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This review integrates 4 major approaches 1o the study of science— historical accounts of scientific
discoveries, psychological experiments with ponscientists working on tasks related to scientific discov-
eres, direct ohservation of ongoing scientific laboratories, and computational modeling of scientific
discovery processes-—by viewing them through the lens of the theory of humen problem solving. The
authors provide a brief justification for the study of scientific discovery, a summary of the major

approaches,

and eriteriz for comparing and copirasting them. Then, they apply these criteria to the
different approaches and indicate their complementarities  Finalty,

they provide several examples of

convergent principles of the process of scientific discovery.

The central thesis of this article is that although research on
scientific discovery has taken many different paths, these paths
show remarkable convergence on key aspects of the discovery
processes, allowing one o aspire to a general theory of scientific
discovery This convergence is often obscured by the disparate
cultures, research methodologies, and theoretical foundations of
the various disciplines that study scientific discovery, including
history and sociology as well as those within the cognitive sciences
(e.g., psychology, philosophy, and artificial intellipence).

Despite these disciplinary differences, common concepts and
terminology can express the central ideas and findings about
scientific discovery from the various disciplines, treating discovery
as a particular species of human problem solving. Moreover, we
may be able to use these concepts and this vocabulary over an even
broader domain to converge toward a commen account of discov-
ery in many areas of human endeavor: practical, scientific, and
artistic, occurring both in everyday life and in specialized technical
and professional domains

The doing of science has long atacted the attention of philos-
ophers, historians, anthropologists, and sociologists. More re-
cently, psychologists also have begun to turn their attention to the
phenomena of scientific thinking, and there is now & large and
rapidly growing literature on the psychology of science. (A good
description of the field in its infancy can be found in Tweney,
Doherty, & Mynatt, 1981, and a recen! summary of topics and
findings from investigations of the developmental, personality,
cognitive, and social psychology of science can be found in Feist
& Gorman, 1998).

Our review links four major approaches to the study of sci-
ence-historical accounts of scientific discoveries, laboratory ex-
periments with nonscientists working on tasks related to scientific
discoveries, direct observation of opgoing scientific laboratories,
and computational modeling of scientific discovery processes— by
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viewing them through the lens of the theory of human problem
solving, First, we provide a brief justification for the study of
scientific discovery. Then, we summarize the major approaches
and provide criteria for comparing and contrasling thern. Next, we
apply these criteria to the different approaches and indicate their
complementarities. Finally, we provide several examples of con-
vergent principles of the process of scientific discovery.

Why Study Scientific Discovery?

What accounts for the appeal of science as an object of study?
The answer varies somewhat according to discipline. From our
perspective as cognitive scientists, we see five reasons for studying
science: for its human and humane value, to understand its my-
thology, to study the precesses of human thinking in some of s
most creative and complex forms, to gain insight into the devel-
opmental course of scientific thinking, and to design artifacts——
computer programs and associated in strumentation-—that can carry
out some of the discovery processes of science and aid hurnan
scientists in carrying out others.

Value

The natuse of human thinking is one of the “big questions”~
along with the nature of matter, the origin of the Universe, and the
pature of life The kind of thinking we call scientific is of special
interest, both for its apparent complexity and for its products.

Scientific thinking has enhanced our ability to understand, pre-
dict, and control the natural forces that shape our worid. As the
myths of Prometheus and Pandora forewarned, scientific discov-
eries have aiso provided foundations for a technical civilization
fraught with opportunities, problems, and perils; and we call on
science increasingly 10 help solve some of the very problems it has
inadvertently created. The processes that produced these outcomes
are irresistible objects of study. Indeed, the same forces that
motivate physicists, chemists, mathematicians, and biclogists to
understand the important phepomena in their domains drive his-
torians, philosophers, sociologists, and psychologists to investigate
science itseif
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Mythology

A rich mythology about the ineffability of the scientific discov-
ery process, producing a paradexical view of science as magic, has
captured the romantic imagination As Boden (1990) puts it in her
book on the psychology of creativity,

The malters of the mind have been insidiousiy downgraded in scien-
tific circles for several centuries I is hardly surpdsing, then, if the
myths sung by inspivationalists and romantics have been music to our
ears. While science kept silent about imagination, antscientifie songs
naturally held the stage (p. 288}

At times, the mythology of the inspirationalists and romantics
has been promulgated by eminent scientists. For example, Ein-
stein, in one of his discussions with Wertheimer (1943) reveals his
uncertainty about “whether there can be a way of really under-
standing the miracle of thinking” {p. 227). Nevertheless, Einstein
does allow that the same processes that support everyday thought
also support scientific thought

The scientific way of forming concepts differs from that which we use
in our daily life, not basically, but merely in the more precise defi-
nition of conce;ﬁls and conclusions; more painstaking and systematic
choice of experimental material, and greater logical economy (Ein-
stein, 1936/1950, p. 98)

We believe that Einstein was wrong zbout the first claim (that
thinking is miraculons) and correct about the second (that scien-
tific concept formation is not gqualitatively different from the
everyday variety). The study of scientific discovery aims at spec-
ifying how normal cognitive processes enable humans o generate
the precise definitions, systematic choice of experimental material,
and logical economy that Einsiein identifies as the hallmarks of
scientific thought.

Pressing the Limits

A common scientific sirategy for understanding a complex
system is to explore its behavior at the boundaries. Pushing the
envelope allows researchers to test whether the same mechanisms
that account for normal performance can account for extreme
performance. For example, the same forces thal account for 1ift in
an airplane’s airfoil also account for stalls, but the mechanisms of
subsonic flight cannot fully account for the dynamics of supersonic
flight.

In human cognition, the products of scientific thinking lie at the
boundaries of thought capabilities. They epitomize the systematic
and cumulative construction of the view of the world around us
(and in us) Scientific knowledge represents, as Perkins (1981)
puts it, “the mind’s best work.” There are other manifestations of
cognitive excellence, but science has an internal criterion of
progress that sets scientific discovery somewhat apart from other
complex human thought, such as the creation of new art or political
institations.

Although the products of scieace reach one of the limits of
human thought, it remains an open question whether or not the
processes that support creative scientific discovery are widely
different from those found in more commonplace thinking. We
hypothesize that they are not. Sir Francis Crick’s (1588) reflections

on the processes leading to discovery of the structure of DNA
concur with this view:

1 think what needs to be emphasized about the discovery of the double
helix is that the path 1o it was, scientifically speaking, fairly com-
monplace. What was important wis nof the way it was discovered, but
the ohject discovered—the siructure of DNA #tself (p. 67, emphasis
added)

Although Crick views the thinking that led him and Watson to
make this remarkable discovery as fairty commonplace scientific
thinking, he stops short of the additional claim—imade by Ein-
stein—that commonplace scientific thinking is not basically dif-
ferent from everyday thinking Combined, the two claims support
the view that one can study scientific thinking by, for example,
examining the thought processes of participants in psychology
experiments Even if the discoveries that participants make in such
experimenis—the products of their inquiries—are of no scientific
significance, the explication of the processes nsed to make those
discoveries can add to the understanding of real-world scientific
discavery

The Paradox of Children's Thinking and Its Development

The simpilarities between children’s thinking and scientific
thinking have an inherent allure and an internal conwradiction The
allure resides in the inescapable wonder and openness with which
both children and scientists approach the world around them.

Children are bom scientists. From the first ball they send fying to the
ant they watch carry a crumb, children use science’s tools—enthusi-
asm, hypothesis, tests. conclusions—to uncover the worid's myster-
jes But somechow students seem to lose what once came naturaily.
{Parvanno, 1990, as quoted in Elder, 1990, p 20)

The paradox comes from the fact that investigations of chil-
dren’s thinking have produced evidence that partially supports
diametrically opposing views of their scientific reasoning skills. In
support of the child-as-a-scientist position, the developmental lit-
erature is replete with reports showing that very young children
can formulate theories (Brewer & Samarapungavan, 19915
Kanniloff-Smith, 1988; Wellman & Gelmasn, 1992), reason about
critical experiments (Samarapungavan, 1992; Sodian, Zaitchik, &
Carey, 1991), and evaiuate evidence (Fay & Klahr, 1996). Many
psychological studies also show that adults often exhibit system-
atic and serious flaws in their reasoning (Kuhn, Amsel, &
O'Loughlin, 1988; Schauble & Giaser, 1990} even after years of
formal scientific training (Mitroff, 1974) In contrast, many inves-
tigators {e g, Kern, Mirels, & Hinshaw, 1983; Kuhn et al, 1988;
Kuhn, Garcia-Mila, Zohar & Andersen, 1995; Siegler & I.icbert,
1975) have demonstrated that tratned scientists, and even untrained
lay adults, commonly outperform children on a variety of scientific
reasoning tasks.

The conflicting theoretical claims and empirical resulls emerg-
ing from the child-as-seientist debate have important implications
for science education. Moreover, the debate raises some deep
questions about how both scientists and children really think—
questions that can only be approached through more precise for-
mulation and study of the empirical and the theoretical aspects of
scientific thinking and discovery.
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Machines in the Scientific Process

The final reason for studying science is that such study may lead
to better science. What researchers learn about the science of
science leads into a kind of engireering of science in which-—as in
other areas— knowledge of a natural process can be used 1o create
an artifact that accomplishes the same ends by improved means.

This transition from scientific knowledge to engineered artifact
has already happened for scientific discovery, as computational
models used as theories of discovery in specific domains have
been transformed into computer programs that actuaily do some of
the discovery in these domains. An early exampie of this transition
from psychological model to expert system was the DENDRAL
program that, taking mass spectrogram data as input, identified the
molecules that had produced the spectra Among the descendants
of DENDRAL are programs that carry out automatically much of
the analysis for genome sequencing in biology and programs that,
independently or in association with human scientists, discover
plausible reaction paths for important chemical reactions.

Recent examples include Valdés-Perez's (1994a, 1094b, 1994c)
systems for discoveries in chemisiry and physics, Fajtlowicz’s in
mathematics (Erdos, Fajtlowicz, & Staton, 1991), Hendrickson's
program for the synthesis of organic compounds (Hendrickson &
Sander, 1993), and Callahan and Sorensen’s {1992) systems for
making discoveries in the social sciences (see Valdés-Perez, 1995;
& Darden, 1997, for brief reviews of recent work in the field)

Today, the conception and design of expert systems that can
collaborate with human scientists in making discoveries is a vig-
orous and srowing field of artificial intelligence research, enlisting
the efforts of both computer scientists and natural scientists in the
disciplines where the applications are being made. We do not
cover this activity in this article but call attention to it because
ideas from the expert-systems research are relevant for the theory
of human scientific thinking; and vice versa, components of human
discovery processes may be embedded in practical expert systems.

Conclusion: Why Study Scientific Discovery?

Scientific discovery is a highly attractive area for research
because it possesses several consequential features: refevance to
one of the great scientific questions, a mythology, 2 domain for
testing theory at the limits, a developmental paradox, and direct
applicability to expert system design. How does one go about
doing such research?

Approaches to the Study of Science

Empirical investigations of science fall into five overlapping
categories: (a) historical accounts, {b) laboratory studies, (c) ob-
servations of ongoing discovery, (d} computational or simulation
models, and () sociological studies. In this section, we describe
each approach briefly, and in the foilowing section, we discuss
their complementarity and convergence.

Historical Accounts

Historical accounts of scientific discovery usually aim at de-
scribing the cognitive and motivational processes of persons who
have made major contributions to scientific knowledge To varying
degrees, they examine both the processes germane 1o the scientific

problems themselves {internalist accounts) and the interaction of
these processes with the broader social environment {(externalist
accounts}. These accounts—which are based on analyses derived
from diaries, scientific publications, autobiographies, lab note-
books, correspondence, interviews, grant proposals, and memos-—
have been provided not only by historians (e g., Galison, 1987;
Holmes, 1985) but also by philosophers (e.g, Gooding, 1990;
Nersessian, 1992; Thagard, 1992) and psychologists (e.g., Feist,
1991, 1994: Gruber, 1974; Terman, 1954). The analyses are some-
times further enriched by retrospective interviews with the scien-
tists—for example, Wertheimer’s (1945) classic analysis of Ein-
stein’s development of special relativity or Thagard's {1998)
analysis of the recent discovery of the bacterial origin of stomach
ulcers

Laboratory Studies

Another way to study science is to observe people’s problem-
solving processes in situations crafted to isolate one or more
essential aspects of real-world science. These studies are typically
carried put in the psychology laboratory under the standard rubrics
of experimental design, with experimental and control conditions,
and the use of statistical significance tests. Participants in such
studies have included young children {Schanble, 1990; Siegler &
Liehert, 1975; Sodian et al., 1991), college sophomores (Mynatt,
Doherty, & Tweney, 1977, 197§ Qin & Simon, 1990; Schunn,
1995), lay persons (Kiahr, Fay, & Dunbar, 1993; Kuhn, 1989), and
practicing scientists (Schunn & Anderson, in press). The tasks
have ranged from some that bear only an abstract relation to real
scientific tasks to others in which a real scientific discovery was
stripped to its essential features so that it could be replicated in the
psychology laboratory.

Examples of abstract tasks include the discovery of the physics
of an artificial universe (Mynatt et al,, 1977, 1978), the discovery
of an unknown function on a programmable device (Klahr &
Dunbar, 1988; Schunn, 1995), and the discovery of arbitrary rules
and concepts (Bruner, Goodnow, & Austin, 1956; Wason, 196()
Examples of laboratory simplification of real scientific discoveries
include Dunbar's (1993) simulated molecular genetics labozatory,
in which participants were challenged to replicate Jacob and
Monod's (1961) discovery of genetic control, and Schunn and
Anderson’s (1999) comparison of experts’ and novices® ability 10
design and interpret memory experiments.

However, laboratory experimentation plays a much broader role
in science than simply as a tool for testing hypotheses that some-
one has proposed, and experimentation on the discovery process
itself can and should have similar breadth. In science there is an
important, and extremely common, form of experiment, at times
referred 10 somewhat dismissively as exploratory, that is guided by
no specific hypothesis to be tested, and no clear control condition,
but only a vague and general direction of inquiry. The goal of
exploratory experiments is to permit phenomena to appear that will
invite exploration or suggest whole new forms of representation or
generite new hypotheses (Simon & Kotovsky, 1963). Exploratory
experiments are of great importance in science, even though they
are often treated as second-class citizens in textbooks on research
methodology.

Michael Faraday's discovery of eleciromagnetic induction in
1831 came out of just such experiments, which were guided by no
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hypothesis more specific than “H, as OQersted showed, electric
currents can generate magnetism, then there should be circum-
stances under which magnetism will generate eleciic currents "
There was no control condition, but just a great deal of skillful
manipulation of apparatus, each new experiment being suggested
by the outcomes of the previous ones, 10 find an arrangement that
would produce the hoped-for phenomenon and centribute to un-
derstanding the conditions under which it would appear.

Similar comments can be made about Krebs’ experiments that
led to the discovery of the ernithine cycle for the in vivo synthesis
of urea. The experiments were Jargely driven by the broad idea that
amnino acids and ammonia were likely sources of the nitrogen in
wrea, which provided a reason for experiments with various amino
acids. However, it was a lucky accident that the key catalyst for the
reaction was an amina acid, ornithine, which, not being a source of
the nitrogen at all, was tested for the wrong reason The experi-
ments do not fit the textbook paradigm of control ard hypothesis
testing, but they were clearly exploratory in pature, and Krebs
himself saw them in that way

In the realm of the psychology of discovery, examples of such
exploratary laboratory studies include Qin and Simon’s (1590)
experiment in which college sophomores were presented with data
on planetary distances and periods to see if they could discover
Kepler's third law and Klahr and Dunbar’s ( 1988) initial study
with the BigTrak (In fact, in an interesting recursive twist, one of
the most important results produced by Klshr & Dunbar’s explor-
atory study was that their participants frequently did experiments
in the absence of any hypothesis but with the goal of generating
some interesting behavior of the device they were exploring.) We
describe a few other such studies in later sections of this article.

In studying scientific discovery, laboratory experiments need
sot be limited to replicating the processes scientists have used to
discover hypotheses to fit data, or to lest hypotheses. Exploratory
experiments can alse be used to help interpret other forms of
evidence about discovery, and we give examples, especially from
the work of Gooding (1990), of original and insightful efforts in
this direction. For instance, reconstructing the instruments and
methods used in historical discoveries permits the student of
discovery to re-experience the processes of generating and inter-
preting the original data in its physical context, thereby casting
light on the difficuliies faced by the original investigators in
artiving at the meanings of what they saw.

Observation af Ongoing Discovery

The most direct way to study science is Lo study scienlists as
they ply their ttade The observer records the important activities
of day-to-day lab meetings, presentations, pre- and postmeeting
interviews, lab notes, and paper drafts The raw data are then coded
and interpreted within the framework of psychological constructs

Both pragmatic and substantive factors make direct observation
extraordinarily difficult, and therefore the least common approach
to studying science H requires the trust and permission of the
scientists to allow an observer in their midst The observer must be
sufficiently well versed in the domain of investigation to under-
stand deeply what is happening and what the fupdamental issues,
problems, and solutions are.? Moreover, it is extremely time con-
suming. Finally, such investigations require a bit of luck, because
the outcome of suck a study is of much more interest if 2 major

discovery is made during the period of observation than if nothing
of any great importance happens One recent exemplary case of
this approach can be found in Dunbar's studies of four different
world-class labs for research in molecular genetics (Dunbar, 1994,
1997; Dunbar & Baker, 1994). Giere’s (1988, chapter 5) account
of how a high energy physics lab is organized provides a some-
what similar example of the in vivo approach, in contrast to the in
vitro approach of laboratory experiments.

Computational Models of Discovery: Artifact and
Explanation

A theory of scientific discovery processes can sometimes be cast
in the precise terms of 2 computational model that simulates these
processes and re-enacts discoveries. From a mathematical stand-
point, such 2 model is a set of difference equations that describes
and predicts the dynamic path the discovery system will follow
from the time it takes up a problem unti} it solves or abandons it.
Thus, it is highly similar 1o the systems of differential eguations
used to model theories in the natural sciences.

The goal of such a model is to replicate the key steps in the
cognitive processes of scientists as they made important discover-
jes {see Shrager & Langley, 1990, for an introduction to this
literature). Modeling draws on the same kinds of information as do
the historical accounts. However, it goes beyond the historical
record to hypothesize cognitive mechanisms that are sufficiently
specific to make the same discoveries the human scientist made,
following the same path.

Computational modeling of concept formation and rule induc-
tion—activities relevant lo scientific discovery-—has a long his-
tory (Hovland & Hunt, 1960; Simon & Kotovsky, 1963). More
recent {and much more complex) examples of the approach in-
clude computational models of the cognitive processes used by
Kepler, Glauber, Dalton, Krebs, and others in making historically
important scientific discoveries (Cheng & Simon, 1992; Gooding,
1990; Grasshoff & May, 1995; Kulkarni & Simon, 1990; Langley,
Simon, Bradshaw, & Zytkow, 1987; Simon, Langley, & Brad-
shaw, 1981)

Sociological Approaches

In recent years, the sociology of science has directed most of its
attention to externalist accounts of discoveries, which seek to
explain discovery as a product of political, anthropological, or
social forces (Bloor, 108%; Latour & Woolgar, 1986; Pickering,
1992: Shadish & Fuller, 1994) In these approaches, the mecha-
nisms linking such forces to actnal scientific practice are usually
motivational, soctal-psychological, or psychodynamic, rather than

! For a contrary view, see Williams {(1965), bul Gooding (1990} devei-
ops in detail essentially the position tzker here

2 However, those interesied in sociological faclors sometimes prefer
instead to be ignorant of the substantive knowledge and scientific conven-
tions of the laboratory under investigation. “Latour’s knowledge of science
was non-gxisient his mastery of English was very poor; and he was
compleizly unaware of the existence of the social studies of science. Apart
from {or perhaps even because of) this last {eature, he was thus in a classic
positon of the ethnoprapher sent to a completely foreign environment”
(Latour & Woolgar, 1986, p 273},
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cognitive (Bijker, Hughes, & Pinch, 1987). An interdisciplinary
amalgam of such studies has developed under the rubric of social
studies of science (e.g . see Laudan, 1977, Mahoney, 1979). This
amentation to the study of science provides some important in-
sights on how social and professional constraints influence scien-
tific practices, although these accounts tend to treat cognitive
processes at a large grain size relative to the questions addressed in
this article {Latour & Woolgar, 1986)

Some of this work has taken an exireme deconstructionist turn
thar has been rejected (Gross & Levitl, 1994) and parodied {Sokal,
1996). Unfortunately, such extremes have led many researchers in
the physical and biological sciences to mistakenly conclude that all
social science approaches—~including cognitive psychology—
have Lttle to contribute to a betler understanding of science.
However, the work surveyed here is not subject to this criticism,
for it conforms to the szme canoas of science &s the research it
underiakes to describe and explain. In any event, because of our
internalist emphasis, we do not have much to say, in this article,
about the sociology of science, either in its defensible or indefen~
sible forms.

Assessing the Approaches

Each of the four approaches that are used in research on scien-
tific discovery has its particular strengths and weaknesses In this
section, we summarize the criteria generally used for evaluating
research methods in general and psychalogical research methods
in particular, and then we assess, in general terms, the extent to
which the different approaches satisfy these criteria

Criteria for Evaluating Research Methods

The effectiveness of a research strategy for addressing a partic-
ular problem of scientific discovery can be assessed in terms of
eight criteria: {a} face validity, (b) construct validity, (¢) temporal
span and resolution of data, (d) fruitfulness for discovering new
phenomena, () rigor and precision, {f) control and factorability of
variables, (g) external validity, and (h) social and motivational
consext.

Face validity. A study has face validity if it measures what it
is supposed to measure Research on scientific discovery has face
validity to the extent that the phenamenon being investigated is
clearly an instance of something being discovered by a scientist.
The fariher the study is from science or discovery, the lower the
face validity. For example, research on a discovery of historical
importance~—stch as Faraday’s discovery of the magnetic induc-
Hon of electricity (Duncan & Tweney, 1997 or his work on
acoustics {Ippolito & Tweney, 1995)—has very high face validity
because there is no question that the behavior being studied really
did lead to a discovery. On the other hand, research that asks
college students to list as many uses of a brick as they can think of
(Finke, Ward, & Smith, 1992, pp. 183-184) or to discover a rule
about number triples of which 2-4-6 is an example {(Wason, 1960)
has lower face validity because the exient 10 which the discovery
has anything in common with genuine scientific discoveries is
open to question. In an appropriate research design, the way in
which participants approach these kinds of laboratory tasks may, in
fact, reveal something about their scientific skills, but this is not
evident unless researchers have independent evidence for similar-

ity between thinking in the psychologist’s lab and thinking about
solving a real scientific problem

Construct validiry. As phenomena in a domain begin to ac-
quire a theory, theoretical terms are generally introduced, referring
to entitics that are not directly observable. The ability to evaluate
thearetical terms and test theories containing them depends on the
operations and instruments used to measure presence and mag-
nitade of such terms indirectly and convergently {Simon, 1974,
1983, 1985). Thus, construct validity evaluates how well the
measures being used are good operationalizations of the underly-
ing theoretical constricts about scientific discovery.

Temporal span and resolution of data Two important and
related criteria for assessing how well a research method captures
important processes are the temporal span of the discovery episode
that is studied and the temporal resolution of the data that describe
behavior during that span. Fypicaily, longer spans of episodes
produce data of lower resolution. Thus, a particular problem may
pccupy & scientist for ap hour, a day, a week, a year, or decades,
whereas at the other end of the scale, insights and acts of recog-
nition might require only fractions of a second of cognitive
processing.

For example, while working primarily on electrochemical prob-
lems, Faraday brooded intermittently about electromagnetism for
an entire decade—from 1821, when he first learned of Qersted's
induction of magnetism by an electric current, 10 1831, when he
tmade his initial key discovery of induction of currents by magnets.
Throughout this period, ke kept a rmeticutous diary that described
each experiment and its outcome Thus, the grain size during
periods when he was doing electromagnetic experiments was on
the order of a few hours, but there were often gaps of months, or
even years, between such experiments

More than 2 decades passed between the time when Kepler
published (Keplet, 1596/1937b) an early (and erroneous) version
of his Third Law and the time when he returned to the problem and
got the right amswer after a few weeks' further work {(Kepler,
1619/1937a). However, here we have a much rougher grain size
because our only record of his work on the problem are {a) a few
published paragraphs when he announced the erroneous law and
(b) the pages in the volume in which he published his successful
second set of calculations, with a few comments on how the work
had been stretched out over several months because of the com-
putational errors he made.

Of course, not a1l discoveries extend over such jong periods of
time: Planck achieved his revision of Wien's law of blackbody
radiation in a single evening in 1900 (Langley et al., 1987); and
when we move from real science to laboratory studies of scientific
thinking, we enter the realm of tasks that typically require from
tens to hundreds of minutes, For example, participants in Wason's
rule-discovery tasks usually take about 20 to 30 min to discover
the rule; Klahr and Dunbar’s {1988) participants spent about 30
min to make their discoveries; Qin and Simon’s {1990) partici-
pants tock about an hour, on average, to discover Kepler's Third
Law; participants in Schunn’s (1993) milk-truck microworld took
up te 90 min before they discovered one of its complex rules; and
some participants in Mynatt et al ’s (1978) artificial-universe task
worked at it forup to 10 hr. A praduate student was given the same
data that Balmer used to discover in 1885, after several months of
search, his formula for the hydrogen spectrum. In about 6 weeks of
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half-time work, the student rediscovered the formula (Simon,
personal communication).

Although these discoveries occur over relatively brief spans, the
data resolution is correspondingly finer grained so that partici-
pants’ hypotheses, representations, insights, and impasses can be
recorded over extremely shorl durations, sometimes as little as a
fraction of a second. Observaiion of such situations enables the
researcher to wack the initial interpretation of problem instractions,
the creation of initial representations, impasses, and revised rep-
resentations. Data collected from such investigations often include
extensive verbal and behavioral protocols that can be amalyzed at
varying Jevels of aggregation

Fruitfulness for discovering new phenomena. The contempo-
rary literature on research methodelogy is dominated by the no-
tion, promulgated by Popper (195%) among others, that the purpose
of observation in general, and experiment in particular, is to test
hypotheses in order either 1o falsify or validate them: In contrast 10
this position, we have argued that much of the important empirical
work in science is undertaken—to use Reichenbach’s phrase—in
the context of discovery rather than the context of vertfication (see
Simon, 1973). That is, a major goal of empirical work in science
is to discover new phenomena and generate hypotheses for de-
scribing and explaining them and not simply to test hypotheses that
have already been generated. Indeed, theories cannot be tested
until they have been created, and creation takes place in the context
of discovery, not verification. In his Patterns af Discovery (1938},
Hanson 00k a pionesring step toward giving discovery equal time
with verification in the study of science.

The distinction between finding new phenomena (e g., Oersted’s
unexpected discovery that an electric current created a magnetic
field orthogonal to it) and testing a theory that explains it (e g,
Michelson and Morley's experiment showing that the velocity of
light was independent of its motion through an aether) is closely
related to the distinction in computational models of discovery
between data-driven and theory-driven systems (Karp, 1990; Lan-
gley et al, 1987} and to the distinction, in psychological studies of
discovery, between experimenters and theorists {Klahr & Dunbar,
1988).

Hence, arnong our criteria for evaluating methods for research
on scientific discovery, we include their fruitfulness for discovery.
We use this criterion to evalvate the extent to which a particular
approach 1o research on scientific discovery is likely 10 uncover
new phenomena aboul the discovery process, This criterion is
related to construct validity because how weli theoretical con-
structs are operationalized depends, in part, on how such terms are
generated in the first place (Langley et al., 1987)

Rigor and precision. At one end of the scale, we have data
(usually numerical) that can be reporied with precision {eg.,
reaction times, proportion of correct answers, changes in hypoth-
eses, number of trials to solution) or events recorded in a repro-
ducible coding scheme (e.g., rigorous coding of verbal protocols);
at the other end, we have descriptions {usually verbal and infor-
mal) of complex events, involving interpretation and summariza-
tion of the source data beyond the resources of a precise coding
scheme.

Typical examples of the former include the vast literature on
discovery-related cognitive processes: concept-learning studies,
investigations of complex problem solving, and the simulated
science investigations cited earlier, where speed of solution, errors

along the way, and other statistics are measured. Typical examples
of the latier include the analyses of Faraday's diaries (Duncan &
Tweney, 1997) or Darwin’s notebooks containing successive ver-
sions of what became his theory of evolution by natural selection
(Gruber, 1974). Unless qualitative data are coded and analyzed
according to unambiguous and objective erileria, it is difficult to
make precise predictions and hence to test theories rigorously
against the data

Control and factorebility of variables. Experiments, at least
those described ia textbooks on research methods, aim to separate
the effects of specific variables on the phenomena of interest, to
conlrol for the effects of other variables, and to minimize the
systematic effects of uncontrolled sources of error. The so-called
experimenial method, adorned with all of these attributes, is often
taken as the quintessence of scieace.

However, we have already noted that much science is, and must
be, observational rather than experimental in this special sense—
that is, aimed at discovering new and interesting phenomena and
using them to stimulate the generation of hypotheses, rather than at
testing hypotheses formulated prior to observation. There is a
iiterature on observational (Webb, Campbell, Sehwartz, &
Sechrest, 1966), guasi-experimentai (Cook & Campbell, 1979),
case swdies (Barlow & Hersen, 1984; Kratochwill, 1978), and
naturalistic methodologies, There is less than full consensus about
the role of these methodologies in the processes of science. An
important goal in research on scientific discovery is to assess and
evaluate the respective roles of orthodox experiments and other
kinds of observation in the processes of discovery and verification.

A preat deal can be learned about the discovery process by
examining failures as well as successes Although the historical
record of scientific discovery focuses more on the latter than of the
former, there is a literature that attempts explain why, in situations
where a race for some discovery occurred, one lab succeeded while
others failed (Crick, 1988; Judson, 1979). Moreover, in every
success slory, a period, sometimes very long, of failure to reach the
goal precedes the final success. Although a great deal of informa-
tion is therefore available on the conditions that have to be satis-
fied to turn failure into suceess, the myriad failures of scientific
discovery remain underreported and undercxamined. Laboratory
stadies can be of special valve in this connection, for they aliow
investigators to control precisely the variables that are hypothe-
sized to affect success and failure {e g., Dunbar, 1993; Gorman,
1992; Penner & Klahr, 1996) or to examine some of the detailed
differences in processes used by successful and unsuccessful
participants.

External validity. To what extent the results of a study can be
broadly generalized is the question of external validity. In any
particular instance of empirical research on discovery, only &
limnited task being addressed by a specific population {er person, in
the case of historical studies) is investigated. This is true not only
for laboratory studies but also for historical studies and in vivo
investigations. As the totality of domains in which disgoveries may
be made is boundiess, each piece of research may be regarded as
a case study. The chailenge is to bring such studies together so that
a theory of discovery can emerge from them.

External validity is related 1o the child-as-scientist debate men-
tioned earlier. Although there is no question about children’s
inadequacy relative to adults when it comes to skills that are
domain specific, laboratory study or natural observation may re-
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veal, in specific coniexts, that children have surprising competence
in some aspects of scientific reasoning. Nevertheless, until flexible
and adaptive deployment of such competencies is demonstrated,
the external validity of such findings remains in guestion

Social and motivetional comext. 1n this article, we are con-
cerned primarily with internalist accounts of discovery, but even if
external Factors are not the focus of study, they may still provide
alternative explanations for phenomena that have been attributed
to internal factors. At a minimum, no study of discovery can
disregard the central fact that individual scientists or groups of
scientists are always part of 2 wider social environment, inside and
outside science, with which they are in constant communication
and which has strongly shaped their knowledge, skills, resources,
motives, and attitudes

The interaction between social and cognitive factors is beauti-
fully illustrated in Thagard's account of the discovery of the
bacterial origins of stomach ulcers (Thagard, 1968). This account
demonstrates how the weight of empirical evidence can over-
whelm even the most entrenched and socially accepted scientific
beliefs. The initial view that ulcers were caused by bacteria was
viewed as preposterous when first proposed in 1983 bul has, by
now, achieved nearly universal acceptance. The reasons for both
the initia} and final positions clearly imvolve important social
mechanisms Nevertheless, as Thagard cautions,

It is important nol to succumb to the slogan that science is a social
construction. Propenents of that slogan tend to ignore both the psy-
chological processes of theory construction and acceptance . and
the physical processes of imteraction with the world via insiruments
and experiments Undoubiedly interests and social networks abound
in the uleers case as in other episodes in the history of science But
explaining scientific change solely on the basis of social factors is as
paiently inadequate as purely logical and psychological explanations.
(p. 134)

Thus, acknowledgment of the role of noncognitive factors in the
process of scientific discovery does not piunge such research into
the social constructivist pit. We fully concur with Giere’s (1988)
wry critique of extreme versions of the doctrine of cultural rela-
tivism sometimes embraced by construciivists.

Tabie 1

Constructivisis have no qualms sbout assuming the reality of other
peoplz. They are perfectly wikiing to explain Jones® aciions by refer-
ence to a conversation Jones had with Smith Is that not assuming 100
much? Should we not rather say that Jones believed he had a conver-
sation with Smith? Surely that would be silly Restricling explanations
of physicists’ activides to invoking oniy their beliefs about protons.
rather than protons themsalves, is just as siily. (p 127}

Strengths of the Several Methodologies

How do the different approaches to studying discovery fare on
the evaluative criteria described above? In Table 1, we provide a
succinct depiction of their relative merits. However, the table
requires some interpretation, for matiers are not as sirnple as i
akes them appear In order to give a coherent appraisal of each
approach, our interpretation proceeds columa-wise (by approach),
keeping in mind the fact that the row-wise (by criterion) compat-
isons are particularly informative (e.g., the relative face validity of
historical study vs. laboratory experiment). In the following dis-
cussion, we limit the explanation of our evaluation mainly to cells
in Tabie 1 with entries that are high {*¥*), low (*), or empty'. At
this level of analysis, any more precise comparisons would be
difficult 1o justify.

Historical studies. We give historical stdies high marks for
face validity because, by definition, they investigate the very
phenomenon that they seek to explain. Topic and scope are chosen
after the fact, so there is no doubt that a real discovery by a real
scientist is the focus of investigation. The temporal resolution of
such investigations depends on the sources of data available.
Resolution is quite coarse when the primary sources are publica-
tions, but it can become much finer—on a scale of days, say—to
the extent that laboratory notebooks and correspondence are avail-
sble. Historical studies seldom permit the study of anything ap-
proaching minute-by-minute or even hour-by-hour sequences of
the scientists’ thoughts.

Given the unique and often idiosyncratic aspects of the interac-
tion between & particular scientist, a particular state of scientific
knowledge, and a particular discovery, historical studies are highly
likely to generate new phenomena. The down side of this potential

Dimensions of Strength of Four Approaches to Research on Scientific Discovery

Type of approach

Laboratory studies

Histerical Direct Computational
Evaluative criteria studies Exploratory  Controlled chservation modeking

Face validity whx * e *
Construct validity * o e o
Temporal span & resolution

Short & fine-grained * ok ok ¥ x4

Long & coarse-grained ek * w
New phenomena HokeE Fk * ok o
Rigor & precision * i Hwk ® .
Control & factorability * ok * ok
External validity * * o #* ik
Social & mativationsl factors A ok *

Note Fach approach is evaluated on the criteria as either very high (**¥), high {**), modest (*), or poor

{no entry}
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for novelty is low external validity, with respect to generalizability
to all science and all scientsts Such careful investigations as
Gooding’s analyses of Faraday's exiensive and meticulous note-
books (Gooding, 1990} are of necessity limited to a single scien-
tist However, as such studies cumulate, they can be treated col-
lectively as a sample of events that can be compared and
contrasted (o find the underlying general laws

We give this approach Jow marks on riger and precision because
of the subjective and unverifiable nature of much of the raw data.
Even when based on daily lab notebooks, the data are subject to all
of the self-reporting biases that make retrospective verbal reports
less rigorous than concurrent verbal protocols {Ericsson & Simon,
1993) And when the accounts are based on the recollections and
introspections provided in autobiographies of great scientists (e g,
Hadamard, 1945; Poincaré, 1929), or by systematic interviews
with scientists about their work (e g., Rowe, 1933), reliability is
always in doubt: “But did they really think this way?" asks
Nersessian {1992) of her own analysis of Maxwell's discovery of
electromagnetic field theory. “In the end we ail face the recorded
data and know that every piece is in itself a reconstruction by its
anthor” (p. 36).

Finally, historical studies rank high on their tendency to address
poth social and motivational factors surrounding the discovery
process This is true, in part, because historical studies predate the
emergence of the cognitive sciences, and to the extent that they
treated psychological variables at all, they tended to concentrate on
noncognilive types of psychological variables

Laboratery studies  Enough has already been said about lab-
oratory studies to indicate their strengths. Their chief limitations
are in face validity—it is seldom possibie te study in the laboratory
discoveries like those that fill the histories of science, although we
discuss cases where this has been done Controlled laboratory
studies are especially adapted to the needs of verification in a
theory-driven paradigm. As usually designed, with concern for
clear tests of well-defined hypotheses using experimental controls,
the controlled laboratory study reduces, although it does not ex-
clude, the ikelihood of wholly unanticipated outcomes that in-
volve new variables or new phenomena that were not considered in
the experimental design. Exploratory laboratory studies sacrifice
the rigor znd precision of controlled experiments in favor of their
potential for producing interesting new phenomena. Both types of
]aboratory studies tend to generate fine-grained data over relatively
brief periods, and they typically ignore or attempt (o minimize the
effects of social and motivational factors on the discovery process.

Direct observation  Direct observations of ongoing science
have many of the characteristics of historical data—in particular,
high face validity and potential for detecting new phenomena.
However there are two important differences between historical
and direct approaches. First, the observations may achieve much
finer-grained temporal resolution of ongoing research processes
than historical research Second, direct observation provides a
level of rigor, precision, and objectivity that is lacking in retro-
spective accounts by scientists of their discoveries.

Computational modeling. Our evaluation of computational
tnodeling derives from our view of it notas a method for gathering
data but as a medium for generating theories and for representing
and testing them against data that have been obtained by the other
methods. Hence, it is clearly not a substitute for the others but
complementary to them. One of its important applications is to

provide tests of the sufficiency of the mechanisms postulated in a
theory of discovery to actnally produce the discovery. The model
will be unable to achieve the discovery uniess it does possess &
sufficient set of mechanisms, appropriately organized.

The modeling approach can achieve high external validity by
using # single model to simuiate behavior in & whole range of
discovery tasks (Kulkarni & Simon, 1980). To this end, a model of
discovery, like any theory, must be factored into two components:
(a) its basic mechanisms, retained without alteration from one
application 1o another, and (b) specific knowledge of the content
and research meshods of each task domain to which it is applied
The first component reveals the extent to which general methods
can account for discoveries over a range of domains, and the
second componert indicates the extent to whick a discovery relies
on domain-specific knowledge and methods A general theory of
discovery can emerge from the components of such models that
are common to many tasks.

Of course, this separation of the peneral from the specific is not
limited to formal simulation models but extends to general theories
of discovery, however expressed. What is special about simulation
models is the rigor with which they can be stated and the clarity
with which general and task-dependent elements in the system can
be distinguished. Simulations provide us with powerful methods
for comparing the theoretical implications of the data from partic-
ular case studies, interpreting the data in a common formal lan-
guage that can reveal both the identity or similarity of processes
that were involved in each case and the differences ameong therm.

The construct validity of modeling depends on the construct
validity of the tasks that are modeled Modeling enables us o
express a theory rigorously, and generally, to simulate phenomena
at whatever temporal resolution and for whatever durations are
relevant. The effects of chanpes in particuar variables can be
stndied, and other variables can be held constant. Theoretical
variables are clearly specified so that construct validity is high.

Social variables can, in principle, be incorperated in models,
although, with the important exception of inchuding the specialized
and socially acquired knowledge of the domain expert, this has not
usually been done in modeling discovery. On a large scale, it
would be possible to model a scientific community rather than a
single scientist, the members of the community being linked, for
example, by the blackboard of publication. Limits on speed of
computation may require a trade-off between fine temporal reso-
lution and long durations.

Assessing the Approaches: Summary

It should be clear from this brief exercise in comparative as-
sessment that there is no single best way o study the discovery
process. Research on the science of discovery is subject to the
same inevitable trade-offs that characterize research methodolo-
gies and paradigms in ali scientific disciplines. But these trade-offs
do not imply that the different approaches are incompatible. To the
contrary, the fundamental thesis in this article is that the findings
from these diverse approaches, when considered in combination,
can advance our understanding of the discovery process more than
any single approach. In the final two sections of this article, we
attempt to show how the methods complement one another and
how their complementarities are beginning to produce consistent
convergent evidence abous the process of scientific discovery. But
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first, in order to provide a common kanguage for describing these
complementarities and convergences, we introduce, in the follow-
ing section, a set of comcepts and terms thas have been used to
characterize human problem solving.

Scientific Discovery as Problem Solving

We argued earlier, in citing Francis Crick’s account of the
discovery of DNA, that major scientific discoveries are so labeled
hecause the knowledpe that they produce i important and not
because they derive from any unusual thought processes. Psychol-
opists have been making the case for the nothing-special view of
scientific thinking for many years {(e.g , Simon, 1966), pointing out
that information-processing theories of human problem solving
could account for many of the unique characteristics of scientific
diseovery. This view has been elaborated more recently-—-partic-
wlarly with respect to the issue of crealivity--by several others,
including Boden (1990), Perkins (19%1), Simon et al (1981), and
Weisberz (1993). The success of computational models like
BACON and KEKADA—based as they are on 2 small set of
relatively straightforward heuristics for finding regularity in exist-
ing data sets—provides further support for this position.

This view does not imply that the average person could walk
into a scientist’s lab and proceed to make discoveries. Practitioners
of a scientific discipline must acquire an extensive portfolio of
relatively particular methods and technigues during their long
professional training and must apply their skills in the context of
an immense, cumulative base of shared knowledge about the
discipline’s phenomena, theories, procedures, instrumentation, ex-
perimental paradigms, and data-analytic methods, not to mention
its history, funding procedures, social and political implicatons,
institutional structure, and even its publication practices (see Ba-
zerman, 1988).

These components of expertise constitute the strong or domain-
specific methods. The processes we are focusing on are the weak
methods: domain-general, universal, problem-solving processes.
Although the strong methods used in scientific problem selving
distinguish the content of scientific thinking from everyday
thought, we claim that the weak methods invoked by scientists as
they ply their trade are the same 0nes that underlie all humar
cognition In this section, we sketch very briefly some of the basic
components of the general theory of problem solving to provide a
common language for discussing the convergence of different
approaches lo the study of discovery.

Problem Solving, Search, and Weak Methods

A problem consists of an initial state, a goal state, and a sel of
operators for ransforming the initial state into the goal state by a
series of intermediate steps. Operators have constraints that must
be satisfied before they can be applied ‘The set of states, operators,
goals, and constraints is called a probiem space, and the problem-
solving process can be characterized as a search for a path that
links injtial state to goal state (Newell & Simon, 1972)

Initial state, goal state, operators, and constraints can each be
more or less well defined. For example, one couid have a well-
defined initiel state and an ili-defined poal state and set of opera-
tors {e g, make something pretty with these materials and tools),
or an ili-defined initial state and a well-defined final state (e.g.,

prove a particular mathematical conjecture). But well-definedness
depends on the familiarity of the problem space elements, and this,
in turn, depends on an interaction between the problem amd the
problemn solver More specifically, it rests on the process of rec-
ognition. Before any search process can be applied, iis relevance
must be recognized by the detection of appropriate palterns in the
sitgation. Observation of such patterns evokes information aboul
the situation that can help guide the search. As this information
usually is domain specific, the recognition mechanism tends to
make it availabie just where it is potentially relevant (i.e., instances
of positive transfer). Such recognition is not always productive, as
witness cases of negative transfer, functional fixedness (Dunker,
1945), and Einstellung (Luchins, 1942)

Although scientific problems are much less well defined than
the puzzles commonly studied in the psychology laboratory, they
can be characierized in these ierms. In both cases, well-
definedness and recognition depend not only on the problem but
also on the knowledge that is available to the problem solver. For
that reason, much of the training of scientists is aimed at increasing
the degree of well-definedness of problems in their domain.

In all but the most trivial problems, the search process can be
guite demanding If we represent the problem space as & branching
wwee of m moves with b branches at each move, then there are b
moves in the full problem space . As soon as m and b exceed smail
values, exhaustive search of the space is beyond human capacity.
Thus, effective problem solving depends in large part on processes
that constrain search judiciously to the exploration of a few
branches.

Search constraint processes may include weak methods and
strong methods. Weak methods, although requiring little knowl-
edge of the problem structure, are correspondingly unselective in
searching the problem space. Strong methods may find solutions
with Little or no search. For example, someone who knows the
caleulus and is seeking the maximum of a function applies a
known algorithm (taking the derivative and setiing it equal 10
zero), finding the answer without search. But it is up to the
recognition process to detect the fit between a given problem and
the maximization of a continuous function. We describe five major
weak methods: generate and test, hill climbing, means—ends anal-
ysis, planning, and analogy.

Generate and test.  This method, often called trial and error,
consists simply of applying some operator to the current state and
then testing to deternine if the goal state has been reached and the
probiem solved. If it basa't, then some other operator is applied.
An example of a dumb generating process would be searching in
a box of keys for a key to fit a Jock and tossing failed keys back
into the box without noting anything about the degree of fit. A
siightly smarter generator would, at the Jeast, oy each key only
once.

Hill climbing. 1n hill climbing, one makes a tentative step in
each of several directions and then heads off in the direction that
has the steepest gradient More generaily, the method compules
progress in the direction of the goal. The move that shows most
progress is chosen, and then the process iterates from the new
state. Hill climbing uses more information than generate and lest
about the direction and distance of the goal and uses that infor-
mation to constrain search in the problem spuce.

Means—ends analysis Means—ends analysis compares the
current state and the goal state and describes the differences
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between them Then it searches for an operator that is designed to
reduce the most important differences (Dunker, 1945; Newell &
Simon, 1972). If the conditions for the applicability of the operator
are not met, 2 subpgoal is formulated to reduce the difference
between the current state and a state in which the desired operator
can be applied Thus, the method attempts to solve the subproblem
recursively

Planning. Planning involves {a} forming an abstract version of
the problem space by omitting certain details of the original set of
states and operators, (b) forming the corresponding problem in the
abstract problem space, (c) solving the abstracted problem by
applying any of the methods listed here (including planning), (d)
using the solution of the abstract problem to provide a plan for
solving the original problem, and (e) translating the plan back into
the original problem space and executing it (Newell & Simon,
1972).

Preparing a meal is a complex problem-salving task. A pian
might be the following: go into the kitchen, select a menu, prepare
each dish, set the table, serve the meal. Because planning sup-
presses much of the detail in the original problem space, it is not
always possible to implement the plan, for some of the steps in
planned solution paths may not be achievable. For example, an
essential ingredient for one of the items on the planned meny may
not be on the shelves.

Analpgy. Analogy involves mapping 4 new target domain onto
a previously encountered base domain (Vosniadou & Ortony,
1989). Mappings vary widely in compiexity. In their simplest
manifestation, they involve simply the recognition that the current
problem can be solved by a known procedure. At the other ex-
treme, the mapping process may be quite elaborate (Gentner &
Jeziorski, 1989; Halford, 1992) and, like the other weak methods,
not guaranteed to produce a solution. Analogy can be viewed as
one method for changing the given problem space to another that
is more effective.

Analogical mappings thus provide the principal bridge between
weak and strong methods when the source of the analogy is a
well-defined procedure. Used in conjunction with domain-specific
knowledge, analogy may enable the search process to be greatly
abridged when patterns are noticed in the current problem state
Prestored knowledge can be evoked and used to plan the next steps
toward solution of the problem, provide macros to replace whole
segments of step-by-step search, or even suggest an imeediate
problem solution The recognition mechanism {with ils associated
store of knowledge) is a key weapon in the arsepal of experts and
a principal factor in distinguishing their performance in the domain
of expertise from that of novices.

Problem Solving: Summary

Scientific practice applies a plethora of strong methods, such as
standard experimental paradigms, established theories and known
parameter values, specialized instrumentation, and even highly
constrained publication formats. Strong methods can admit, as in
the maximization example above, the direct application of a
method with little or no search. Weak methods, though less effec-
tive when strong methods are available, are of special interest for
a theory of scientific discovery because they are applicable ina
wide variety of comtexts and because fewer and fewer strong
methods remuin available as the scientist approaches the bound-

aries of knowledge. Moreover, analogy, though a weak (ie., very
general} method, draws on all the domain-specific knowledge and
skill stored in memory

Especially central to the weak methods are the processes of
selective (heuristic) search and the habit of storing in long-term
memory large bodies of domain-specific information, indexed by
recognizable patterns, so that its relevance will be evoked in
particular situations and the information will become accessible.
To study scientific discovery, we have to find out how 1o observe
these and the other weak methods at work on scientific problers
or to evoke them experimentally in consexts that mimic some of
the richness of actual research contexts, while at the same lirne
maintaining the objectivity that supports sound inference

Complementarity of Approaches

Our theoretical framework views scientific discovery ag 2 fype
of complex problem solving. This framework provides a common
lanpuage that can be used to describe both complementarity and
convergence in the various approaches to the study of scientific
discovery. A powerful way to exploit complementarity is to study
the same scientific discovery using more than one approach. In this
section, we give several examptles of how the strengths of different
approaches can be complemented and their weaknesses attenaated
or eliminated by using them together. We begin with historical and
Jaboratory studies, whose strong complementaries are revealed by
Table 1.

Combining Historical With Laboratory Studies

The discovery of genetic control  In the late 1950s, Jacques
Monod and Francois Jacob discovered the mechanisms by which
the synthesis of lactose is controlied in bacteria by control genes
(Jacob & Monod, 1961). For this discovery, Monod, Jacob, and
their mentor André Lwoff were awarded the Nohet prize in 1965
A substantial historical literature examines the discovery (eg.
Judson, 1979, 1996), including an autobiographical account (Ja-
cob, 1988). As is sometimies the case in historical analyses of
scientific discovery, cognitive processes are given an important
role in Judson's account of Jacob and Monod's work, although the
historian necessarily treats these processes at a very general—
almost metaphorical—Ilevel.

Scientists reach an extreme, sustained identification of the patierns of
their thought with the patierns that they perceive in, and project into,
the phenomena they are trying 1o clucidate.. . In each of the discov-
eries he (Monod) made in the ensuing ten years there was a moment
of total absorption as he resolved the bacterial cell Iike & partly cut
diamond slowly in the light, then a gleam of perception so quick—and
s0 quickly resolved into its place in the sequential paitern——that to
Monod himself, on his testimony at leasi, there had been nothing
much to calf an intuitive leap, merely an extension, subject to test, of
the inevitable logic of the system itself (Judson, 1996, p. 387)

But for a cognitive psychologist, to characterize Monod’s dis-
coveries in terms of a gleam of perception is to not describe them
at all Instead, the goal is 1o identify specific and well-understood
cognitive processes and then to determine their role in the discov-
ery. In the case of the discovery of the mechanism of genetic
control, perhaps the most important cognitive processes involved
were the representational changes that enabled Jacob and Monsod
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to replace their entrenched idea that genetic control must be some
kind of activation mechanism with the discovery that it was,
instead, an inhibition mechanism. As Dunbar (1993) pat it,

They made the novel and unexpected discovery thal groups of genes
conlrol other genes and keep many genes inhibited until particular
enzymes ore needed. This was the novel concept of an “operon™ thal
forced o “radical restructuring” of the concept of how genes work
(p. 398)

To better understand the cognitive processes involved in this
important discovery, Dunbar (1993) created a laboratory task that
he used to study the behavior of college students faced with a
problem that captured some of the essential elements of the dis-
covery problem faced by Monod and Jacob, while eliminating
many others.” Dunbar’s simplifications were primarily aimed at
constraining the search space and at keeping the depth of search
within reasonable limits. His three principle simplifications were
(a) to have participants discover how genetic regulation worked
(whereas Monod and Jacob first had to discover that there was
such a thing 2s genetic regulation of some genes by other genes),
{b) to provide participanis with & highly constrained experiment
space {whereas Monod, Jacob, and their colleagues had to invent
many new procedures), and (¢) to limit the necessary discovery to
the particular instance at hand, rather than to & broad-based con-
cept of genetic controi.

In surnmary, Dunbar placed his participants in an experimental
context that simulated Monod and Jacob's problem at the point
where the ides of control genes had oceurred to them and they had
developed a basic experimental procedure for testing alternative
conirol-gene hypotheses to explain the lactose phenomena The
students were asked to design and run {(simulated) experiments to
discover the lactose control mechanism . Using a real sciemific task
increased the typically low face validity of a controlled laboratory
study. Although the actual task was simplified for purposes of the
experiment, some of the basic components—the problem, the
givens, the research methods permitted by known kinds of exper-
jrments, the structure of the solution—were all preserved. With
good control of the variables, the Jaboratory data could cast Hght
on the size and structure of the problem spaces that Monod and
Jacob searched and on some of the conditions of search that were
necessary or sufficient for success.

Despite the differences between the oripinal discovery of Monod and
Jacob and that observed in the studies reported here, clear similarities
exist between the conceptal processes employed by the subjects and
those employed by Jacob and Monod. . .. The problem for the sub-
jects was to conceive of & new mechanism that could be applied to
genetic regulation. That is, the subjects generated a new concepl of
mutually interacting genes that regulate enzyme productan by inhi-
bition. These subjects behaved just like Moned and Jacob, Furnher-
more, just like the subjects in the experiments reported in this article,
Monod and Jacob had difficulty in formulating the concept of inhib-
jtory control due 10 their belief in activation: In the 1940's. Monod
began investigating the conditions under which E. coli could be
induced to produce certain enzymes Moncd hypothesized that this
induction of enzymes was an aclivation mechanism, or a positive
process (Durbar, 1993, p. 431)

Planck's Law. In at least three other cases, histerically impor-
\ant discoveries that have been studied extensively by historical

methods have been the subject of complementary experiments in
the psychology laboratory. In 1900, Max Planck, having published
a theory of blackbody radiation that accounted for the fit of the
observed data with Wien's Law (an exponential function), leamned
that new data in the infrared range showed a large departure from
Wien's Law. The data still looked exponential in the higher fre-
quencies but passed nearly linearly through the origin. On the
evening of the same day on which he learned about the new
infrared data, Planck revised Wien's Law inlo whal we now call
Planck’s Law {and, in the process of providing an explanation for
the new law during the next several months, more oF less acciden-
1ally discovered the guantim).

To learn more about how the first step was accomplished, some
mathematicians and physicists of National Academy stature were
approached with the following question: I have some very smooth
and noise-free data relating twe variables, x and y For large valnes
of %, y appears to be an exponential fanction of x; but for small
vatues of x, the function passes through the origin and is nearly
linear. Can you suggest what function might fit these data?”
(Langley et al,, 1987, pp. 47-53)

Five out of the eight scientists who were asked the guestion
answered it, and in well under 3 min. The answer was always
essentially Planck’s Law. When asked how they reached their
answer, the respondents were able to repori either (a) that they
expanded the exponential into a Taylor's Series and noted that if
they subtracted urity from it, it would have the desired properties;
or (b) that they visualized the graph of the function and saw it
cutting the y-axis aty = 1, then subtracted unity from it In no case
did they notice the relation of their problem and solution io
Planck's Law of blackbody radiation, although all of them were
thoronghly familiar with that law

Planck published an account of how he himself found the
function that fit the new data His path is stightly different from
those given above but is equally simple. Looking at his previous
theory, he quickly found that he could get the desired result by
adding a quadratic term to a particular finear equation in the
derivation. He then spent 2 or 3 months trying lo rationalize the
change in terms of the physics of the situation. {His namerical law
of blackbody radiation is stll accepted, but his physical explana-
tion bears little relation to today’s quantum mechanics) This
complementarity of history with experiment greatly reduces the
mystery of how Planck’s initial step—the change in the key
Function———could be achieved by Planck in a few hours Neither the
respondents in the experiment nor Planck made use of the physics
of the situation in taking that step; it was pure numerology

Balmer's Law. A second example is provided by Balmer’s
Law, a simple algebraic formula for the frequencies of successive
lines in the spectrum of hydrogen: x = kn®/(n* ~ 4), where x is
frequency, k is a constant, and » is the sequence number of the line
with that frequency {n = 3). The law was discovered by Balmer,
a geometry teacher who was thoroughly innocent of the physics of
the problem, after seeing the values of the first four spectral lines
(Banet, 1966).

3 Clearly, no laboratory simulation couid present the fuil challenge
presented by scientific problems Moned and Jacob worked together for
several years before they made their discovery, and most college students
would prefer 1o spend less time than that in the psychologists’ taboratory.
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To learn more about the problem space in which this solution
was found, a graduate student in engineering was hired for a
summer, given the spectral data {simply as a sequence of four
vales of x and n), and asked to find a pattern that could be
extrapolated to higher values of n. He found the equivalent of
Balmer's law after about 6 weeks, working perhaps 10 10 20 hr per
week on the problem. Here, as with Planck’s Law, an important
physical law was discovered by a pure exercise in patiern finding,
without physical motivation or theory. (Thirty ycars later, Balm-
er's Law served as the principal evidential base for Rutherford’s
guantum theory of the hydrogen atom.) In both cases, the evidence
from @ laboratory swedy complements the Jess detailed historical
evidence in revealing the nature of the discovery path,

Faraday's experiments. Laboratory experimenis of quite 2
different kind are replications by historians of science (not sub-
jects) of the historical experiments that are being studied. Gooding
(1990) has emphasized that experiments don’t interpret them-
selves. Even the process of describing laboratory experiments and
representing the instruments and the observations in language that
permits other scientists to understand and replicate them is a
problem, often difficult, that has to be solved by the investigator

Between late August and early December 1831, Faraday carried
out the key experiments that demonstrated the phenomena of
induction of currents by magnets. As he began to draft his first
paper on this work, he discovered that he had difficulty in inter-
preting his own experiments, as recorded in his lab diary, and
especially the directions of the magnetic forces and currents. He
took about a week to replicate some of his experiments and to
develop a consistent wiy of representing and describing his ma-
nipulations and findings so that he could communicate them
ciearly to his fellow scientists

Gooding (1990) has given us a careful and insightful analysis of
the same process when Faraday, in 1821-1822, pubiished a survey
article on the status of electromagnetic research shortly after
Oersted had made his surprising discovery of the generation of a
magnetic field by an electric current. Gooding points oul that
Faraday repeated most of the experimenis he was reviewing to
understand, represent, and describe the manipulations and findings
unambiguousiy and that he sometimes supplemented his written
communications to his colleagues with small examples of the
experimental apparatus that enabled them to repeat the experi-
ments themselves, And most instructive for our present discussion,
Gooding himself found it highly informative to repeat again many
of the experiments to understand the problems of experimentation
and communication faced by Faraday and his conternporaries.

In all these cases of complementarity between historical and
laboratory approaches, we see that the use of a historically impor-
tant scientific discovery as the substance of the task solves the
problem of face validity for the laboratory data and that the
laboratory provides valuable new information about the processes
of discovery at a high level of temporal resolution—on the order
of minutes and seconds. In combination, these approaches cut the
Gordian Knot of face validity and external validity.

Combining History With Modeling

Qur next example illustrates the complementarity of historical
and model-building approaches. The path that the biochemist,
Hans Krebs, followed in his discovery of the reaction path for the

in vivo synthesis of urea has been the subject of a very careful and
thorough historical study by Holmes (1991), who used not only the
published papers but also the lab rotebooks of Krebs and his
assistant Henseleit, and conducted interviews with Krebs (some 40
years after the discovery was made)

Recently, two computer models of scientific  discovery
(KEKADA, by Kuikarni & Simon, 1988; CDP, by Grasshoff &
May, 1995) have been applied to medeling the urea synthesis case
After the models proposed an experiment and were given its
outcome, they then proposed another experiment, using the knowl-
edge of previous outcomes to select the search path. Both pro-
grams, using no more knowledge of biochemistry than Krebs
possessed at the outset of his work, succeeded in discovering the
reaction path discovered by Krebs, following fairly closely the
same lines of experimentation

The simulations showed that the experimentation could be
steered by very general hypotheses {(eg., hypotheses, already
widely accepted, that ammonia and amino acids were likely
sources for the nitrogen in wrea) so that experimental outcomes
generally puided theorizing, rather than theory guiding experimen-
tal design. The simulations also showed that surprise at unexpected
experimental outcomes could provide powerful heuristics for
choosing the next steps in search. The models sharpened up
considerably the ambiguities in choice of strategy that Holmes had
detected at various points in Krebs' search. The KEKADA pro-
gram has also simulated some aspects of Faraday's 1831 discovery
of induction of electricity by magnetism, including the effects of
the surprise experienced at the outcome of his first experiment.

There has been extensive computer modeling of other important
historical discoveries, but with jess detailed comparison than in the
examples just cited between the paths of discovery inferred from
the historical materials and those followed by the simulation
programs. In this research, the emphasis has been on finding
general mechanisms of discovery that are effective over a wide
range of tasks, in the sense of being able to reproduce the product,
if not always the (largely unknown) details of the process, of the
corresponding historical discoveries.

BACON, already mentioned, is a widely known modei of this
kind which has been used to simulate such discoveries as Boyle’s
jaw, Kepler's Third Law, Ohm's law, Coulomb’s law,
Archimedes’ law, Black's laws of heat, various laws of chemical
combination, the law of gravitation, conservation of momentm,
and Snell's law of refraction, as well as to perform concept
attainment and seres exirapolation tasks (Langley et al,, 1987, Part
11} Although BACON exists in a balf dozen variant forms, all of
them depend on a small set of heuristics that guide the generation
of mathematical functions to fit the given data to & good approx-
imation. Hence BACON is a heuristic search system that uses a
generate-and-test subsystem to generate hypotheses for compari-
son with data, the hypothesis generator being sensitive to feedback
of the results of trying to fit the previous hypotheses.

BACON's heuristics, which are strictly weak methods, contain
no information about the meaning of the data, so that the pro-
gram's discoveries are describable as data driven rather than
theory driven Because BACON carefully designs each new func-
tion it generates with the aid of information abowt previous fits or
misfits, it typically generates only 2 few functions before finding
one that fits the data. Thus, BACON throws light on those discov-
eries of science, especially frequent in the early years of any new
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field, where Little or no theory is iniially available to guide
experiment.

BACON is just one of a family of models of various kinds of
data-driven discovery Others include STAHL, GLAUBER, and
DALTON (Langley et al,, 1987, Part I). A characteristic of this
line of research is that it begins to fill in the large lacuna in the
literature of scientific methodology, which has tended to neglect
data-driven discovery, observation, and exploratory experiments,
and has paid attention almost exclusively to controlled experi-
ments as & means for testing theories that have already been fully
formulated. An important product of the modeling has been o
complement historical studies where the science is in large mea-
sure data driven but where historical data are not sufficiently
fine-grained to show how observations of phenomena can guide
experimentation (e g., the studies of the work of Krebs and
Faraday)

History, Lab, and Model

One example can be cited where historical data, a model, and a
laboratory experiment have all been used to provide complemen-
1ary analyses of the same historically important discovery:
Kepler's discovery of his Third Law of Planetary Motion, which
states that the periods of revolution of the planets about the Sun
vary with the 3/2 power of their mean distances from the Sun. The
historical record of this discovery is very sparse (Gingerich, 1975),
consisting largely of Kepler's own published accounts, first of his
discovery of an erroneous law (that the periods vary with the
squares of the distances), then of his discovery of the correct law 2
decades later.

From the history, we know some of the difficulties he encoun-
tered (especially errors in arithmetic), and the distractions of his
life when the problem lay fallow. We know that he did not have
logarithms available at the time he found the law. We are almost
wholly lacking fine-grained temporal data on the stages of discov-
ery. There was little physical motivation for the law, although
Kepler held some notions about the sun as the source of force that
produced the revolutions, and these notions may have pointed him
10 the square law—certainly not to the D** power law. But the
central question is what led him, with only a few weeks of active
search, to this particular mathematical funcion—P = DR out
of al the functions he might have generated? His problem space of
possible functions was enormous, and that he found this particutar
one relatively quickly calls for explanation.

When BACON is piven the same data that Kepler had, and
nothing more, it finds the correct law as the third or fourth function
that it generates, the exact order depending on the precise heuris-
tics it uses. In either case, BACON's heuristics guide it almost
directly to the answer afler trying no more than one or two
inadequate alternatives. What is perhaps more remarkable is that
the second function it tries is the quadratic—the false answer that
Kepler proposed in his initial publication on the law, Given the
sketchy historical evidence, BACON does a remarkable job of
wracing the original discovery path. Whether it followed that path
for the same reasons that Kepler did cannot be answered with the
data that are available.

To complement further the data available from history ard from
the BACON simuiation, Qin and Simon (1990) conducted tests
with laboratory participants, giving them Kepler's data (the vari-

ables identified only as x and y) and asking them to find a function
that fit the data. Of 14 college students, 4 found Kepler’s Third
Law in an hour or less; the other 10 failed. Of those who failed, 4
had weak mathematical backgrounds and generated scarcely amy
functions but straight lines. The remaining 6 generated a variety of
functions (not including the right one) but showed no evidence that
the results from an unsuccessful attempt to fit a function had any
infiuence on what function they chose to test next. On the other
hand, the four participants who found the law all used selective
hewristics to choose the next function for testing according fo the
nature of the misfits of those previously tried. Their heuristics had
a close resemblance to those of BACON (with which they were not
familiar).

The values of experimentation and modeling in providing evi-
dence about feasible and likely search paths in the absence of
much historical data to identify the path actuaily followed to make
the original discovery are well illustrated by this example

Laboratory Studies: Faploratory and Controlled

1n some cases, the two types of laboratory studies—exploratory
and controlied—can be focused on a common problem . In Klahr
and Dunbar’s (1988) original study of BigTrak, there were no
control conditions. Instead, the project was conceived as an ex-
ploration of what wauld happen when participants were presented
with a relatively complex (for a lab study) discovery task. The
results of this study, as noted elsewhere, led to the discovery of
two distinct strategies for approaching the discovery problem (i.e.,
the theorist—experimenter distinction). This exploratory study was
then followed up with very carefully designed factorial experi-
ments that conirolied for the ape and scientific background of
participants and introduced differeat levels of plausibility of the
suggested hypothesis that participants were asked to explore
{Klahr et al, 1993). This was followed by a series of investigations
{reported in Klahr, 1999) that alternated between exploratory and
conlrolied laboratory experiments, yielding a number of inieresting
findings on the development of scientific reasoning processes.

Convergent Evidence of Principles of Discovery

In the previous section, we focused on the complementarities of
the different approaches. In this section, we give several examples
of the kind of convergent evidence obtained by using two or more
approaches to study the same scientific discovery. We provide a
few examples of how basic processes of discovery revealed in one
situation can be tested and generalized to other situations. Such
comparison takes us from the limitations of individual case studies
to the construction and testing of general theores.

Surprise

In this century, the reigning theories of philosophy of science
have generaily taken hypotheses as first {or at least unexplained)
causes that lead to experiments designed to test them. In this view,
the hypotheses themselves derive from scientists’ intuitions and
are beyond scientific explanation (Popper, 1959). The history of
science has taken a much jess rigid position with respect to
hypotheses and has included the question of their origins within
the scope of its interests and methods.
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For example, historical accounts of the discovery of radium by
the Curies usually start with their project to obtain pure radioactive
uranium from pitchblende to study the behavior and properties of
uranium They were familiar with the level of radioactivity of
granium, and as they proceeded to process the pitchblende, they
were surprised (o find that the level of radioactivity began t¢
exceed that of pure uranium. A surprise calls for an explanation,
and the explanation that occurred to them was that the pitchblende
contained a second substance (which they named radium) that was
more radicactive than uranium. The test of this hypothesis con-
sisted in extracting this substance, separating it from both the
pitchblende and the uranium, and determining some of its key
properties.

In this case, a phenomenon led to a hypothesis, rather than a
hypothesis to experimental phenomena. This is not a singular case
in scientific history but a frequent oceurrence. Often, as was true
in this instance, it is accompanied by surprise; that is, the observed
phenomena was unexpected and unpredictable from the knowl-
edge the scientists already held

A surprise can only occur when expectations that have been
formed are violated. In observationsl studies and exploratory ex-
perimentation, phesomena are, from time to time, recognized as
conflicting with previously stored knowledge and expectations
about the problem domain. In the face of surprise, scientists
frequently divert the path of exploration o ascertain the scope and
import of the surprising phenomenon and to determine its mech-
anism (see Darden, 1992, and Darden & Cook, 1995, for an
analysis of responses to anomalies based on the historical record,
and Chinn & Brewer, 1998, for a laboratory investigation of how
people respond to anomalous data).

We have seen that the KEKADA discovery model, already
discussed in connection with modeling the research of Krebs and
Faraday, addresses the surprise issue directly. When performing an
experiment, the scientist simulated by KEKADA forms expecla-
tions, which are based on previous experience, about outcomes
When the actual outcomes violate the expectations, the scientist is
surprised and, in the KEKADA theory, takes steps 10 explain the
surprising phenomenon These sleps may include steps 10 discover
the scope and generality of the phenomencn and then steps io
discover its mechanism.

The KEKADA mode] permits an examination of surprise as it
arises in different experimental environments, allowing a rigorous
statement of a general theory of the role of surprise in discovery
and of its mechanisms. In the case of Krebs, it shows how an
unexpected, large vield of urea in the presence of a particular
amino acid, ornithine, led Krebs to discover the eatalytic role of
omithine in the production of urea from ammonia Similarly,
surprise al obtaining a transient flux of electricity in a circuit when
a nearby magnet was activated led Faraday, through a long series
of experiments aimed at understanding the mechanism of the
surprising phenomenon, to discover the means of using magnets o
produce continsous electric currents.

In a laboratory study in which participants had to discover the
function of an unknown key on a simulated rocket ship, Klahr et
al. (1993) investigated the effects of surprise by providing partic-
ipants with suggested hypotheses about how the key worked.
These hypotheses were designed to be either highly piausible or
highly implaosible. Adults and children had quite different reac-
tions to implausible hypotheses. Adults usually proposed a com-

peting hypothesis and then generaled experiments that could dis-
tinguish berween them. On the other hand, young children {third
graders) tended to dismiss an implausible hypothesis and ignore
evidence that it might be correct. Instead, they adopled a kind of
engineering mode in which they attempted to demonstrate that
their favored hypothesis was correct by showing that (under some
circumstances) they could control the behavior of the device
These results imply that an important aspect of the development of
scientific thinking is coming to accept, rather than deny, surprising
results and to explore further the phenomenon that gave rise to
them

Here, we see historical studies, simulation models, and jabora-
tory experiments all converging on a particular set of phenom-
ena—in this case, reaction to surprise—thereby generating and
testing new theories to describe and explain them. Observational
studies can also contribute to this convergence if good fortune
leads to the observation of an “aha” event or a surprise.

The BACON model, which we have mentioned several times,
was built to test the veridicality and usefulness of the hypothesis
that, especially in new fields of science, where theory is poorly
developed or absent, observation typically precedes hypothesis
construction: that the first step in progress is to {ind patterns (laws)
in data We have already described how BACON finds Kepler's
Third Law on its third or fourth try and performs with similar
efficiency in 2 large number of other tasks. Here, we see the
emergence of a general theory of data-driven science based on
heuristic search by a hypothesis generator of the space of possible
problem solutions guided by feedback (knowledge of results) to
the generator of successive hypotheses. The hypotheses are &
combined product of the internal structure of the generator and of
the observed data

To test the range of its applicability as a theory of discover,
BACON, like KEKADA, can be applied 1o the findings of histor-
ical, laboratory, or observational studies of discoveries, and the
acuteness of the test of its veridicality is only limited by the
completeness and temporal resolution of the data that are available.

The Role of Analogy and Recognition

Although philosophers have jong been interested in the role of
analogy in science (Duhem, 1914/1954; Hesse, 1966), it is only in
the past 25 years that analogy has assumed prominence in theories
of problem solving and scientific discovery and that its underlying
cognitive mechanisms have been studied in detail (Darden, 1980;
Genimer, 1982). Holyoak and Thagard (1993) provide several
examples of analogical problem solving in major scientific discov-
eries, ranging from a first-century analogy between sound and
water waves lo Turing's mind/computer analogy. As we argued
earlies, analogy can be viewed as a complex form of recognition.
Holyoak and Thagard also emphasize the role of analogical think-
ing in cognitive development (see Goswarmi, 1996, for an exten-
sive review), and Nersessian {1984) documents its role in several
of the major scientific discoveries of the 19th century. Analogical
reasoning also plays a cental role in recent analysis of the thinking
processes of contemporary scientists working in their labs {Dun-
bar, 1994; Thagard, 1997; Ueda, 19%7), and it is often the method
of choice for formulating initial hypotheses and experiments in a
varjety of discovery contexts
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Multiple Search Spaces

The reciprocal relation between hypotheses and phenomena that
we have just observed has been noticed in a number of different
approaches to scientific discovery, including laboratory studies,
historical studies, and computational models of discovery A
problem-solving orientation erables us (o use a comman language
in describing all of these in terms of search in multiple spaces We
begin this discussion with a characterization that includes only two
distinct spaces, and then we expand the number of spaces as
required.

The two-space view was first proposed by Klahr and Dunbar
(1988) to account for the results of their laboratory study in which
participants had to discover the functionality of a particular control
button on a programmable toy vehicle. Klahr and Dunbar found
that participants sometimes searched for experimental manipula-
tions that would provide new information about the button’s func-
tions and sometimes searched for rules that explained the device’s
behavior in response to the manipulations, Noting that Simon and
Lea (1974) had proposed that human concepl formation uses
searches in separate instance and hypothesis spaces, Klahr and
Dunbar extended the dual-search notion to the domain of scientific
discovery, where one has to coordinate search in two spaces: a
space of experiments and a space of hypotheses

Search in the hypothesis space.  Generating new hypotheses is
a type of probler solving in which the injtial state consists of some
knowledge about a domain, and the goal siate is a hypothesis that
can account for some or all of that knowledge in a more concise or
universal form Once generated, hypotheses are evaluated for their
initial plausibility Expertise plays a role here, as participants’
familiarity with a domain tends to give them strong biases about
the plausibility of hypotheses. Plausibility, in urn, affects the order
in which hypotheses are evaluated: highly likely hypotheses tend
to be tested before unlikely hypotheses (Klayman & Ha, 1987,
Wason, 1968) Furthermore, participants may adopt different ex-
perimental strategies for evaluating plausible and implausible
hypotheses

Search in the experiment space. Hypotheses are both gener-
ated from and evaluated through experimentation. But it is not
immediately obvious what constitutes a good or informative ex-
periment. In constructing experiments, scientists are faced with a
problem-solving task paraileling their search for hypotheses. How-
ever, in this case search is in a space of experiments rather than a
space of hypotheses. If experiments are used to generate new
information, then they should be designed to maximize the likeli-
hood that they will reveal something of interest. 1f they are being
used to test hypotheses, they should discriminate among rival
hypotheses. Both uses of experimental outcomes involve search in
a space of experiments that is only partially defined at the outset.
Constraints on the search must be added during the problem-
solving process.

The dual-search notion can be used to illustrate the convergence
of several types of investigations of scientific discovery. In their
lzboratory studies, Kiahr and Dunbar found that some participants
{experimenters) focused on searching the space of possible ma-
nipulations, whereas other participants (theorists) focused on the
space of possible explanations of the responses. Similar differ-
ences in preference between experiment-driven and theory-driven
stralegies have been noticed in other laboratory studies (Okada,

1994; Okada & Simon, 1997). Swudies based on histerical ap-
proaches can be interpreted in terms of the balance between
hypothesis-space search 2nd experiment-space search. For exam-
ple, in most histories of Faraday's discovery of induction of
electricity by magnets, much emphasis has been placed on the
influence of Ampére’s theory of magnetism on Faraday’s thought,
but a strong case can be made (Gooding, 1950) that Faraday's
primary search strategy was to focus on experiment space search,
yielding & discovery path that was driven largely by phenomena
rather than theory.

The dual-space characterization reveals another type of conver-
gence by allowing us to calegorize computational models of dis-
covery according to which space they emphasize Some focus
mainly on search in the hypothesis space: for example, the
BACON models and variamts (Langley et al, 1987), IDS
{Nordhansen & Langley, 1993), PHINEAS (Falkenhainer,
1990), COPER (Kokar, 1986), MECHEM (Vaidés-Perez, 1994b),
HYPGENE {Karp, 1990), AbE (O'Rorke, Morris, & Schulenburg,
1990), OCCAM (Pizzani, 1990), and ECHO (Thagard, 1988).
Other computational models focus mainly on the process of ex-
periment generation and evaluation, for exampie, DEED (Ra-

jarnoney, 1993)and DIDO (Scott & Markoviich, 1993) A few deal

with both processes, for example, KEKADA (Kuikami & Simon,
1988), STERN (Cheng, 1990), HDD (Reimann, 19903, IE (Shrager,
1985), and LIVE (Shen, 1993) This categorization might provide a
starting point for the integration of these different models into a very
rich computational implementation of the dual-search framework.
Beyond two spaces.  Although the two-space model was ade-
quate to capture most of the behavior of participants in the Klahr
and Dunbar work, analysis of participants’ behavior in & more
complex microworld Jaboratory {Schunn, 1995) necessitated the
expansion from a two-space to a four-space model, depicted in
Figure 1. In this model, the hypothests space has been expanded to
inciuded both a data representation space and a hypothesis space
In the data representation space, representations or absiractions of
the data are chosen from the set of possible features What people
search for in this space is an effective and informative way to
represent the phenemena they are observing. Additional support

Experiment
Space

Paradigm
Space

Hypothesis
Space

Representation
Space

Figure 1. A four-spuce model of scientific discovery. The arrows indicale
the direction of information flow among the four spaces. From “A 4-Space
Model of Scientific Discovery” (p 106), by C D Schunn and D Klahr,
1005, in J. D. Moore and J F. Lehman (Eds ). Proceedings of the Seven-
teenth Annual Conference of the Cognitive Science Society. Mahwah, NI
Erlbaum Copyright 1995 by C. I Schunn. Reprinted with permission
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for the importance of a representation space comes from Cheng
and Simon's (1992) analysis of Gallileo's research in which they
compare the relative difficulty of mathematical and diagrammatic
representations. Here, a5 in many areas of science, finding the right
representiation is crucial, and it requires heuristic search, with all of
its associated weak methods, in a large space of possibilities.

Figure 1 also shows how the experiment space is now divided
into an experimental paradigm space and an experiment space In
the experimental paradigm space, a class of experiments {ie, &
paradigm) is chosen that identifies the factors to vary and the
components that are heid constant In the experiment space, the
parameters settings within the selected paradigm are chosen

It should he clear that there is no right number of spaces because
that is entrely dependent on the nature of the discovery coniext
(Langley et al., 1987)* In his analysis of the discovery of the
bacterial origins of stomach ulcers, Thagard ( 1998) demonstrates
the importance of search in at least three major spaces: hypothesis
space, experiment space, and a space of instrumentation.

Search in the space of representations. One method for
searching the representation space that has atiracted considerable
attention is analogy. A prominent example is Bohr's use of the
solar system analogy in arriving at his quantm model of the
hydrogen atom. He viewed the planetary electrons as orbiting the
nucleus, ignoring the fact that, accarding to classical physics, the
charged electrons would produce a magnetic field, thereby dissi-
pating energy until they fell into the nucleus. Instead of abandon-
ing the analogy, he borrowed Planck’s quantum, which allowed
energy to be dissipated only in leaps of quanturn size, then showed
that these leaps would produce a light spectrum corresponding
exactly to the Balmer series of the hydrogen spectrum, intro-
duced 30 years previously. Not an analogy so much as a thor-
oughly mixed metaphor, one might say, but a successful one,
though it required much tinkering and radical additional represen-
tation changes (ultimately, Schrodinger's wave equations and
Heisenberg's matrix mechanics) before i could be exiended sys-
tematically beyond hydrogen and ionized helium to the other
clements.

In the autumn and early winter of 1831-1832, when he was
making his fundamental discoveries of induction of electric cur-
rents by magnetism, Faraday went through a whole series of
representations of the phenomena he was seeing, which are re-
vealed by his diary. Initially, he visualized the sudden energizing
of a magnet as creating a current in any nearby closed metallic
circuit, but this state was immediately lerminated by the creation of
an electrotonic state in the circuit that opposed the flow of current.
He tried hard, but unsuccessfully, to find independent experimen-
tat evidence for the electrotonic state. Then he noticed that if a
rmagnet moved continually in the neighborhood of the circuit, a
continuous current would be produced—the phenomenon could be
represented in terms of relative movement Next, he visualized the
lines of magnetic force (which he had iong been farniliar with as
revealed by the arangement of iron filings around a magnet) and
theorized that the current was induced when the Telative movernent
of circuit and magnet caused the former to cut the lines of magnet
force around the latter, In Faraday’s case, it was not an analogy
that led to this final representation but a series of phenomena
observed in the course of 2 long series of experiments {most of
them not predicted before the experiments were run) combined
with the experience of actually seeing the lines of force.

In chemistry at the end of the 18th century, a major event was
the rather rapid shift from the phlogiston theory of combustion (o
the oxygen theory, in which a change in representation of the
standard experiments played a major role. In earlier experiments
on combustion, the main phenomena observed were (a) the solid
materials of combustion and their residues and (b) the heat, flarne,
and smoke produced during the combustion process. The Iatter
provided the basis for hypothesizing a phlogiston, which was
supposed Lo be driven out of materials in the course of combustion.
New methods of observing and measuring the volumes and pres-
sures of gases showed that large quantities of gases were absorbed,
and other gases produced, during combustion in air. For example,
oxygen was often absorbed and carbon dioxide given off A focus
of atiention on the gases instead of the heat and flame changed the
representation of the combustion process and prodoced the new
oxygen theory.

From these examples, we see that representations can derive
from many sources: analogies, phenomena produced by, but not
predicted by, experiments, and even new ways of seeing experi-
ments triggered by new instruments of observation

Search in the strategy space.  Finally, changes in strategy, even
while 2 fixed problem representation is maintained, may play an
jmportant role in discovery. Often the change in strategy resulis
from, or leads to, the invention of new scientific insouments or
procedures. Breeding experiments are a tool of genetics research
that goes back to Gregor Mende} (and for the applied genetics of
agriculture, many centuries further back than that). The produc-
tivity of such experiments depended on the rates at which muta-
tions occurred. Miiller, with the simple idea that x-rays could
induce higher rates of mutation, substantially improved that
productivity.

A number of issues regarding the relative efficacies of different
strategies for research on scientific discovery have been discussed
in this article: strategies of using observational studies and expior-
atory experiments versus controlled experiments, or choices
among historical studies, laboratory experiments, and observa-
tions. These same kinds of choices must be made in the other
domains of scientific research

Relation Between Science Studies and More General
Studies of Creativity and Problem Solving

We come now o our final peneralization: the hypothesis that the
theory of scientific discovery is a special case of the general theory
of problem solving, the special features being supplied by the
strong methods of each discipline and the knowledge and proce-
dures that support them, while the ubiguitous weak metheds sup-
ply the commonalities. In our exploration of scientific discovery,
we have seen that (a) it is based on heuristic search in a set of
problem spaces: spaces of instances, of hypotheses, of represen-
1ations, of strategies, of instruments, and perhaps others; (b) the
control structures for search are such general mechanisms as trial

4 Even though some scientists, the first suthor included, have been
drawn into debates about whether the megic number is two (Klahr &
Dunbar, 1988; van Joolingen & de Jong, 1997), three (Baker & Dunbar,
1996; Burns & Yolkmeyer, 1997), four (Schuna & Kiahr, 1993, 1996), or
N (Wolf & Beskin, 1996}
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and error, hili climbing, means—ends analysis, and response to
surprise; and (c) recognition processes, evoked by familiar patterns
recognized in phenomena, evoke knowledge and strong methods
from memory, thereby linking the weak methods to the mecha-
nismns that are domain specific.

All of the constructs and processes mentioned above are also the
constructs and processes that are encountered in problem solving
in all the domains in which it has been studied A painter is not a
scientist, nor is a scientist a lawyer, & businessman, a machinist, or
a cook However, they share the same general approach to solving
their respective problems, and they use the same weak methods.
When their problem-solving activity is described at the level we
have been using in this article, each can understand the rationzle of
the expert’s activity, however abstruse and arcane the conteni of
their special expertise may appear.

If we press to the boundaries of creativity, the main difference
we see from more mundane examples of problem solving is that
the problems become less well structured, recognition becomes
less powerful in evoking prelearned solutions or powerful domain-
specific search heuristics, and more, not less, reliznce has to be
placed on weak methods. The more creative the problem solving,
the more primitive the Lools. Perhaps this is why childlike char-
acteristics, such as the propensity to wonder, are so often attributed
{0 creative scientists and artists.
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