hypotheses are listed in Table 7.3 in order of
decreasing popularity or plausibility. (Recall that the correct rule is actu-
ally number 5.) Hypotheses are classified according to the role they
ass1gn to the parameter that goes with the RPT command. In hypotheses
1, 2, 3, and 8, N counts the number of repetitions. We call these

“counter” hypotheses. In hypotheses 5, 6, and 7, N determines which
segment of the program will be selected to be repeated. We call these
“selector” hypotheses. This distinction between counters and selectors
turns out to be very useful in our subsequent experiments. Search in
the BigTrak hypothesis space can involve local search among counters
or among selectors, or it can involve more far-ranging search between
counters and selectors.

How can we characterize the BigTrak experiment space? At one ex-
treme it is enormous: for example, counting only commands, but not
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Figure 79 Part of the experiment space for the BigTrak studies Each cell
corresponds to a particular combination of program length (A} and argument
for the RPT key {(N) Sample programs are shown for three cells: (4,1) (3,2)
and (1,4).

their numerical arguments, as distinct, there are over 5'° distinct pro-
grams that subjects could write. However, we have found that we can
adequately characterize the experiment space in terms of just two param-
eters. The first is \, the length of the program preceding the RPT. The
second is the value of N, the argument that RPT takes Because both
parameters must have values less than 16, there are 225 “cells” in the
A ~ N space. Within that space, we identify three distinct regions: region
1 includes all programs with N = ; region 2 includes all programs in
which 1 < N < \; region 3 includes all programs in which N 2 A A
segment of the experiment space, showing the different regions, is de-
picted in Figure 79, together with illustrative programs from each re-
gion. Programs from different regions of the experiment space vary in
their effectiveness. Note that programs from region 2, where there are
more steps than the value of N, are particularly informative.

This analysis of the hypothesis space and the experiment space en-
abled us to discover a couple of interesting things about how subjects
approached this task. By examining the pattern of experiments, we could
determine how much of the experiment space subjects searched, and by
analyzing their verbal protocols we could classify experiments in terms of
where they were in the hypothesis space at the time of each experiment.

We found there were two distinet types of subjects, with fundamen-
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TABLE 7.4 Differences between Theorists and Experimenters in BigTrak
Study

THEORISTS EXPERIMENTERS

State selector frame State selector frame
without sufficient only after sufficient

Defining property evidence evidence

Time (minutes) 11 25

Total experiments 93 184

Esperiments without hypotheses 08 61

Comments about experiment space 59 09

Experiment space cells used 57 99

tally different strategies. We distinguished the two groups by how much
information they had when they changed from a counter frame to a
selector frame. If they made the switch without having seen the result
of a region 2 experiment, then we called them theorists, because they
could not have based their decision on conclusive experimental evidence.
On the other hand, if they made the switch from counters to selectors
only after running region 2 experiments, we called them experimenters.
(This analysis makes sense only for the adults, since so few children
discovered the correct rule )

The two strategies were accompanied by other differences, as shown
in Table 7.4. Experimenters took twice as long to discover how RPT
worked; they explored much more of the experiment space; and they
conducted many more experiments without any active hypothesis. That
is, they ran experiments in order to generate a data pattern over which
they could induce a frame.

Development of Search Constraints in the Experiment Space

This tendency to suspend the hypothesis-testing mode while attempting
to discover some kind of regularity in the data is very common and an
extremely important aspect of scientific reasoning. In terms of future-
oriented processes, subjects realized they had little control over the out-
come of an experiment because they were unable to produce any hypoth-
eses at this point By switching from hypothesis space search to
experiment space search, they were attempting to discover some regular-
ities that would enable them to gain control and certainty over their
predictions. This behavior suggested that we needed to find out a lot
more about how subjects searched the experiment space and about how
different goals might influence that search.

To study these issues, we decided to use the BigTrak paradigm in
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such a way that we could focus on developmental differences in the
heuristics used to constrain search in the experiment space. We lmew
that subjects at all ages shared domain-specific knowledge that biased
them in the same direction with respect to the plausibility of different
hypotheses. We expected both age and scientific training to reveal differ-
ences in the domain-general heuristics used to constrain search in the
experiment space.

One consequence of domain-specific knowledge is that some hypothe-
ses about the domain are more plausible than others. We explored the
effect of domain-specific knowledge by manipulating the role of plausible
and implausible hypotheses. Our goal was to investigate the extent to
which prior knowledge-—as manifested in hypothesis plausibility—
influenced how people designed experiments and how they interpreted
the results of those experiments.

For this study (Klahr, Fay & Dunbar, 1993) we moved from the
original BigTrak toy to a computer microworld called BT, in which a
simulated “spaceship” moved around on a computer screen according
to instructions entered on a BT keypad (also displayed on the screen).

The study had three phases. The first and third phases were the same
as in the previous study. Subjects learned about all the normal keys and
were trained to criterion on getting BT to move around the screen. In
the second phase, the RPT key was introduced as before. Subjects were
told that their task was to find out how RPT worked by writing at least
three programs and observing the results But then we changed the
procedure a bit, by suggesting one way that RPT might work. The experi-
menter said:

“One way that RPT might work is™: [and then we stated one of four
hypotheses listed below} Then we continued with the instructions: “Write
down three good programs that will allow you to see if the repeat key
really does work this way ..~

When subjects had written, run, and evaluated three experiments, they
were given the option of either terminating or writing additional experi-
ments if they were still uncertain about how RPT worked. The entire
session lasted approximately 45 minutes.

Throughout the study, we used only four rules for BT. Recall that
our earlier studies with adults and grade-school children revealed two
very “popular” hypotheses about the effect of RPT N in a program The
two popular, or plausible hypotheses were counters:

A: Repeat the entire program N times,
B: Repeat the last step N times
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TABLE 7.5 Design of BT Experiment: Specific Hypotheses for Each Given-Actual
Condition

ACTUAL RULE

Given hypothesis Counter Selector

Counter B: Repeat last step N times A: Repeat entire program N times
A: Repeat entire program N times D: Repeat last N steps once
Theory refinement Theory replacement

Selector D: Repeat last N steps once C: Repeat step N once
A: Repeat entire program N times D: Repeat last N steps once
Theory replacement Theory refinement

In contrast, there were two hypotheses (selectors) that subjects were
unlikely to propose:

C: Repeat the Nth step once,
D: Repeat the last N steps once.

We provided each subject with an initial hypothesis about how RPT
might work The Given hypothesis was always wrong, but depending on
the condition, subjects regarded it as either plausible or implausible. BT
was always set to work according to some other rule. We called that the
Actual rule. Both the Given and Actual could be either piausibie or
implausible. In some conditions the Given hypothesis was only “some-
what” wrong, in that it was from the same frame as the way RPT actually
worked. In other conditions the Given was “very” wrong, in that it came
from a different frame than the Actual rule.

The BT simulator was programmed so that each subject worked with
a RPT command obeying one of the two counter rules or two selector
rules described above. We used a between-subjects design, depicted in
Table 7.5. The Given hypothesis is the one suggested by the experi-
menter, and the Actual rule is the way BT was programmed to work for
a particular condition. Remember, the key feature of this design is that
RPT never worked in the way that was suggested

Changing from a hypothesis within a frame to another hypothesis
from the same frame (from one counter to another counter) requires
only a single slot value change In our microworld, this corresponds to
theory refinement. In contrast, changing from a hypothesis from one
frame to another hypothesis from a different frame (from a counter to
a selector) requires a simultaneous change in more than one attribute,
because the values of some attributes are linked to the values of others.
This corresponds to theory replacement.
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Figure 7 10 Overall success rates: proportion of subjects discovering the rule
as a function of grade level and Given-Actual condition

Subjects

We used four groups of subjects: Carnegie Mellon University (CMU)
undergraduates, community college (CC) students, “sixth” graders (a
mixed class of fifth to seventh graders, mean age 11 years), and third
graders (mean age 9 years).

CMUs were mainly science or engineering majors, whereas the CCs
had little training in mathematics or physical sciences. Children came
primarily from academic and professional families. Most of the third
graders had about six months of LOGO instruction (all had at least one
month of LOGO) Note that CCs had less programming experience than
the third graders.

Results of the BT Microworld Study

As we expected, domain-specific knowledge—as manifested in expec-
tations about what “repeat” might mean in this context—played an im-
portant role. Regardless of what the Given hypothesis was, subjects
found it easier to discover counters (81%) than selectors (35%). There
was also 2 main effect for group: the correct rule was discovered by 83%
of the GCMUs, 65% of the CCs, 53% of the sixth graders, and 33% of the
third graders. This group effect is attributable to the Actual = selector
conditions, in which 58% of the adults but only 13% of the children
were successful In fact, none of the third graders discovered selectors.
For counters, adults and children were not so different in their success
rates (88% versus 75%).

What about subjects’ reactions to the Given hypothesis? Recall that
we presented subjects with either plausible or implausible hypotheses
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TABLE 7.6 Subjects’ Responses to the Given Hypothesis

ADULTS CHILDREN
Category Counter Selector Counter Selector
1. Accept Given 0 G0 71 33
2 Accept Given 30 40 06 06
and propose alternative
3 Reject Given, propose 0 0 23 61
alternative

in order to determine the extent to which search in the hypothesis space
was influenced by plausibility. This is one of the points at which domain-
specific knowledge (which determines plausibility) might affect domain-
general knowledge about experimental strategies.

Before running the first experiment, subjects were asked to predict
what would happen Their predictions mdlcated how well they under-
stood and accepted the Given hypothesis. Each subject’s response to the
Given hypothesis was assigned to one of three categories: 1, accept the
Given hypothesis; 2, accept the Given, but also propose an alternative;
3, reject the Given and propose an alternative.

The proportion of subjects in each category is shown in Table 7.6 as
a function of grade level and type of Given hypothesis. In both conditions
the adults always accepted the Given hypothesis, either on its own (cate-
gory 1) or in conjunction with an alternative that they proposed (category
2). Adults never rejected the Given hypothesis. In contrast, no third
grader and only two sixth graders ever proposed an alternative to com-
pare with the Given (category 2). Instead, children considered only one
hypothesis at a time. When given counters they mainly accepted them,
but when given selectors they mainly rejected them and proposed an
alternative, which was usually a counter of their own design.

This propensity to consider multiple versus single hypotheses affected
the type of experimental goals the subjects set. These goals, in turn,
were used to impose constraints on search in the experiment space. We
looked at these goals more closely by analyzing both what subjects said
about experiments and the features of the experiments they actually
wrote.

Subjects’ verbal protocols contained many statements indicating both
explicit understanding of the experiment space dimensions and a general
notion of “good instrumentation”: designing interpretable programs con-
taining easily identifiable markers. Subjects made explicit statements
about both kinds of knowledge. Here are some typical adult state-
ments:



Discovering the Present by Predicting the Future / 211

TABLE 7.7 Proportion of Self-Generated Constraints

Sixth Third

CMU CcC grade grade
Esplicit A — N comments 83 60 53 20
Standard turn units 92 95 71 53
Small arguments 92 85 65 47
Proportion of programs in 50 63 26 31

small experiment-space region

I don’t want to have two of the same move in there yet, I might not
be able to tell if it was repeating the first one or if it was doing the next
part of my sequence;

I'm going to use a series of commands that will . . . that are easily
distinguished from one another, and won't run it off the screen;

so I'm going to pick two [commands] that are the direct opposite of
each other, to see if they don't really have to be direct opposites but I'm
just going to write a program that consists of two steps, that I could see
easily. (emphasis added)

Sixth graders were somewhat less articulate but still showed a concern
for both experiment space dimensions and program interpretability. In
contrast, third graders rarely made such comments The proportion of
subjects making such comments is shown in the top row of Table 77.

At a finer level of detail, good instrumentation was assessed by how
well subjects observed three pragmatic constraints: (a) using standard
units of rotation, such as 15 or 30 “minutes” (90° and 180°), for turn
commands; (b) using small numeric arguments (values <5) on move
commands, so that the actions of BT are not distorted by having it hit
the boundaries of the screen; and (c) using distinct commands in a
program where possible. Programs constrained in these ways produce
behavior that is easier to observe, encode, and remember. For both
turns and moves, there was a strong effect of grade level.

Yet another interesting difference between the children and the
adults was the way adults limited their search to a small “corner” of the
experiment space. We looked at the section of the experiment space
with A between 1 and 4, and N between 1 and 3. This corresponds to
only 5% of the full experiment space. But we discovered that over half
of the adults” experiments occurred within this small area. On the other
hand, children’s experiments were much more scattered throughout the
space. Both what subjects said and what they did support the conclusion
that older subjects—even those with weak technical backgrounds-—were
better able than children to constrain their search in the experiment
space and to design interpretable experiments.
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Figure 711 Proportion of subjects with A > N on first experiment, by grade
level and Given condition.

So what were subjects trying to do here? What were their experimen-
tal goals? How can we infer these goals from the kinds of experiments
they ran? We reasoned as follows: If the experimental goal is to deter-
mine which of the program steps are repeated for selector hypotheses,
or to discriminate between selectors and counters, then subjects should
write programs having more than N steps (ie, with A > N) (In pro-
grams where A is several steps greater than N, it is easy to distinguish
among repeats of all steps, first step, last step, and N steps.) On the
other hand, if the goal is to demonstrate the effect of a counter, then
subjects should use larger values of N and (for pragmatic reasons) rela-
tively short programs (programs with A = N). Figure 711 shows the
proportion of subjects in each condition whose first programs had A >
N. Both of the aduit groups’ responses and sixth graders” responses were
consistent with the normative account I just gave. Third graders showed
the opposite pattern. More detailed results can be found in Klahr, Fay,
and Dunbar (1993).

Heuristics for Constraining Search

We believe that these patterns of constrained search in the experi-
ment space result from a set of domain-general heuristics that are differ-
entially available to children and adults. Based on the present study, we
have proposed the following four heuristics:

1. Use the plausibility of a hypothesis to choose experimental strategy
In this study we found that both children and adults varied their ap-
proach to confirmation and disconfirmation according to the plausibility
of the currently held hypothesis. When hypotheses were plausible, sub-
jects at all levels tended to set an experimental goal of demonstrating
key features of the given hypothesis rather than conducting experiments
that could discriminate between rival hypotheses.
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For implausible hypotheses, adults and young children used different
strategies. Adults’ response to implausibility was to propose hypotheses
from frames other than the Given frame and to conduct experiments
that could discriminate between them. Our youngest children’s response
was to propose a hypothesis from a different, but plausible, frame and
then to ignore the initial, and implausible, hypothesis while attempting
to demonstrate the correctness of the plausible one. Third graders were
particularly susceptible to this strategy.

9. Focus on one dimension of an experiment or hypothesis An incre-
mental, conservative approach has been found to be effective in both
concept attainment and hypothesis testing. This suggests that in moving
from one experiment or hypothesis to the next, or in moving between
experiments and hypotheses, one should decide on the most important
features of each and focus on just those features. Here the CMU adults
stood apart from the other three groups They were much more likely
than any of the others to make conservative moves—that is, to minimize
differences in program content between one program and the next

3. Maintain observability As BT moved along the screen it left no
permanent record of its behavior. Subjects had to remember what BT
actually did. Thus, one way to implement this heuristic is to write short
programs. Adults almost always used it, whereas the youngest children
often wrote programs that were very difficult to encode This heuristic
depends on knowledge of one’s own information-processing limitations
as well as knowledge of the device. Our finding that the third graders
did not attempt to maintain observability, whereas the sixth graders and
adults did, may be a manifestation, in the realm of experimental design,
of the more general findings about the development of self-awareness
of cognitive limitations (Wellman, 1990).

4 Design experiments giving characteristic results. This heuristic max-
imizes the interpretability of experimental outcomes. Physicians look
for “markers” for diseases, and physicists design experiments in which
suspected particles will leave “signatures ” In the BT domain, this heuris-
tic is instantiated as “use many distinct commands.” On average, about
half of all programs in each group did not contain any repeated com-
mands, although because third graders were more likely to use long
programs, they were more likely to use repeated commands, which re-
duced the possibility of generating characteristic behavior.

These, then, are the four heuristics our subjects used to constrain
search in the experiment space. As noted in describing each one, adults
and children differed in their use. Adults not only appeared to use each
of them, but also they seemed able to deal with their inherent contradic-
tions. In contrast, children either failed to use these heuristics at all or
else let one of them dominate. This is not simply a matter of children
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being unable to undesstand the logic of the discriminating experiment
or the difference between testing hypotheses and generating effects.
Indeed, Sodian, Zaitchik, and Carey {1991) have shown that even first
graders understand these distinctions in simple, two-alternative situa-
tions. The problem for young children is how to constrain search in a
very large space of hypotheses and experiments

Thinking About the Future in Discovery Tasks

In these discovery tasks, the subjects’ goal is to discover something about
the world. The only way they can gather information about the current
workings of that world is to enter a program and predict its outcome.
The subjects evaluate their understanding about how RPT works by
assessing the accuracy of that prediction. Thus, attempts to predict the
future behavior of a complex system lead to the discovery of its underly-
ing principles.

Recall the three senses in which scientific discovery invokes future-
oriented thinking: (a) predictions about specific experiments,.(b) plan-
ning an experimental sequence, and (¢} understanding that experimental
outcomes may, in the future, change current knowledge states. Adults
were able to maintain this future orientation in all three senses. Children

of middle-school age and beyond appeared to be able to deal with the
first sense but had difficulty with the other two. For example, even our
youngest children understood that their experiments would be played
out in the future, and that their predictions were about things yet to
come. However, children were less able than adults to understand that
they would be engaged in a series of experiments and that the experi-
mental series itself required an overall plan in which the outcome of
one experiment was related to the outcomes of prior and subsequent
experiments. Instead, our youngest children were satisfied with demon-
strating that they could maintain their current hypotheses by obtaining
a particular effect Finally, although we have only indirect evidence from
the studies reported here, it seems that adults were much more aware
than children that their own knowledge states would be changed by the
results of experimentation.

CONSIDERING THE FUTURE IN PROBLEM SOLVING AND
SCIENTIFIC DISCOVERY

In this final section, I retum to the framework (see Table 7.8) and
apply it to the domains discussed earlier. The rows correspond to various
situations in which an individual may have to think about the future,
and the columns correspond to the attributes of the framework. The cell
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TABLE 7.8 Framework for Future-Oriented Thinking Processes

Subject of Temporal
Domain thinking Uncertainty Control Contingency  Abstraction  Social  extent
Game playing ~ Move in chess  In principle. no; Partial  Adversarial No No minutes
and problem or checkers capacity lim-
solving its, yes
T-end problems  Na Full None Probably Ne seconds
in TOH
F-end problems Yes Fuft None No No seconds—
in TOH minutes
Solution path in  Near goal. no;  Fulf None No No rainutes
DCM distant from
poal, yes
Scientific rea- BT discovery Yes Pwtial  Informational Several No minutes—
soning levels hours
Colaborative Yes Partial  Supportive Several Yes minutes—
discovery levels hours
tasks

entries indicate the value of the attribute for the situation (at least ac-
cording to my best guess; this is, after all, a pretty informal process).

Future Orientation in Problem Solving

The entries at the top of Table 7.8 summarize the earlier analyses. For
many problem-solving and game-playing situations, the formal properties
of the task interact with the limited capacity of the problem solver in
ways indicated earlier. For example, for the Dog-Cat-Mouse problem,
the level of uncertainty depends on the distance remaining to the goal
and the subject’s depth of search capacity.

Future Orientation in Scientific Discovery

These attributes can also be considered with respect to the cognitive
processes involved in scientific discovery Scientiﬁc reasoning is inher-
ently uncertain, since nature responds to “moves” in ways still unknown
(else there would be no discovery to be made). The contmgenmes are
benign, because the physical world does not attempt to deceive or “hide
its secrets.” In our studies, control over the design of an experiment is
complete, but the outcome is not fully determined by the problem solver.
The degree of abstraction varies widely and is one of the distinctions
between effective and ineffective problem solvers in discovery tasks. Our
most effective subjects suppressed much of the detail in experimental
variation and thought only in terms of A and N Indeed, in most areas
of real-world science, skilled performance rests in no small measure on
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the scientist’s ability to work at just the right grain size, neither ignoring
relevant detail nor being overwhelmed by irrelevancies. In the tasks
reported here, there is no social aspect, but others have used the BT
paradigm to study the effects of collaboration on scientific discovery
(Teasley, 1992), and the real scientific enterprise has very influential
social components,

Other Varieties of Future-Oriented Thinking

All the tasks discussed in this chapter, from the Tower of Hanoi and the
Dog-Cat-Mouse to the BigTrak discovery tasks, involve problem solving.
But there are other kinds of future-oriented processes that are not easily
characterized in those terms. In these concluding paragraphs I will men-
tion a few extreme departures from the set of tasks I have just described.
I leave it as an exercise for the reader to extend the framework listed in
Table 7.8 to accommodate these situations, as well as the many others
described in this volume.

Consider first the kind of tasks presented to infants by Haith, Hazan,
and Goodman (1988)° in their demonstration that 3.5-month-old infants
developed expectations for patterns of alternating visual events. Because
the infants were responding to events that were not contingent on the
infants” behavior, Haith et al. characterized their future orientation in
terms of “expectancies” and “anticipations” about perceptual events. In
this most rudimentary form of future orienation, it appears that infants’
default assumption is to expect the future to be pretty much like the
past: static objects are expected to remain in place, moving objects are
expected to continue along their trajectories, and simple systematic pat-
terns of perceptual activity are expected to repeat indefinitely. Can this
kind of future orientation be cast as a type of problem solving? Perhaps
Haith et al. imply that infants do have a goal in such situations: “to
detect regularities in dynamic events and to develop expectations partly
in order to bring their behavior under self-control” (1988, p. 477). An-
other example of discovering the present by predicting the future?
Perhaps

There are other variations. One can think about the future with no
particular goal in mind: consider weather forecasting. One can construct
representations for nonexistent states (as in planning) but still lack a
future orientation (dreams, reminiscences, musings about missed oppor-
tunities and “the road not taken”). For example, consider the following:
I am thinking about the feasibility of skiing tomorrow from the top of
one mountain (A) to the bottom of a nearby mountain (B). I have a good
memory of the network of trails, and I mentally work my way down the

7. These tasks are also described in Haith's chapter in this volume
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slopes, planning tomorrow’s day. Now consider a different situation. As
I reflect on today’s skiing, I recall all the paths I took and think about
whether I could have gone from the top of A to the bottom of B. What
is the difference in these two mental processes? How does the future-
oriented plan differ from the memory-oriented reflection? What are
the processes and representations that differentiate these situations? In
constructing models of the psychological processes involved in future-
oriented thinking, it will be important to clarify these issues. I believe
that we do not kmow how to do this at present. Perhaps we will, in the
future.
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