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SEARCHING FOR MECHANISMS OF
TRANSITION AND CHANGE

In every field of science, questions about transition and
change have challenged generations of researchers. In
physics, the goal is to understand the processes involved in
the origin of the universe. In biology, researchers attempt
to discover the processes underlying cell differentiation,
growth, and death. In the field of cognitive development,
the fundamental questions are about the structure and con-
tent of children's knowledge, and the nature of the transi-
tion mechanisms that aliow the child to move between
progressive knowledge states.

Developmentalists have long sought an adequate lan-
guage for formulating these questions and for proposing
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answers to them. Vygotsky (1962) viewed inner speech asa
way of building temporary mental representations, but he
never specified how these temporary representations couid
lead to long-term developmental changes. Piaget sought to
explain knowledge structures and transition processes by
adapting the formalisms available at the time. Using logic
and mathematics, he constructed a representational system
(Piaget, 1953) and from biology he borrowed the notion of
assimilation and accommodation {Piaget, 1975). However,
subsequent researchers have found these constructs to be
exasperatingly ambiguous (Brainerd, 1978; Cohen, 1983,
Klahr, 1982; Miller, 1983).

About 30 years ago, with the emergence of what came to
be known as “the information processing approach” (see
McCorduck, 1979; Palmer & Kimchi, 1986 for a succinct
history), a new set of conceptualizations and methodolo-
gies were proposed as a means of addressing questions
about cognitive development. In the past three decades,
most of what has been discovered about children’s thinking
deals, in one way or another, with how they process infor-
mation. Today, few psychologists would disagree with the
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claim that cognitive development involves changes in the
content, structure, and processing of information

However, beyond this diffuse consensus, there 15 sub-
stantial diversity in the kinds of answers that different
information-proceésing researchers would give to more fo-
cused questions, such as: What do we mean by information
and by processing? What is the stuff that gets processed?
What are the characteristics of the processor? With what
information and what processes is the neonate endowed?
Which of these change with development? In this chapter,
we focus on the way in which one particular subgroup of
researchers—sometimes characterized as members of the
“hard core” information-processing camp (see Klahr, 1992
for an overview)—has used computational models to sug-
gest answers $o such questions. Thus, from the very broad
topic of information processing, we limit our discussion to
developmentally relevant computational models of cogni-
tion and language.

First, we provide a short historical account of the emer-
gence of computational approaches to studying cognitive
development. Then we discuss three broad classes of com-
putational models and provide a brief overview of each.
Following that, we describe in depth the two most widely
used types of computational models: production systems
and connectionist systems. Finally, we close with a com-
parison of the two approaches and with some specuiations
about the future of computational modeling

PRECURSORS OF COMPUTATIONAL MODELS
OF DEVELOPMENT

More than 30 years ago, Herbert Simoa—one of the
founders of the cognitive revolution, but not a cognitive
developmentalist-—sketched the path that a computational
approach to cognitive development might take:

If we can construct an information-processing system with
rules of behaviar that lead it to behave like the dynamic sys-
tem we are trying to describe, then this system is a theory of
the child at one stage of the development Having described
a particular stage by a program, we would then face the task
of discovering what additional information-processing mech-
anisms are needed to simulate developmental change—the
transition from one stage to the next. That is, we would need
to discover how the system covld modify its own structure
Thus, the theory would have two parts—a program Lo de-
seribe performance at a particular stage and a learning pro-
gramn governing the transitions from stage to stage. {Simon,
1962, pp. 134-155)

Simon's suggestion contained two ideas that departed
radically from the then-prevailing views in developmental
psychology. The first idea was that cognitive theories could
be stated as computer programs These “computational
models of thought,” as they have come to be known, have one
important property that distinguishes them from ali other
types of theoretical statements: They independenily execute
the mental processes they represent, That 15, rather than
Jeaving it to the reader to interpret a verbal description of
such processes as encoding an external stimulus or searching
a problem space, computational models actually do the en-
coding or searching. Consequently, the complex implica-
tions of multiple processes can be unambiguously derived.

The second idea in Simon's suggestion followed from the
first: 1f different states of cognitive development could be
described as programs, then the developmental process it-
self could also be described as a program that took the ear-
lier program and transformed it into the later one. Such a
program would have the capacity to alter and extend its own
processes and structures. That is, it would be a computa-
tional mode! possessing some of the same self-modification
capacities as the child's developing mind.

This two-step view-—proposing a performance model
and then seeking an independent set of “transition mecha-
nisms” that operate on that performance model—was in-
fluential in the early years of computational modeling of
cognitive development (Baylor & Gascon, 1974; Klahr &
Wallace, 1976; Young, 1976) and we have included several
examples of it in this chapter. However, over the years, the
sharp distinction between performance models and learn-
ing models has become blurred. Today the most promising
approaches are those that formulate computational models
that are always undergoing self-modification, even as they
perform at a given “level” or “stage.”

Classes of Computational Models

Itis not easy to construct computational models that achieve
an appropriate balance between performance and adapta-
tion. Consequently, two relatively distinct—and at times
adversarial-—approaches to computational modeling of de-
velopmental phenomena have emerged. We will describe
these two broad classes of systems: production systems and
connectionist systems.! They approach issues of perfor-
mance and adaptation from different points of departure. In

1 This dichotomy has also been characterized as between symbolic
models (production systems) and subsymbolic (connectionist
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general, production systems emphasize performance over
adaptation, while connectionist systems emphasize adapta-
tion over performance. However, as we will explain later in
the chapter, the distinctions between the two approaches
are diminishing as both fields devote more effort to ad-
dressing developmental issues. Most of the rest of this
chapter will be aimed at clarifying and defending this as-
sertion. In addition, we wili briefly describe some compu-
tational efforts that are neither production systems nor
connectionist systems.

Production Systems

One of the paradoxes of cognition is that it is simuliane-
ously serial and parallel. Massive amounts of parallelism
are manifest both deep within the system at the neural level
as well as at the surface where the organism's perceptual
and motor systems interact with the environment. Paradox-
ically, rational thought, attention, and motor acts, from
speech to locomotion, require a nontrivial degree of serial-
ity. For example, if your phone rang while you were reading
this chapter, you would immediately consider what to do
about it: Pick up the receiver? Let your answering machine
screen the call? Ask someone else to answer the phone?
Your mind must contain some rules that can respond to this
kind of unexpected input, while at the same time contain-
ing other rules that enable you to systematically and se-
quentially scan the page from left to right and top to bottom
{with necessary regressions) while reading. What kind of
processing system can account for these phenomena? Pro-
duction-systems models of cognition were invented as a
response to this challenge (Newell & Simon, 1972},

Production systems are a class of computational models
consisting of two interacting data structures:

1. A working memory consisting of a collection of symbol
structures called working memory elements.

2. A production memory consisting of condition-action
rules called preductions, whose conditions describe con-
figurations of working memory elements and whose ac-
tions specify modifications to the contents of working
memory.

Production memory and working memory are related
through the recognize-act cycle, which consists of three
distinct processes:

systems). The subsymbolic characterization was introduced by
connectionists who view their models as explanations of the
“micro-structure of cognition” {Rumelhart & McClelland, 1986),
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1. The recognition {or matching) process finds productions
whose conditions match against the current siate of
working memory. Because the components of a produc-
tion's conditions are usually stated as variables, a given
production may match against working memory in dif-
ferent ways, and each such mapping is called an instanti-
ation. Moreover, several different productions may be
instantiated (or satisfied) at once.

2. The conflict resolution process determines which in-
stantiated productions will be applied (or fired).

The act process applies the instantiated actions of the
selected productions. Actions ¢an include the modifica-
tion of the contents of working memory, as well as exter-
nal perceptual-motor acts.

Lt
h

The recognize-act process operates iteratively. As pro-
ductions fire, the contents of working memory change.
This leads to another recognition cycle, which leads to a
different set of productions being satisfied.?

Production systems can be thought of as collections of
complex, dynamic systems of stimulus-response (S-R)
pairs. The 5 corresponds to the condition sides of the pro-
ductions that search, in parallel, structures in working
memory. The relation between the working memory of
production systems and the working memory construct in
experimental psychology has always been somewhat vague.
Production-system working memory has been variously
conceptualized as shori-term memory (Waugh & Norman,
1963), M-space (Pascual-Leone, 1970), short-term plus
intermediate-term memory (Bower, 1975; Hunt, 1971), the
currently activated portion of long-term memory, or sim-
ply as the current state of awareness of the system. More
recent models of working memory (Baddeley, 1986, 1990)
are more complex than the initial “box of slots” conceptu-
alizations. However, regardless of the mapping between
these theoretical constructs and the working memory of
production-system architectures, the effect of this archi-
tectural feature is clear. The immediacy and recency of in-
formation that can satisfy productions serves to maintain
context, while still admitting of abrupt shifts in attention,
if either internal processing or perceptual input effects rel-
evant changes in that context. Thus, production systems

I Many of the constraints implicit in this simple description have
been relaxed and modified during the 20 years or so that produc-
tion-system architectures have been under development. We wil]
describe these developments in the main section on production
systems.
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resolve the parallel-serial paradox by providing a parallei
associative recognition memory on the condition side and 2
serial response on the action side

Connectionist Systems

Connectionist models share a set of assumptions about the
nature of neural computation: its connectivity, its repre-
sentation of knowledge, and the rules that govern learning.
Connectionist systems use neither symbols nor rules to
manipulate those symbols. The basic premises in these sys-
tems are inspired by our knowledge of how the brain is
“wired.” Connectionist systems consist of elementary
nodes or units, each of which has some degree of activa-
tion. Nodes are connected to each other in such a way that
active units can either excite or inhibit other units. Con-
nectionist networks are dynamic systems that propagate
activation among units until a stable state is reached. Infor-
mation or knowledge is represented in the system not by
any particular unit, but rather by the pattern of activation
over a large set of units, any one of which may participate
to some degree in representing any particular piece of
knowledge. McClelland (1995, p. 158) succinctly charac-
terizes the essence of these models:

On this approach—also sometimes called the parallel-distrib-
uted processing or PDP approach-—information processing
takes place through the interactions of large numbers of sim-
ple, neuron-like processing uniis, arranged into modules. An
active representation—such as the representation one may
have of a current perceptual situation, for example, or of an
appropriate overt response--is a distributed pattern of acti-
vation, over several modules, representing differeat aspects
of the event or experience, perhaps at many levels of descrip-
tion. Processing in such systems occurs through the propa-
gation of activation among the units, through weighted
excitatory and inhibitory connections.

As already suggested, the knowledge in a conpectionist
system is stored in the connection weights: it is they that de-
termine what representations we form when we perceive the
world and what responses these representations will lead us
to execute. Such knowledge has several essential characteris-
tics: First, it is inchoate, implicit, completely opague to verbal
description. Second, even in its implicit form it is not neces-
sarily accessible to all tasks; rather it can be used only when
the units it connects are actively involved in performing the
task. Third, it can approximate symbolic knowledge arbitrar-
ily closely, but it may not; it admits of states that are cumber-
some at best to describe by rules; and fourth, its acquisition
can proceed gradually, through a simple, experience-driven
Process.

Because connectionist systems are inherently learning
systems, the two-step approach (first performance models,
then transition models) has not been used. Instead, design-
ers of connectionist models have focused on models that
learn continuously, and they have attempted to illustrate
how different distributions of connectivity among the
nodes of their networks correspond to different knowledge
levels in children. The earliest applications were in the area
of language acquisition, but more recent models have begun
to examine conceptual development and problem solving.

Ad Hoc Models

In many cases, a researcher may have a theory about some
phenomenon that is sufficiently complex that only a com-
putational model will enable one to derive predictions
from it. However, the modeler may not be prepared to
make a commitment to the theoretical claims of either con-
nectionist or production-system approaches., In such cases,
one simply chooses to focus on the knowledge structures
and computational processes, and employs an ad hoc com-
putational architecture in which to formulate and run the
model. This approach enables the model builder to focus
on the complexities of the domain under consideration
without being constrained by global architectures or par-
ticular learning algorithms One advantage of ad hoc sys-
tems is that, because they are not constrained by global
theoretical concerns, they often achieve extremely precise
and fine-grained fits to empirical measures of children’s
performance. The disadvantages are that their range of ap-
plication is relatively narrow, and their relation to the total
cognitive system is not specified.

Example: A Computational Model for Children’s
Strategy Choice in Arithmetic. The focus of this chap-
ter is on production systems and connectionist systems.
However, in order to demonstrate the way in which computa-
tional models can enhance our understanding of develop-
mental phenomena even when there is no strong commitment
to a particular cognitive architecture, we will describe one
such model.

Siegler and his colleagues have developed a series of
computational models to account for children’s perfor-
mance on simple addition problems (Siegler & Shipley,
1995; Siegler & Shrager, 1984). The basic phenomenon is
that children use a variety of strategies to solve problems
such as 3 + 4. One strategy is to simply retrieve the an-
swer from memory. Another is fo start a count at 4, and
then count up 3 steps to 7. Yet another is to count on their



fingers: first three fingers, then four fingers, and then to
count all the extended fingers. The relation between the use
of these strategies and their speed and accuracy is highly
systematic. Siegler’s models address two basic questions.
How do each of the distinct strategies work? How do chil-
dren choose among them?

The key feature in the first computational model
(Siegler & Shrager, 1984) was a data structure in which, for
every pair of integers, there was a distribution of associa-
tions to possible answers (both correct and incorrect). For
example, the problem 3 + 5 has associated with it not only
8, but also other possible responses that might have been
given in the past, just as 6, 7, and 9. The distribution of re-
sponse strengths to possible answers gives each problem a
characteristic shape, and these distributions can be classi-
fied along a dimension of peakedness. In a problem with a
peaked distribution, most of the associative strength is
concenirated in a single answer, ordinarily the correct an-
swer. At the other extreme, in 2 flat distribution, associa-
tive strength is dispersed among several amswers, with
none of them forming a strong peak.

This data structure is then used by the model to decide
whether to produce an answer through direct retrieval—
with the response determined by the probability distribu-
tion associated with that problem, or via some other, more
deliberate counting-based strategy. When run on a variety
of data sets, the model provided an excellent fit to both
speed and accuracy data from children's performance on
the same type of problems that were presented to the
model. In fact, it facilitated the derivation of some nonin-
tuitive predictions about the correlation between error
rates and strategy selection that were supported by the em-
pirical results. Moreover, the model challenges the notion
that metacognitive processes play a role in children’s
choice of addition strategies. Instead, intelligent strategy
choices emerge from the application of simpler, more basic
processes. This kind of “emergent property” is a particn-
larly important feature of computational models, and
we will discuss it further at the end of this introductory
section.

But the model had its shortcomings. Siegler and Shipley
(1995) were able to analyze its behavior with extreme pre-
cision and conclude that *it was too inflexible, too limited
in its explicitness, and too dumb.” Harsh words, but true.
(But could one ever assess a verbally based theory with
such exactness?)

In order to remedy this problem, Siegler and Shipley for-
mulated a second computational model—the Adaptive
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Strategy Choice Model (ASCM). Their goal was to create a
more flexible, more precise, and more intelligent model of
strategy choice. In ASCM, each strategy has associated
with it a database containing information about its accy-
racy, speed, and novelty, as well as its projected accuracy,
speed and special features. The improved model was de-
signed to aceount for variability in strategies, answers, and
individual performance patterns, as well as the order in
which strategies were considered. ASCM was able 1o make
adaptive choices on novel as well as familiar problems and
to make good choices among its alternative strategies.
Thus, ad hoc computational models offer theoretical
advances, even though they do not entail the more global
systemic assumptions of either production-system or con-
nectionist frameworks. Indeed, in a review of over a score of
computational models relevant to cognitive development,
Rabinowitz, Grant, and Dingley (1987} indicate the influ-
ential role of ad hoc models. A more recent example of ad
hoc computational modeling is the work on analogical rea-
soning described by Gentner and her colleagues (Gentner,
Rattermann, Markman, & Kotovsky, 1995). However, be-
cause such models are quite diverse in the assumptions that
they make, for the remainder of this chapter we will focus
only on production systems and connectionist systems.

Psychological Theory and Computer Simulation

Before leaving this preliminary section, we will make a few
general comments about computational modeling as a form
of theory building in psychology. In particular, we want to
address a common misconception about the role of the
computer in psychological theory.

Critics of the hard-core information-processing ap-
proach often attribute to computational modelers the belief
that the digital computer is an appropriate model for the
mind. For example, Ann Brown (1982) correctly points out
that “A system that cannot grow, or show adaptive modifi-
cation to a changing environment, is a strange metaphor for
human thought processes which are constantly changing
over the life span of an individual.” Although the statement
clearly applies to computers, it equally clearly does not
apply to computational models—even though they are im-
plemented on computers. For example, we have just de-
scribed how the ASCM model demonstrates adaptive
change, and we will describe several other adaptive models
later in this chapter.

The misattribution derives from a failure to distinguish
between the theoretical content of a program that runs on a
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computer and the psychological relevance of the computer
itself. Hard-core information-processing theories are suffi-
ciently complex that it is necessary to run them on comput-
ers in order to explore their implications. But this does not
imply that a theory bears any necessary resemblance to the
computer on which it runs. Meteorologists who rua com-
puter simulations of hurricanes do not believe that the at-
mosphere works like a computer. Furthermore, the same
theory could be impiemented on computers having radi-
cally different underlying architectures and mechanisms.

Note that this distinction between computational models
and computers holds not only for symbolically based simu-
lations but also for connectionist simulations. Even such in-
herently parallel, highly interconnected systems sit atop
computing hardware that is statically organized in a fash-
ion bearing no relation at all to the living neural tissue that
the human brain comprises.

The goal of computational approaches to cognitive de-
velopment is to determine the extent to which the emer-
gence of intelligent behavior can be accounted for by a
computational system that is manifested in the physical
world. Consequently, because both computers and brains
are computational systems, some of the theoretical con-
structs and insights that have come out of computer science
may be relevant for cognitive developmental theory.

One such insight 1s what Palmer and Kimchi (1986) call
the recursive decomposition assumption: Any nonprimitive
process can be specified more fully at a lower level by de-
compesing it into a set of subcomponents and specifying
the temporal and informational flows among the subcom-
ponents. This is a good example of how abstract ideas from
computer science have contributed to computational mod-
els of psychological processes: “it is one of the foundation
stones of computer science that a relatively small set of el-
ementary processes suffices to produce the full generality
of information processing” (Newell & Simon, 1972, p. 29).
An important consequence of decomposition is that

... the resulting component operations are not only guantita-
tively simpier than the initial one, but qualitatively different
from ... Thus we see that higher level information-
processing descriptions sometimes contain emergent proper-
ties that lower level descriptions do not. It is the organization
of the system specified by the flow relations among the lower
level components that gives rise to these properties. (Palmer
& Kimchi, 1986, p. 52) '

The importance of emergent properties cannot be
overemphasized, for it provides a route to explaining
how intelligence—be it in humans or machines~-can be

exhibited by systems comprised of uninteliigent underlying
components—be they synapses or silicon. Even if one de-
fines “underlying components” at a much higher level-—
such as production systems or networks of activated nodes,

emergent properties still emerge, for that is the nature of

complex systems.

The emergent property notion provides the key to our be-
lief that computational approaches provide a general frame-
work, particular concepts, and formal languages that make
possible the formulation of powerful theories of cognitive
development. The fundamental challenge is to account for
the emergence of intelligence. Intelligence must develop
from the innate kernel. The intelligence in the kernel,
and in its self-modification processes, will be an emergent
property of the organization of elementary (unintelligent)
mechanisms for performance, learning, and development.

In the rest of this chapter, we will first describe produc-
tion systems, and their use in cognitive developmental
theory. Next we will give a similar treatment to connection-
ist systems. Finally, we will discuss the similarities and
differences between these two approaches to computa-
tional modeling, with special emphasis on issues of direct
relevance to cognitive development.

PRODUCTION-SYSTEM ARCHITECTURES

“What is happening in the human head to produce human
cognition?” asks John Anderson in the opening chapter of
his most recent book on the ACT-R theory of human
thought (Anderson, 1993). The question is as fundamental
to developmentalists as it is to those who focus on adult
cognition. Anderson’s answer is unequivocal:

Cognitive skills are realized by production ruies. This is one
of the most astounding and important discoveries in psychol-
ogy and may provide a base around which to come to a general
understanding of human cognition (p. I)

Anderson goes on to point out that

production systems are particularly grand theories of human
cognition because they are cognitive architectures . .. rela-
tively complete proposals about the structure of human cog-
nition. . .. Just as an architect tries to provide a complete
specification of a house (for a builder), so a. .. cognitive
architecture tries to provide a complete specification of a
system. There is 2 certzin abstractness in the architect's
specification, however, which leaves the concrete realization
to the builder. So too, there is an abstraction in a cognitive or
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computer architecture. One does not specify the exact neu-
rons in a cogritive architecture, and one does not specify
the exact computing elements in a computer architecture ?
(pp 3-4)

In this section we describe production systems and their
relevance and potential for advancing our understanding of
cognitive development. Before we get to production Sy5-
tems, as such, a bit of preliminary work is necessary. First
we discuss a few issues surrounding the notion of “symbol
systems.” Then we describe a cognitive architecture that
represents the standard view of adult cognition that gained
widespread acceptance in the 1970s and 1980s. With those
preliminaries out of the way, we describe production sys-
tems proper.

Symbol Systems

Production systems represent the most elaborated and ex-
tensive examiples of what has come to be called (more by its
critics than its advocates) the “symbolic approach” to com-
putational modeling of cognition and cognitive develop-
ment. It is important to provide a brief introduction to the
theoretical assumptions inherent in this approach. The role
of symbols, symbol structures, and symbol manipulation in
computational models is best described by Newell (1980).
He defines a physical symbol system as one that

Is capable of having and manipulating symbols, yet is also re-
elizable within our physical universe . .. [This concept} has
emerged from our growing experience and analysis of the
computer and how to program it to perform intellectual and
perceptual tasks. The notion of symbol that it defines is inter-
nal to this concept of a system. Thus, it is a hypothesis that
these symbols are in fact the same symbols that we humans
have and use everyday of our lives. Stated another way, the
hypothesis is that humans are instances of physical symbol
systems, and by virtue of this, mind enters into the physical
universe. (p. 136)

Perhaps the most remarkable aspect of Newell's charac-
terization of physical symbol systems is that it solves the
venerable “mind-body problem.” The essential property of

? Anderson continues: * This abstractness even holds for connec-
tionist models that claim to be ‘neurally inspired.” Their ele-
ments are in no way to be confused with real neurons. ... " In
the final section of this chapter we will discuss this claim and
others related to the neural realism of connectionist models of
cognition.

Production-System Architectures 637

a symbol (physically represented in silicon or neurons) is
that it can designate something else {represented as a sym-
bol structure). Such symbols comprise the elementary units
in any representation of knowledge including sensory-
motor knowledge or linguistic structures. Moreover, be-
cause these representations encode information about the
external physical and social world, they have a semantics as
well as a syntax.

Philosophical distinctions between dense and articulated
symbols (Goodman, 1968) or personal and consensual sym-
bols (Kolers & Smythe, 1984) emphasize the likelihood of
idiosyncratic symbol structures for specific individuals,
and the difference between internal symbol structures and
their external referents. However, they are entirely consis-
tent with Newell's physical symbol system hypothesis.

A First-Order Cognitive Architecture

Most of the work on both symbolic and connectionist cog-
tiitive architectures has focused on adult cognition, rather
than on cognitive development. Nevertheless, developmen-
talists interested in a variety of cognitive processes have
adopted—either implicitly or explicitly—the general view
of the adult information-processing system that emerged in
the late 1960s and early 1970s (Atkinson & Shiffrin, 1968,
Craik & Lockhart, 1972; Norman, Rumelhart, & Group,
1975). In this section, we describe a system intended to de-
pict the essential cognitive architecture of a normal adult.
This standard description includes three major architec-
tural components:

1. Several buffers in which information from various sen-
sory modalities remains briefly active and available for

further processing—such as a visual “iconic” memory
and an “acoustic buffer";

2. A limited-capacity memory (of from two to seven
“chunks” of information) that can retain material for a
few seconds if unrehearsed but for much longer if con-
tinually rehearsed. As noted earlier, this memory has
been variously conceptualized as short-term MeImory,
working memory, and immediate memory. In some mod-
els, these distinctions are specific and theoretically im-
portant, while in others they are indistinguishable.

3. An (effectively) unlimited, content-addressable long-
term Memaory.

Although this characterization was inspired by, and is
analogous to, the gross functional features of computer
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architectures, it also represents an attempt to account for
the plethora of empirical findings that have emerged from
experimental studies of human information processing. As
we have already explained, the analogy to computer archi-
tectures in no way rests on the assumption that, at more
microscopic levels of underlying hardware, computers bear
any resemblance to neural circuitry.

The notion of a cognitive architecture was originated
by Newell (1973, 1981) and has since gone through sev-
eral successive refinements. One of the most detailed s
Card, Moran, and Newell's {1983) model of the human
information-processing sysiem that includes not only the
gross organization of the different information stores and
their connections, but aiso estimates of processing rates
and capacities. This Moedel Human Processor (MHP) was
designed to facilitate predictions about human behavior in
a variety of situations involving interactions between hu-
mans and computers. It was based on a vast amount of em-
pirical data on human performance in perceptual, auditory,
motor, and simple cognitive tasks.

The MHP is illustrated in Figure 13.1 and its principles
of operation are listed in Table 13.1. It includes a long-
term memory; a working memory; two perceptual stores
for visual and auditory information; and three subsystems
for cognitive, motor, and perceptual processing. For each
of these stores, there are associated estimates of storage
capacity, decay times, cycle times, and the type of code as
well as connectivity to the rest of the system.

The perceptual system consists of sensors and associ-
ated buffer memories, the most important buffer memories
being a Visual Image Store and an Auditory Image Store to
hotd the output of the sensory system while it is being sym-
bolically coded. The cognitive system receives symboli-
cally coded information from the sensory image stores in
its Working Memory and uses previously stored informa-
tion in Long-Term Memory to make decisions about how to
respond. The motor system carries out the response.

For some tasks (pressing a key in response to a light), the
human must behave as a serial processor. For other tasks
(typing, reading, simultaneous translation), integrated, par-
allel operation of the three subsystems is possible, in the
manner of three pipe-lined processors: information flows
continuously from input to output with a chdracteristically
short time lag showing that all three processots are working
simultaneousty. The memories and processors are described
by a few parameters. The most important parameters of a
memory are: J, the storage capacity in items; d, the decay
time of an item; and k the main code type {physical,
acoustic, visual, semantic). The most important parameter
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Figure 13.1 The model human processor—memories znd
processors. Sensory information flows into Working Memory
through the Perceptual Processor. Working Memory consists of
activated chunks in Long-Term Memory. From The Psychology
of Human-Computer Interaction by 5. Card, T. P. Moras, &
A. Newelt, 1983, Hillsdale, NJ: Erlbaum. Copyright © 1983 by
Lawrence Erlbaum Associates. Reprinted with permission

of a processor is ¢ the cycle time (Card et al., 1983,
pp. 24-25}.

The MHP was formulated to account for the perceptual
and motor behavior of adults interacting with computers,
and it has been used successfully to help design and evalu-
ate human-computer interfaces (Gray, John, & Atwood,
1993). It was definitely not designed to advance develop-
mental theory. Nevertheless, we include it here because we
believe that it exemplifies the more general attempt to for-
mulate a cognitive architecture that is consistent with the
massive amount of empirical data on human performance.
As such, it presents an obvious challenge to developmental-
ists; What would an MHP look like for an infant, for a
preschooler, or for an adolescet? Which of the architec-
tural features, processing rates, and information capacities
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T.-‘»\BLE 13.1 Principles of Operation for the Model Human
Processor {Frem Card et al., 1983)

PO.  Recognize-Act Cycle of the Cognitive Processor. On each cycle of
the Cognitive Processor, the contents of Working Memory initiate
actions associatively linked to them in Long-Term Memory; these
actions in turn modify the contents of Working Memory

Pl. Variable Perceptual Processor Rate Principle The Perceptuat Pro-
cessor cycle time t, varies inversely with stimulus intensity

P2.  Encoding Specificity Principle. Specific encoding operations per-
formed on what is perceived determine what is stored, and what
Is stored determines what retrieval cues ase effective in providing
access to what is siored.

P3.  Discrimination Principle. The difficully of memory retrieval is
determined by the candidates that exist in the memory, refative to
the retrieval clues.

P4. Variable Cognitive Processor Rate Principle. The Cognitive Pro-
cessor cycle time 1 is shorter when greater effort is induced by

increased task demands or infermation loads; it also diminishes
with practice.

P5. Firt's Law. The time T, 10 move the hand to a target of size §
which lies a distance D away is given by:
Tpm = I, log,(IM5 + .5},

where I, = 100 {70 ~ 120} msec/bit.
P6. Power Law of Practice The time T, o perform a task on the nth
trial follows a power law:
T, =T
wherea= 4 [.2 ~ 6]
P7. Unceriainty Principle. Decision time T increases with uheer-
tainty about the judgment or decision to be made:
T=1.H

where H is the information-theoretic entropy of the decision and
I, = 150(0 - 157} msec/bit. For n equally probable alternatives
{calied Hick's Law),

H=log, (n+1)
For n alternatives with different probabilities, p;» of occurrence,
H=Z p, log, (1/p, + 1)
PB. Rationality Principle. A person acts so as to attain his goals
through ratioral action, given the structure of the task and his in-

puts of information and bounded by limitations on his knowledge
and processing ability:

Goals + Task + Operators + Inputs + Knowledge
+ Process-limits /& Behavior
PY. Problem Space Principle. The rational activity in which people
engage to solve a problem can be described in terms of (1) a set
of states of knowledge, (2) operators for changing one state into
another, (3) constraints on applying cperators, and (4) controt
knowledge for deciding which operator to apply next.

that so effectively characterize a normal adult would have
to change in these “kiddy” versions of the MHP? Finally,
what additional features would an MHP need to have in
order to develop from the neonate processor to the adult
version?
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The answers to such questions will occur ar ywo Jevels.
At the level of rates and parameters, the kind of results
emerging from Kail's {1988, 1991) extensive chronometric
studies may ultimately inform theories about the develop-
mental course of the basic cognitive processes that support
the system architecture. At present, however, the develop-
mental range of variation from childhood to adulthood in
things such as visual scanning rates, STM scanning rates,
and so on, is of the same order of magnitude as the MHP
estimates for adults, so the experimental results do not con-
strain the computational models. For example, Card and
colleagues estimate a basic cycle time for the MHP be-
tween 25 and 170 msec, while Kail's results show a STM
scanning rate that varies from about 125 msec per item for
eight-year-olds to 50 msec per item for adults. In order for
the chronometric results to constrain the broader architec-
tural theories, it will be necessary to combine such “hard-
ware” estimates with more detailed task analyses of the
“software” that utilizes the hardware. '

At the architectural level, it is necessary to go beyond
the global characterizations provided by the MHP and cre-
ate computational models that utilize that architecture.
The creation of production-system models of children's
cognitive processes represents a path toward that gdal. In
the next section we describe this kind of work.

Production Systems for Different Knowledge States

Production systems were first used in computer science
without any particular reference to human cognition.* With
respect to cognitive modeling, the most important early de-
velopments include Newell’s first computer implementation
of a production-system language called PSG (1973) and An-
derson’s production systems for adult cognitive tasks (An-
derson, 1983; Anderson, Kline, & Beasley, 1978) which
combined production systems with semantic nets. These
systems took the standard model-—described in the previous
section-—and transformed it into specific proposals about
the dynamics of the human cognitive architecture.

At their inception, production systems were used to ac-
count for adult problem-solving performance in situations
requiring a systematic accumulation of knowledge about a
problem space as well as an ability to opportunistically
change the focus of the problem (Newell & Simon, 1972).

“A brief history of production systems—both in computer sci-
ence and in psychology—is presented in Neches, Langley, and
Kizhr (1987).
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Although the models cast in this form were able to dynam-
ically accumulate knowledge, revise it, and eventually con-
struct a solution to a problem, these inizial models did not
themselves change. However, issues of change, learning,
adapiation—rmore generally termed “self-modification”
quickly became an issue, and the early literature on pro-
duction systems inciudes work on “adaptive production
systems™ (Waterman, 1975).

The initial use of production systems by developmental-
ists was the “sequence of models” approach. As noted
earlier, the approach seeks to produce a sequence of
production-system models for a specific task such that each
model represents a different level of performance. The
premise was that once such a sequence of models had been
created and validated, it would be possible to examine the
differences between successive models in order to infer
what a transition mechanism would have to accomplish. Al-
though it is now clear that the clean distinction between
performance models and transition models was an over-
simplification, such models constituted most of the early
work in this area, so we will describe a few of them here.

An Example from Conservation

Consider the moment, repeated tens of thousands of times
by developmental investigators, when a child is asked the
“crucial” conservation question: “Are there more objects
in this row, or in this row, or do the two rows have the same
number of objects?” How can we represent the mental com-
putations that the child performs in attempting to reply?
Klahr and Wallace (1976) approached this question by
formulating a series of increasingly complex production-
system models to account for children’s understanding of
guantitative concepts, starting with models for encoding
discrete quantities via subitizing and counting, and ending
with children’s ability to understand guestions about class
inclusion, transitivity, and conservation. Their most “ma-
ture” model contains productions dealing with several
different levels of knowledge. At the highest level are pro-
ductions that represent general conservation rules, such as
“If you know about an initial quantitative relation, and a
transformation, then you know something about the resul-
tant quantitative relation.”” At the next level are productions
representing pragmatic rules, such as “If you want to com-
pare two guantities, and you don’t krow about any prior
comparisons, then quantify each of them.™ At an even
lower level are rules that determine which of several quan-
tification processes will actually be used to encode the ex-
ternal display {e g., subitizing, counting, or estimation).

Finally, at the lowest level, are productions for carrying out
the quantification process.

Later in this chapter, we will describe the most recent
version of a production-sysiem model of conservation
knowledge (Simon & Klahr, 1995} In this section, we
use the earlier work to illustrate some importarét aspects of
production-system models. Table 13.2 lists a few of the key
productions from the Kiahr and Wallace (1976) model.

At first glance, and when read in the pseudo-formalism
used in Table 13.2, the first three productions appear to be
nearly identical. But there are important differences be-
tween them. P1 corresponds to a situation in which the sys-
tem has no goals with respect to quantitative comparisos,
but has just received some external query (from the ubiqui-
tous conservation investigator). P2 corresponds to a situa-
tion in which there is a goal of determining a relationship,
so it establishes the first subgoal along the path to such a
determination, which is to compare the quantity of the two
collections. Eveniually, the system will determine that re-
lationship, and when it does, P3 will notice that it has both
a goal to determine a relationship and the requisite infor-
mation to satisfy that goal.

Now let us consider in more detail just what each of
these productions does. P1 detects an element in working
memory that results from the encoding of a verbal query.
The linguistic processing is not modeled here, but the

TABLE 13.2 Some Productions for Quantity Conservation.
Italicized terms represent variables whose values will be
determined by the working memory elements that they happen to
match. (Adapted from Kiahr & Wallace, 1976, Chapter 5)

P1: If you have been asked about a guantitarive relationship beiween
collection X and collection ¥
then set a poal 10 determine the relationship between collection X
and collection Y.
P2: 1fhe goal is to determine a quantitarive relationship between col-
lection X and collection ¥ '

then set the goal of comparing collection X and collection Y.

P3: If the goal is 1o determine & quantitative relationship between col-
fection X and collecrion ¥
and you know & relarionship between collection X and collection Y
then respond by saying the relationship,
P4: If your goal is to apply knowledpe about quantity conservation
and you know that collection X and collection Y were quantita-
tively equivalent
and that collection Y underwent a quantity-preserving transforma-
tion, changing Yinto ¥~
then you know that collection X and collection V' are quantita-
tively eguivalent,

BT I e e

g

R 3 e T PR

T

RN

<



assumption is that a variety of questions would produce the
three pieces of information: one about the relationship, and
the other two about the identity of the focal collections.
This production illustrates what is meant by “multiple in-
stantiations” of the same production. This production could
be satisfied by several different combinations of matching
elements, depending on the precise form of the guestion
(e g.. Which is longer the top row or the bottom row? or
Which is less, the red ones or the blue ones?) and on
whether or not there exists in working memory more than
one active element that is a member of the relation ship con-
cept, or the collection concept. For example, the second of
the two questions above would form the following matches
or bindings: relationship-less, collection X-red ones, col-
lection Y-blue ones. But if another referent to a collec-
tion—-such as “round things" was still active in working
memory, another instantiation of the same production
might be: less, red, round.

In addition to multiple instantiations of the same pro-
duction, it is possible (and common) for several different
productions to match the contents of working memory at
the same time. For example, because the conditions of P2
are a proper subset of the conditions for P3, whenever P3 is
satisfied, so is P2. It is up to the conflict resolution process
(described below) to decide how to handle such multiple in-
stantiations of the same production, as well the instantia-
tion of more than one production.

P4 is one of several productions in the original model
that represent cross products of the three possible relation-
ships between initial quantities (>, =, <) and three classes
of transformations (those that effect increases, decreases,
or no change). One of the surprising discoveries that came
out of the formulation of production-system models of the
conservation task was that there were many different kinds
of knowledge required before a child could really be said
to “have” quantity conservation. Another was that, in addi-
tion to productions about conservation as such, the system
needs a large number of quantity-specific problem-solving
productions, of the sort represented in Table 13.2, that es-
tablish the requisite information and the appropriate goal
structure for correctly responding to a conservation query.

Knowledge States for Balance Scale Predictions

Klahr and Siegler (1978) used production systems in a
different way: to take a noncomputational information-
processing model that had already shown an excellent fit
to children's performance and recast it as a production-
System in order to get a better idea of its dynamic properties.
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The production-system models were based on earlier in-
vestigations of children's performance on Piaget's balance
scale prediction task. Siegler (1978, 1976) proposed an el-
egant analysis of rule sequences characterizing how chil-
dren (from 3 years to 17 years old) make predictions on
this task (as well as in several other domains having a
similar formal structure). This work has provided the basis
for many subsequent empirical and theoretical analyses,
including computational theories cast as both production
systems and connectionist networks. Because we will be
discussing these models in some detail, we next describe
the balance scale task on which they are based.

The type of balance scale used consisted of a two-arm
balance, with several pegs located at equal intervals along
each arm. Small circular disks, all of equal weight, were
placed on the pegs in various configurations, while the bal-
ance was prevented from tipping. The child's task was to
predict the direction in which the balance scale would
move if it were allowed to.

The basic physical concept that underlies the operation
of the balance scale is torque: The scale will rotate in the
direction of the greater of the two torques acting on its
arms. The total torque on each arm is determined by sum-
ming the individual torques produced by the weights on the
pegs, and individual torques are in turn computed by multi-
plying each weight by its distance from the fulcrum Since
the pegs are at equal intervals from the fulcrum, and the
weights are all equal, a simpler calculation is possible. It
consists of computing the sum of the products of number of
weights on a peg times the ordinal position of the peg from
the fulcrum. This is done for each side, and the side with
the greater sum of products is the side that will go down.
(If they are equal, the scale will balance.)

Siegler (1976) demonstrated that the different levels of
knowledge that children have about this task could be rep-
resented in the form of a sequence of four increasingly
“mature” binary decision trees, depicted in Figure 13.2. A
child using Mode! I considers only the number of weights
on each side: If they are the same, the child predicts bal-
ance, otherwise he predicts that the side with the greater
weight will go down. For a Model II child, a difference in
weight still dominates, but if weight is equal, then a differ-
ence in distance is sought. If it exists, the greater distance
determines which side will go down, otherwise the predic-
tion is balance. A child using Model 111 tests both weight
and distance in all cases. If both are equal, the child pre-
dicts balance; if only one is equal, then the other one deter-
mines the outcome; if they are both unequal, but on the
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Figure 13.2 Decision tree representation for models I-IV of balance scale predictions. From “The representation of children’s
knowledge,” by D. Kiahr & R. S. Siegler, 1978, in H, W, Reese & L. P. Lipsitt (Eds.), Advances in Child Development and Behavior
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same side with respect to their inequality, then that side is
predicted to go down. However, in a situation in which one
side has the greater weight, while the other has greater dis-
tance, a Model I1I child, although recognizing the conflict,
does not have a consistent way to resolve it. This child sim-
ply “muddles through” by making a random prediction
Model IV represents “mature” knowledge of the task:
Since it includes the sum-of-products calculation, children
using it will always make the correct prediction, but if they
can bage their prediction on simpler tests, they will do so.
The components of this knowledge are acquired over a re-
markably long span of experience and education. Although
children as young as 5 years old usually know that balances
such as teeter-totters tend to fall toward the side with more
weight, most college students are unable to consistently
solve balance scale problems.

Production Systems for Balance Scale Rules. The
binary decision trees make clear predictions about the re-
sponses that would be made by a child using one of these
rules for any specific configuration of weights. However,
they are silent on the dynamics of the decision process, and
they do not make a clear distinction between encoding
processes and decision processes. By recasting the rules as
production systems, Klahr and Siegler were able to make a
more precise characterization of what develops than was
afforded by the decision-tree representation.

The production system is listed in Table 13.3. Consider,
for example, Model I1 in Table 13.3. It is a production sys-
tem consisting of three productions. The condition ele-
ments in this system are all tests for sameness or difference
in weight or distance. The actions all refer to behavioral re-
sponses. None of the models in Table 13.3 contain a repre-
sentation for any more detailed knowledge, such as the
actual amount of weight or distance, or the means used to
encode that information. Nor is there any explicit represen-
tation of how the system produces the final verbal output. It
is simply assumed that the system has processes—or “oper-
ators” that produce encoded representations of the rela-
tional information stated in the conditions.

On any recognize-act cycle, only one of these produc-
tions will fire, depending on the type of knowledge that
the encoding processes have placed in working memory. If
the weights are unequal, then P2 will fire; if the weights are
equal and the distances are not, then both P1 and P3 will be
satisfied, and this “conflict” has to be resolved by the pro-
duction system architecture. For the production system that
Klahr and Siegler proposed, the conflict is resolved by a
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TABLE 13.3 Production System (P) Representations for Models I
IY. D = distance; W = weight. See text for further explanation.
{(From Klahr & Siegler, 1978}

Medel |

Pl: ((Same W) ~» (Say “balance™)

P2: ((Side X more W) — (Say “X down")}
Model 11

P1: ((Same W) — (Say “balance™))

P2: {(Side X more W) — (Say “X down™)}

P3: ({(Same W) (Side X more D) — (Say "X down"™))
Model II1

Pl: ((Szme W) — (Say “balance™))

P2: {(Side X more W) — (Say “X down"))

P3: ((Same W) {Side X more D) — (Say "X down")}

P4 ((Side X more W) (Side X less I} — muddle through)

P5: ((Side X more W) {Side X more D) — (Say “X down"))
Model IV

Pl: {{Same W) — (Say “balance™))

P2: {{Side X more W} — (Say “X down™))

P3: ({(Same W} (Side X more D) — (Say “X down™)}

P4: {(Side X more W) (Side X less D) ~» (get Torque))

P5: {(Side X more W) (Side X more D) — (Say "X down"))

P&: ({Same Torgue} —» {Say “balance™))

P7: {{Side X more Torque) — (Say “X down™))

Transitional requirements

Productions
add P3

add P4, P5
modify P4;
add P6, PY

Operators
Il add distance encoding and comparison
IF — IIt

I - IV add torgque computation and comparison

specificity principle that always selects the more specific
of two productions when one is a special case of the other.”
Finally, if both weights and distances are equal, then only
P1 will be satisfied and it will fire. (Note that a production
maintains its label across the four models.)

We can compare the four models to determine the task
facing a transition model. At the level of productions, the
requisite modifications are straightforward: transition
from Model I to Model II requires the addition of P3; from
Model II to 111, the addition of P4 and P3; and from Model
I to IV, the addition of P6 and P7 and the modification of
P4 to P4

Thus far we have compared the models at the level of
productions. But productions need information provided
by the operators that encode the external configuration.

* More recent production-system architectures have dropped the
“specificity principle.” Conflict resolution will be discussed
later in the chapter.
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Consequently, it is informative to compare the four models
at a finer level of analysis by looking at the implicit re-
quirements for encoding and comparing the important qual-
ities in the environment. The production system for Model 1
tests for sameness or difference in weight. Thus, it requires
an encoding process that either directly encodes relative
weight or encodes an absolute amount of each and then in-
puts those representations into a comparison process.
Whatever the form of the comparison process, it must be
able to produce not only a same-or-different symbol, but if
there is a difference, it must be able to keep track of which
side is greater. The production system for Model 11 requires
the additional capacity to make these decisions about dis-
tance as well as weight, This might constitute a completely
separate encoding and comparison system for distance rep-
resentations, or it might be the same system except for the
interface with the environment.

Model I1I's production system needs no additional oper-
ators at this level. Thus, it differs from Model II only in the
way it utilizes information that is already accessible to
Model 11. The Model IV production system requires a much
more powerful set of guantitative operators than any of the
preceding models. In order to determine relative torque, it
must first determine the absolute torque on each side of the
scale, and this in turn requires exact numerical representa-
tion of weight and distance. In addition, the torque compu-
tation would require access to the necessary arithmetic
production systems to actually do the sum of products
calculations.

Although we have compared the four models at two dis-
tinct levels—productions and operators—the levels are not
really that easily separated, Missing from these models isa
set of productions that would indicate the interdependence:
productions that explicitly determine which encoding the
system will make. That is, in these models, there are almost
no productions of the form: (want to compare weights) —

(attend to stimulus and notice weight). The sole exception
to this occurs in P4’ in Model IV. When this moedel is con-
fronted with a nonconflict problem, either P1, P2, P3, or P5
will fire on the first recognize cycle. For a conflict prob-
lem, P4’ fires, and the system attempts to “get torques.”
The result of this unmodeled action, as described above,
would be 1o produce a knowledge element that could satisfy
either P6 or P7 on the next cycle.

Representing the Immediate Task Context. One
advantage of a production-system formulation is that it fa-
cilitates the extension of a basic model of the logical

properties of a task to include the processing of verbal in-
structions, encoding of the stimulus, keeping track of
where the child is in the overali task, and so on. For ex-
ample, in their analysis of individual subject protocols on
the balance scale, Klahr and Siegler proposed several dis-
tinct models to accoun: for some children's idiosyn-
cratic—but consistent—response patterns. Some of these
models included not only the basic productions for a vari-
ant of one of Siegler’s four models for balance scale pre-
dictions, but also knowledge about the instantaneous task
context.

These models are too detaiied to present here. However,
it is instructive to consider the way in which such detailed
models are able to characterize how much more than
balance scale knowledge, as such, is required by a child
performing this task. For gxample, one of the Klahr and
Siegler models for an individual subject dealt with the way
in which the child maintained, in working memory, the fol-
lowing pieces of information: which side has more weight
or distance, which side has a big weight or distance, what
the current criterion value is, what the scale is expected to
do, what the scale actually did, whether the prediction is
yet to be made or has been made, and whether it is correct
or incorrect.

Thus, their model makes a strong claim about how much
of the encoded knowledge (ie. the contents of working
memory) must be available at any one moment. Although
production-system models do not generally impose any
clear constraints on the size of working memory they pro-
vide the potential for such an analysis. One of the relatively
unexplored areas for future computational modelers is to
attempt to integrate the theoretical constructs and empiri-
cal results described by working memory capacity theo-
rists, such as Case (1986) and Bidell and Fischer (1994)
with the added formalisms and precision of production-
system models. Promising steps in this direction are repre-
sented by recent work by Halford and his colleagues
(Halford, 1993; Halford et al,, 1995).

The two examples in this section—conservation and bal-
ance scale knowledge—represent the nontransition phase
of production system modeling. The primary goal was to ex-
plore the nature of the system that could display the dif-
ferent levels of performance observed in the children’s
responses to these tasks. Thus they exemplify the two-step
approach that characterized such early models, even though
they did not address the transition process itself. The next
step in the progression came in the form of self-modifying
production systems.
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Production-Systems Approaches to Self-Modification

Many general principles for change have been proposed in
the developmental literature. These include equilibration,
encoding, efficiency, redundancy elimination, search re-
duction, self-regulation, consisten'cy detection, and repre-
sentational redescription. However, such principles are not
computational mechanisms. That is, they do not include a
specification of how information is encoded, stored, ac-
cessed, and modified It is one thing to assert that the cog-
nitive sysiem seeks equilibration or that a representation is
redescribed; it is quite another to formulate a computa-
tional model that actually does so.

Adoption of a production-system architecture allows
one to pose focused questions about how broad principles
might be implemented as specific mechanisms. One way
to do this is to assume the role of a designer of a self-
modifying production system, and consider the issues that
must be resolved in order to produce a theory of seif-
modification based on the production-systemn architecture.
The two primary questions are:

1. What are the basic change mechanisms that lead to new
productions? Examples are generalization, discrimina-
tion, composition, proceduralization, strengthening, and
chunking.

2, When are these change mechanisms evoked: when an
error is noted, when a production fires, when a goal is
achieved, or when a pattern is detected?

Possible Loci of Development in
Production-System Architectures

There are two primary classes of changes that can affect
the behavior of a production system and each provides a
potential site for a partial account of cognitive develop-
ment. One class of changes is at the level of productions,
and involves creating new productions or modifying exist-
ing ones. The other ciass of changes involves the rules of
execution of the productioa system itself. These include
changes in the conflict resolution rules and changes in the
size or complexity of working memory elements.

Production Changes. One way to generate new pro-
ductions is to modify the conditions of existing produc-
tions. Anderson, Kline, and Beasley {1978) were the first
to create production-system models that learned via gener-
alization and discrimination. The first mechanism creates
a new production that is more general than an existing
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production, while retaining the same actions. The gecond
mechanism—discrimination—creates a new production
that is /ess general than an existing production, while still
retaining the same actions. The two mechanisms lead to
opposite results, though in most models they are not in-
verses in terms of the conditions under which they are
evoked.

Various change mechanisms have been proposed that
lead 1o productions with new conditions and actions. Com-
position was originally proposed by Lewis (1978) to ac-
count for speedup as the result of practice. This method
combines two or more productions into a new production
with the conditions and actions of the component produc-
tions. But conditions that are guaranteed to be met by one
of the actions are not included. For instance, composition
of the two productions AB—CD and DE-F would produce
the production ABE—CDF. The most advanced form of
this type of self-modification—chunking—is embodied in
the Soar mode!l to be described in the next section.

Another mechanism for creating new productions is pro-
ceduralization (Anderson, Greeno, Kline, & Neves, 1981}
This involves constructing a highly specific version of
some general production, based on some instantiation
of the production that has been applied. This method can be
viewed as a form of discrimination learning because it gen-
erates more specific variants of an existing production.

Production System Architecture Changes. As noted
earlier, it is often the case that more than a single produc-
tion is satisfied during the recognition phase of the recog-
nize-act cycle. Thus, conflict resolution offers another
decision point at which the behavior of the system can be af-
fected. Production system designers have employed a num-
ber of schemes for performing conflict resolution, ranging
from simple fixed orderings on the productions, to various
forms of weights or strengths (usually based on feedback
about the effectiveness of prior production firings), to com-
plex schemes that are not uniform across the entire set of
productions, to no resolution at all. Some important aspects
of cognitive development, such as attentional increases and
the ability to suppress prepotent responses, might be ac-
counted for by developmental changes in these conflict res-
olution processes.

Another type of architectural change that might be used
to explain some aspects of developmental change would be
changes in the size and complexity of the working memory
elements that can be matched against productions. At pre-
sent, there are no detailed proposals along these lines, but
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such an account might provide an integration between
existing capacity theories of cognitive development, such
as Case (1985), Halford et al. (1995), and computational
models of the type described in this chapter.

Chunking and Its Use in a Model of
Conservation Acquisition

A basic mechanism for change via chunking was initially
proposed by Rosenbloom and Newell (1982, 1987) and first
used to explain the power law of practice (the time to per-
form a task decreases as a power function of the number of
times the task has been performed). The learning curves
produced by their model are quite similar to those observed
in a broad range of learning tasks. The chunking mechanism
and the production-system architecture to support it has
evolved into a major theoretical statement about the nature
of the human cognitive system. The system (called Soar) is
one of the most fully-elaborated examples of a complete cog-
nitive theory—a “unified theory of cognition” as Newell
(1990) calls it. It would require a substantial extension of the
preseat chapler to give a comprehensive overview of Soar.
However, because the Soar architecture has been used in a
recently developed theory of conservation acquisition to be
described below, we will briefly summarize its main fea-
tures here.

The Soar architecture is based on formulating all goal-
oriented behavior as search in problem spaces. A problem
space consists of a set of states and a set of operators that
move between states. A goal is formulated as the task of
reaching one of a desired set of states from a specified ini-
tial state. Under conditions of perfect knowledge, satisfy-
ing a goal involves starting at the initial state, and applying
a sequence of operators that result in a desired state being
generated. Knowledge is represented as productions. When
knowledge is not perfect, the system may not know how to
proceed. For example, it may not know which of a set of
operators should be applied to the current state. When sach
an impasse occurs, Soar automatically generates a subgoal
to resolve the impasse. These subgoals are themselves
processed in additional problem spaces, possibly leading to
further impasses. The overall structure is one of a hier-
archy of goals, with an associated hierarchy of problem
spaces. When a goal is terminated, the problem solving that
occurred within the goal is summarized in new productions
called chunks. If a situation similar to the one that created
the chunk ever occurs again, the chunk fires to prevent any
impasse, leading to more efficient problem solving.

Soar contains one assumption that is both parsimonious
and radical. It is that all change is produced by a single

mechanism: chunking. The chunking mechanism forms pro-
ductions out of the elements that led to the most recent goal
achievement. What was at first a search through a hierarchy
of subgoals becomes, after chunking, 2 single production
that eliminates any future search under the same conditions.
Chunking is built into the Soar architecture as an integral
part of the production cycle. It is in continual operation dur-
ing performance—there is no place at which the perfor-
mance productions are suspended so that a set of chunking
productions can fire. Chunking occurs at all levels of sub-
goaling, and in all probiem spaces. Churking reduces pro-
cessing by extending the knowledge base of the system.

Simon and Klahr (1995) used Soar as the theoretical
context in which to formulate a computation model of how
children acquire number conservation. Their model, called
Q-Soar, simulates a training study (Gelman, 1982) in
which 3- and 4-year-old children were given a brief train-
ing session that was sufficient to move them from the clas-
sical nonconserving behavior to the ability to conserve
small and large numbers. Q-Soar is designed to satisfy sev-
eral desirable features of computational models of cogni-
tive development:

1. It is based on a principled cognitive architecture (in this
case Newell's Soar theory of cognition).

2. It is constrained by general regularities in the large em-
pirical literature on number conservation.

3. It generates the same behavior as do the children in the
specific training study being modeled. That is, it starts
out by being unable to pass number conservation tasks,
and then, based on the chunks that it forms during the
training study, it is able to pass post tests that include
both small and large number conservation tests.

Q-Soar asserts that young children acquire number con-
servation knowledge by measurement and comparison of
values to determine the effects of transformation on small
collections of discrete objects. Having been shown a trans-
formation on a set of objects, the model first categorizes
the transformation. This processing creates new knowledge
about this kind of transformation, which becomes available
on future occurrences in similar contexts. Eventually, the
transformation’s effects can be stated without the need for
any empirical processing.

Processing Capacity in a Production-System Model

Halford et al. (1995) describe a model of strategy devel-
opment in transitive inference tasks called the Transitive




Inference Mapping Model (TRIMM). The model—written
as a self-modifying production system—is similar to
Siegler and Shipley’s (1995) ASCM model for sirategy
choice in arithmetic, in the way it chooses strategies on the
basis of their strength (here represented as the strength of
productions). In addition, where no strategy is available,
TRIMM develops a2 new strategy by making analogical
mappings from earlier representations of situations similar
to the current context. One of the novel features of TRIMM
is that these mappings are subject to a processing load fac-
tor that operates only when new strategies are being devel-
oped, but not when existing strategies are adequate. Thus,
the model implements and combines both associative and
metacognitive mechanisms for strategy development. Once
new productions have been formed, they are strengthened
or weakened according to their success on the transitive in-
ference tasks presented to the system.

Halford and colleagues make an important observation
about the implications of this kind of model for the learn-
ing-maturation dichotomy that is so pervasive in discus-
sions about cognitive development.

It is obvious enough that the question of cognitive develop-
ment cannot be a matter of learning or maturation. However,
it is equally inappropriate to propose the question in any
other form. For example, it makes no sense to ask whether
cognitive development is a matter of capacity or knowledge
acquisition, capacity or expertise, capacity or relational en-
coding, and 50 on. All of these are really alternate forms of
the learning or maturation question. We take it as self-evident
that experience-driven processes such as accumulation and
organization of a knowledge base, skill acquisition, and effi.
cient encoding, are all important in cognitive development.
Modeling some of those processes in detai] is what . . . [com-
putational modeling] is about. The question of capacity is not
whether it is an alternative to any of these processes, but
whether, and how, it interacts with them, {p. 124, emphasis
added)

Necessary and Sufficient Mechanisms

Thus far, we have described two classes of potestial
changes in production systems that can be used to account
for developmental phenomena: changes at the level of pro-
ductions and changes at the level of the production-system
architecture. We have illustrated a handful of examples of
production systems that use such processes on familiar
tasks from the cognitive development literature. But pro-
duction system modelers have a much more ambitious goal:
to explain cognitive development “in the large,” rather than
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on a task by task basis. Indeed, this is one of the reasons
why more recent work tends to use production-system ar-
chitectures that derive from overarching cognitive theories
such as Newell's SOAR or Anderson’s ACT-R.

One of the fundamental research questions in this area
i5 the extent to which the self-modification processes in-
cluded in such theories are necessary and/or sufficient to
explain cognitive development For example, it is not yet
clear whether the “basic” production modification pro-
cesses described earlier—such as generalization, discrimi-
nation, composition, proceduralization, and chunking—can
account for the apparent reorganization necessary to get
from novice to expert level {(Hunter, 1968; Larkin, 1981;
Lewis, 1981; Simon & Simon, 1978). Such reorganization
may involve much more than refinements in the productions
governing when sub-operations are performed. These re-
finements could be produced by generalization and discrim-
ination mechanisms. However, producing a new procedute
requires the introduction of new operators that, in turn, may
require the introduction of novel elements or goals—some-
thing that generalization, discrimination, composition, and
chunking are not clearly able to do.

Some additional mechanisms and processes have been
proposed, but they remain to be implemented in computa-
tional models. For example, Wallace, Klahr, and Bluff
(1987) proposed a novel production-system architecture
that included a hierarchically-organized set of nodes, each
of which is a semi-autonomous production system, cornmu-
nicating via a shared working memory. Each of these nodes
can be simultaneously activated. The basic developmental
process involved the construction of new nodes by process-
ing a representation of episodic sequences for the systems’
previous behavior (the time line). Another example of a
plausible concept that remains to be computationally im-
plemented is Karmiloff-Smith’s ( 1992) “representational
redescription”—a process in which the underlying engine
of cognitive development involves increasingly efficient
reorganizations of knowledge structures and the processes
that operate upon them.

Such “soft-core™ notions presents challenges to the
“hard-core” approach: either implement these ideas, or
show that they are theoretically unnecessary, or create a
computational alternative that accomplishes the same thing.

Summary: Production Systems as Frameworks for
Cognitive Developmental Theory

The production-system approach to theory building in cog-
nitive development rests on three fundamental premises;
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1.

The human information-processing system architecture
is isomorphic to a production-system architecture. This
premise derives from observations about similarities in
terms of both structural organization and behavioral
properties. Structurally, production systems provide a
plausible characterization of the relations between long-
term memory and working memory, and about the inter-
action between procedural and declarative knowledge
Behaviorally, strong analogies can be seen between hu-
mans and production systems with respect to their abili-
ties to mix goal-driven and event-driven processes, and
with their tendency to process information in parallel
at the recognition level and serially at higher cognitive
levels.

Change is a fundamental aspect of intelligence; we can-
not say that we fully understand cognition until we have
a model that accounts for its development. The first 20
years of information-processing psychology devoted
scant attention to the problems of how to represent
change processes, other than to place them on an agenda
for future work. Indeed, almost all of the information-
processing approaches to developmental issues followed
the two-step strategy outlined in the Simon quotation
that opened this chapter: First construct the perfor-
mance model, and then follow it with a change model
that operates on the performance model. In recent
years, as researchers have begun to work seriously on
the change process, they have begun to formulate mod-
els that inextricably link performance and change. Self-
modifying production systems are one such example of
this linkage.

All information-processing-system architectures, whe-
ther human or artificial, must obey certain constraints
in order to facilitate change. It is these constraints that
give rise to the seemingly complex particulars of indi-
vidual production-system architectures. Thus, an under-
standing of production-system models of change is a
step toward understanding the nature of human develop-
ment and learning.

CONNECTIONIST SYSTEMS

In this section we examine work conducted from the con-
nectionist perspective. Because both production system
modelers and connectionists are pursuing common goals,
there are many points where their pathways converge. Both
approaches rely heavily on computational modeling. Both
approaches understand the importance of matching theory

to data. Both perspectives have come to understand the
importance of emergent properties in understanding transi-
tion mechanisms. Since the final understanding of transi-
tion mechanisms may well require insights from both
perspectives, it makes little sense to advance strong claims
for superiority of one approach over the other. Rather, we
nzed to understand why researchers are currently exploring
different paths, invoking different incantations, and wield-
ing different computational weapons. To do this, we need
to better understand the differences in the goals and con-
straints assumed by the two approaches.

We start with a brief description of the basic features of

connectionist models. Then we address a few important asg-
pects of connectionism that distinguish it from production
system approaches. One basic distinction comes from the
fact, noted earlier, that production systems take the symbol
as their basic building block, while connectionist systems
1ake a “sub-symbolic” perspective. Although we have re-
served most of the “compare and contrast” discussion in
this chapter for the final section, it is important to treat this
distinction at the outset of our presentation of connection-
ist models. Following that discussion we turn {o a review of
actual work conducted in the connectionist framework.

Basic Principles of Neural Networks

Connectionist models are implemented in terms of artifi-
cial neural networks. Neural networks that are able to learn
from input are known as “adaptive neural networks” Ia
practice, all current neural network frameworks are based
on adaptive neural networks The architecture of an adap-
tive neural network can be specified in terms of eight de-
sign features:

1.

(153

Units. The basic components of the network are a num-
ber of simple elements called variously neurons, units,
cells, or nodes. In Figure 13.3, the units are labeled with
letters such as “xl‘."

. Connections. Neurons or pools of neurons are con-

nected by a set of pathways which are variously called
connections, links, pathways, or arcs. In most models,
these connections are unidirectional, going from a
“sending” unit to a “receiving” unit. This unidirection-
ality assumption corresponds to the fact that neural con-
nections also operate in only one direction. The only
information conveyed across connections is activation
information, No signals or codes are passed. In Figure
13.3, the connection between units x, and y, is marked
with a thick line.
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of computing more complex, nonlinear relations,
These are marked as y units in Figure 13.3.

4. Weights. Each connection has numerical weight that is
designed to represent the degree to which it can convey
activation from the sending unit to the receiving unit.
Learning is achieved by changing the weights on con-
nections. For example, the weight on the connection be-
tween X, and y, is given as .54 in Figure 13.3.

5. Net inputs. The total amount of input from a sending
neuron to a receiving neuron is determined by multiply-
ing the weights on each connection to the receiving unit
times the activation of the sending neuron. This net in-
put to the receiving unit is the sum of all such inputs
from sending neurons. In Figure 13.3, the net input to Y,
is .76, if we assume that the activation of X, and x, are

both at 1 and the x|y, weight is .54 and the X,y, weight
3. Patterns of connectivity. Neurons are typically grouped is .22,

into pools or layers. Connections can operate within or
between layers. In some models, there are no within-
layer connections; in others all units in a given layer are
interconnected. Units or layers can be further divided
into three classes: .

Figure 13.3 The general shape of a neural network.

6. Activation functions. Each unit has a level of activation.
These activation levels can vary continuously between 0
and 1. In order to determine a new activation level, acti-
vation functions are applied to the net input, Functions
that “squash™ high values can be used to make sure that

(&) Input units which represent signals from earlier net- all new activations stay in the range of O to 1.
works. These are marked as x units in Figure 13.3. 7. Thresholds and biases. Although activations can take on

(b} Output units which represent the choices or deci- any value between O and 1, often thresholds and bias
sions made by the network. These are marked as z functions are used to force units to be either fully on or
units in Figure 13.3. fully off.

(¢) Hidden units which represent additional units juxta- 8. A learning rule. The basic goal of training is to bring
posed between input and output for the purposes the neural net into a state where it can take a given input

and produce the correct output. To do this, a learning
rule is used to change the weights on the connections.
Supervised learning rules need to rely on the presence of
Output Units ( der die das des dam den ] a target output as the model for this changing of weights.

e R Unsupervised learning rules do not rely on targets and
correction, but use the structure of the input as their
7 units guide to learning.

20 gender/
number uaits

Inpuet Usits [ 343 phorological. 5 maaning ] z 17 casa cuas, 11 phono t

Hidden Units

All connectionist networks share this common language
of units, connections, weights, and learning rules. However,
‘°°“°“E architectures differ markedly both in their detailed pat-
terns of connectivity and in the specific rules used for acti-
vation and learning. For excellent, readable introductions
to the theory and practice of neural network modeling, the
. . reader may wish to consult Bechtel and Abrahamsen (1991)
_Flgure 1.3'4 A networli for learning the.use of the Germanf{ef" or Fausett (1994). For a mathematically more advanced
Inite article. Based on “Language learning: Cues or rules? by
B.J. MacWhinney, J. Leinbach, R. Taraban,& J. L. McDonald, ~ lreatment, see Hertz, Krogh, and Palmer (1991).
1989, Journal of Memory and Language, 28, pp. 255-277. Copy- To illustrate how connectionist networks can be used to
right © 1989 by Academic Press, Inc. Reprinted with permission. study cognitive development, let us take as an example the
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model of German gender learning develeped by MacWhin-
ney, Leinbach, Taraban, and McDonald (1989). This model
was designed to explain how German children learn how to
select one of the six different forms of the German definite
article. In English we have a single word “the” to express
definiteness. In German, the same idea can be expressed by
der, die, das, des, dem, or den. Which of the six forms of the
article should be used to modify a given noun in German
depends on three additional features of the noun: its gender
(masculine, feminine, or neuter), its number (singular or
plural), and its role within the sentence {subject, possessor,
direct object, prepositional object, or indirect object). To
make matters worse, assignment of nouns to gender cate-
gories is often quite nonintuitive. For example, the word for
fork is feminine, the word for spoon is masculine, and the
word for knife is neuter. Acquiring this system of arbitrary
gender assignments is particularly difficult for adult sec-
ond language learners. Mark Twain expressed his own con-
gternation at this aspect of German in a treatise entitled
“The aweful German language” (Twain, 1933) in which he
accuses the language of unfairness in assigning pretty
young girls to the neuter gender, while allowing the sun to
be feminine and the moon masculine. Along a similar vein,
Maratsos and Chalkley (1980) argued that, since neither
semantic nor phonological cues can predict which article
accompanies a given noun in German, children could not
learn the language by relying on simple surface cues.

Although these relations are indeed complex, MacWhin-
ney et al. show that it is possible to construct a connection-
ist network that learns the German system from the
available cues. This model, like most current connectionist
models, involves a level of input units, a level of hidden
units, and a level of output units (Figure 13.4). Each of
these levels or layers contains a number of discrete units or
nodes. For example, in the MacWhinney et al. model, the 35
units within the input level represent features of the noun
that is to be modified by the article. Each of the two hidden
unit levels includes multiple units that represent combi-
nations of these input-level features. The six output units
represent the six articles in the German language that cor-
respond to the word the in English.

As noted, a central feature of such connectionist mod-
els is the very large number of connections among pro-
cessing units. As shown in Figure 13.4, each input-level
unit is connected to first-level hidden units; each first-
level hidden unit is connected to second-level hidden
units; and each second-level hidden unit is connected 10
each of the six output units. None of these hundreds of

individual node-to-node connections are illustrated in Fig-
ure 13 4, since graphing each individual connection wouid
lead to a blurred pattern of connecting lings. Instead a sin-
gle line is used to stand in place of a fully interconnected
pattern between levels. Learning is achieved by repetitive
cycling through three steps, First, the system is presented
with an input pattern that turns on some, but not all of the
input units. In this case, the pattern is a set of sound fea-
tures for the noun being used. Second, the activations of
these units send activations through the hidden units and
on to the output units. Third, the state of the output units
is compared to the correct target and, if it does not match
the target, the weights in the network are adjusted so that
connections that suggested the correct answer are
strengthened and connections that suggested the wrong
answer are weakened.

MacWhinney et al. tested this system’s ability to master
the German article system by repeatedly presenting 102
common German nouns to the system. Frequency of presen-
tation of each noun was proportional to the frequency with
which the nouns are used in German. The job of the net-
work was to choose which article to use with each noun in
each particular context. After it did this, the correct answer
was presented, and the simulation adjusted connection
strengths so as to optimize its accuracy in the future.

After training was finished, the network was able to
chose the correct article for 98% of the nouns in the origi-
nal set. The ability to learn the input set is not a demonstra-
tion of true learning, since the network may have simply
memorized each presented form by rote. However, when
the simulation was presented with a previously encountered
noun in a novel context, it chose the correct article on 92%
of triais, despite the noun's often taking a different article
in the new context than it had in the previously encountered
ones. This type of cross-paradigm generalization is clear
evidence that the network went far beyond rote memoriza-
tion during the training phase. In addition, the simulation
was able to generalize its internalized knowledge to en-

tirely nove! nouns. The 48 most frequent nouns in German
that had not been included in the original input set were
presented in a variety of sentence contexts. On this com-
pletely novel set, the simulation chose the correct article
from the six possibilities on 61% of trials, versus 17% ex-
pected by chance. Thus, the system’s learning mechanism,
together with its representation of the noun's phonological
and semantic properties and the context, produced a good
guess about what article would accompany a given noun,
even when the noun was entirely unfamiliar.
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The network's learning paralleied children’s learning in
a number of ways. Like real German-speaking children, the
network tended to overuse the articles that accompany
ferminine nouns. The reason for this is that the feminine
forms of the article have a high frequency because they are
used both for feminines and for plurals of ali genders. The
simulation also showed the same type of overgeneralization
patterns that are often interpreted as reflecting rule use
when they ocecur in children's language. For example, al-
though the noun Kieid (which means ciothing) is neuter, the
simulation used the initial “kI" sound of the noun to con-
clude that it was masculine. Because of this, it invariably
chose the article that would accompany the noun if it were
masculine. Further, the same article-noun combinations
that are the most difficult for children proved to be the
most difficult for the simulation to learn and to generalize
to on the basis of previously learned examples.

How was the simulation able to produce such generaliza-
tion and rule-like behavior without any specific rules? The
basic mechanism involved adjusting connection strengths
between input, hidden, and output units to reflect the fre-
quency with which combinations of features of nouns were
associated with each article. Although no single feature can
predict which article would be used, various complex com-
binations of phonclogical, semantic, and contextual cues
allow quite accurate prediction of which articles should be
chosen. This ability to extract complex, interacting patterns
of cues is a particular characteristic of the type of connec-
tionist algorithm, known as back-propagation, that was used
in the MacWhinney et al. simulations. What makes the con-
nectionist account for problems of this type particularly ap-
pealing is the fact that an equally powerful set of production
system rules for German article selection would be quite
complex (Mugdan, 1977) and learning of this complex set
of rules would be a challenge in itself.

Connectionist Constraints on Computational Models

As we pointed out earlier, theoretical claims regarding pro-
duction-system models do not extend 1o the underlying ar-
chitecture of the computer on which they run. However,
production systems have the potential to embody the same
computational power as the von Neumann serial computer.
Such models only become plausible as theories of human
cognition when additional constraints are added, such as the
size of working memory, the total amount of activation, and
so on. However, some connectionists have not been satisfied
with this analysis of the relation between von Neumann
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machines and human cognition. Instead, they have argued
that the very nature of the underlying neural system yields
emergent properties that are quite different from those im-
plicit in production-system architectures. In particular,
adaptive neural network models (Grossberg, 1987; Hop-
field, 1982: Kohonen, 1982) deliberately limit this
descriptive power of their models by imposing two strin-
gent limitations on their computational models: a prohi-
bition against symbol passing and an insistence on
seif-organization rather than hand wiring. We will describe
each of these constraints below.

Thou Shalt Not Pass Symbols

The brain is not constructed like a standard digital com-
puter. The crucial difference between the two machines
lies in the structure of memory storage and access (Kan-
erva, 1993). In the random-access memory of a standard
digital computer (von Neumann, 1956), there are a series
of hard locations, each of which can store a single " word”
of data. The size of the memory depends on the length of
the word of data. Because the computer is built out of
highly reliable electrical components, the integrity of each
memory location can be guaraateed. Neural hardware is
made out of noisy, unstable components and no such guar-
antees can be issued. To compensate for the lower reliabil-
ity of individual components, the brain relies on massive
paralielism and distributed memory encodings. In the type
of neural memory that appears to be implemented in the
cerebelium (Albus, 1981; Marr, 1969), the address space is
huge and sparse. Because the system cannot rely on locat-
ing individual hard addresses at the site of individual neu-
rons {Kanerva, 1993), it must pecform retrieval by locating
addresses in the general vicinity of the stored memory.
These addresses are called “‘soft” memory addresses, since
they refer not to a single location, but to a general position
in address space. The address space has a huge number of
dimensions; but, because it is so sparsely populated, re-
trieval of memories does not require the exact determina-
tion of hard addresses.

An alternative method for passing symbols between neu-
rons would view individual neurons as separate processing
units capable of sending and receiving signals. But we know
that the signals sent and received by neurons are entirely
limited in shape. Neurons do not send Morse code down
axons, symbols do not run across synapses, and brain waves
do not pass phrase structures. In general, the brain provides
no obvious support for the symbol passing architecture that
provides the power underlying the von Neumann machine.
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Instead, computation in the brain appears to rely ulti-
mately on the formation of redundant connections between
individual neurons.

The ways in which the brain has adapted to these limita-
tions are not yet fully understood. The cerebellar address-
ing system is probably only one of several neural memory
systems that use soft addresses and other storage tech-
niques. We know that the hippocampus is also involved in
aspects of memory storage (Schmajuk & DiCarlo, 1992)
and it appears that its role may involve techniques involving
data compression. There are also various rehearsal path-
ways designed to implement the learning of verbal material
(Gathercole & Baddeley, 1993; Gupta & MacWhinney,
1994, 1996). Our emerging understanding of the various
memory systems of the brain points to a complex inter-
action between cortex, thalamus, hippocampus, cerebel-
lum, and other brain structures that work both on line and
during sleep to facilitate storage, learning, and retrieval of
memories. Al of this work is done in ways that circumvent
the limitations on symbol passing imposed by the biologi-
cal structure of neurens.

Thou Shalt Not Hand-Wire

By itself, the requirement that computation be performed
locally without symbol passing or homunculi is not enough
to fully constrain the descriptive power of our models. One
could still hand-wire a neural network to perform a spe-
cific function or to model a particular behavior. In neural
networks, hand-wiring can be accomplished by creating a
little program or homunculus that gets inside the network
and sets weights on individual links between nodes. For ex-
ample, we could hand-wire an animal category by linking
nodes labeled “cat,” “dog,” and “tiger” to a hand-coded
node labeled “animal.” By detailed weight setting and the
use of gating and polling neurons, virtually any function
can be wired into a neural network (Hertz et al., 1991). An
early example of a fully hand-wired neural network was
Lamb's (1966) stratificational grammar. More recently, we
have seen hand-wired neural networks in areas such as in-
teractive activation models of reading (McClelland &
Rumelhart, 1981), speech errors {Dell, 1986; MacWhinney
& Anderson, 1986; Stemberger, 1985), ambiguity resolu-
tion (Cottrell, 1985), and lexical activation (Marslen-
Wilson, 1987). Although these networks fit within the
general framework of connectionist models, the fact that
they are constructed through hand-wiring makes them less
interesting as developmental models

Certain “hybrid” models move the process of hand-
wiring away from the network level onto an alternative

symbolic level. This “implementational” approach to hand-
wiring spares the modeler the tedium of hand-wiring by
running the wiring procedure off symbolic templates For
exampie, Touretzky (1990) has shown that there are
technigues for bottling the full power of a LISP-based
production-system architecture into a neural net. These
demonstrations are important because they show how diffi-
cult it is to control excessive modeling power.

Ideally, we want to match the constraint against symbol
passing with the requirement that networks be self-
organizing. We want to make sure that specific representa-
tions are not hand-wired and that the connections between
units are developed on the basis of automatic learning pro-
cedures. Although we will always be forced to “label” our
input nodes and output nodes, we want our labelling sys-
tems to be general across problems and not hand-crafted
anew for each particular problem. Rather, we want to use
general forms of representation that lead to robust and
emergent learning without recourse to hand-wiring. It is the
emergent, self-organizing properties of neural networks
that make them particularly interesting to the developmen-
tal psychologist. Such models can display further interest-
ing and important properties, such as stage transitions
(Shultz, Schmidt, Buckingham, & Mareschal, 1995), cate-
gory leakage (McClelland & Kawamoto, 1986), graceful
degradation (Harley & MacAndrew, 1992; Hinton & Shal-
lice, 1991; Marchman, 1992), and property emergence
{MacWhinney et al., 1989).

Alternative Network Architectures

One of the principal goals of connectionist theory over the
last thirty years has been the exploration of the properties
of competing network architectures. In this section we will
review the most important network architectures with an
gye toward understanding the types of developmental
processes for which each might be most relevant. There is a
great deal of evidence to suggest that no single architecture
is ideal for all purposes and that the human brain probably
uses different patterns of neural connectivity to solve dif-
ferent cognitive problems.

Perceptrons

In the late 1950s, researchers {e.g., Rosenblatt, 19539,
Block, 1962; Widrow & Hoff, 1960) explored the proper-
ties of a simple connectionist model called a perceptron.
This model connected a series of input units to one or more
output units using simple unidirectional connections. The
weights in the network were trained using an algorithm




cailed the perceptron learning ruie. The perceptron learn-
ing rule comes along with the rather attractive guarantee
that, if a perceptron can be configured to solve a problem,
the algorithm will succeed in finding the solution. The rub
is that it often turns out that perceptrons cannot solve ever
very simple problems. For example, Minsky and Papert
(1969) showed that perceptrons can encode a relation such
as “black and tall,” but not a relation such as *“black but not
tall” The problem with perceptrons is not with the learning
rule, but with the strength of the basic computational
mechanism. Today, perceptrons are omnly of historical
interest.

FPattern Associators and Backpropagation

The successors to the perceptron are the pattern associa-
tors, and there are dozens of pattern associator architec-
tures. Typically, these devices are designed as models of
retrieval in human memory. They rely for their power on
the holographic quality of neural networks which are able
to retrieve stored patterns through vector manipulations.
For example, a pattern associator should be able to take the
sound /bal/ and retrieve the spelling B-A-L-L or it can take
the smell of a rose and retrieve the vision of the thorns of
the rose. Networks of this type are often trained using the
delta rule or the extended delta rule. These rules compare
the network's output patterns against some target signal
and make weight adjustments to bring the network into line
with the target.

The backpropagation architecture (Werbos, 1974)
achieves additional computational power by adding an ad-
ditional level of units between the input and output layers.
These additional units are called “hidden units” because
they have no direct connection to either the input or the
output, Networks using backpropagation with hidden units
and the delta rule can solve many types of problems that
are difficult for simpler machines such as the perceptron.
In fact, most current work in computational modeling of
developmental phenomena makes use of the backpropa-
gation framework. This single, simply characterized algo-
rithm has demonstrated an ability to learn a wide variety of
subtle patterns in the data.

Despite the proven success of backpropagation, there
are several crucial problems that arise when we try to use
this single architecture as an account for all aspects of cog-
nitive and linguistic development. Each of the problems en-
countered by backpropagation has served as a stirnulus to
the development of interesting alternative frameworks, One
basic problem that arises immediately as we try to match
the backpropagation algorithm up to the brain is the fact
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that backpropagation assumes that connections which fire
in a feed-forward fashion can also be trained in a feed.
backward direction However, we know that real neurons
fire in only oge direction and that this type of backwards
training is not neurologically plausible. However, as Fausett
(1990} shows, one can devise backpropagation networks
that can be trained in a unidirectional and iocal manner by
adding additional arrays of controlling units.

The study of the actual mechanics of weight changing in
neural networks is very much the province of the cellular
neurophysiologist. In this area, there is increasing evidence
emphasizing the extent to which the neutbn can compute
complex functions. Hebb (1949) suggested that learning
occurs when two cells fire simultaneously and the output
of the postsynaptic cell functions to strengthen the firing
of the synapse connecting the two cells. Although work
by Kandel and Hawkins (1992) with the sea slug supports
aspects of the Hebbian model of learning, Alken and col-
leagues (1993) have found computationally rore complex
learning in higher organisms such as rabbits and rats. This
non-Hebbiar learning takes place locally on small areas
of the dendritic cell membrane. Alkon has implemented a
network model! called Dystal that faithfully mimics these
aspects of membrane activity and also works well as a con-
nectionist pattern associator.

Networks That Deal with Time

In the standard backpropagation framework, processing is
idealized as occurring at a single moment in time. This ide-
alization may make sense for processes that are extremely
brief or for decisions in which many factors are being
weighed without time constraints. However, for problems
such as word recogrition, sentence production, seriation,
and speeded chess playing, temporal components are cru-
cial components of the task. One network archifecture that
deals with this problem is a variation on back propagation
developed by Jordan (1986) and Elman (1990). This varia-
tion takes the standard three-layer architecture of pools A,
B, and C shown in Figure 13.5 and adds a fourth input pool
D of context units which has recurrent connections to pool
B. Because of the recurrent or bidirectional connections
between B and D, this architecture is known as recurrent
backpropagation.

A recurrent backpropagation network encodes changes
over time by storing information regarding previous states
in the pool of units labeled as D. Consider how the network
deals with the processing of a sentence such as “Mommy
loves Daddy.” When the first word comes in, pool C is acti-
vated and this activation is passed on to pool B and then
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A predict category

internal state

D

Figure 13.5 A recurrent backpropagation network.

pools A and D. The complete state of pool B at Time 1 is
stored in pool D. The activation levels in pool D are pre-
served, while pocls A, B, and C are set back to zeyo. At
time 2 the networks hears the word “love” and a new pat-
tern of activations is established on pool C. These activa-
tions are passed on to pools B, C, and D, However, because
pool D has stored activations from the previous word, the
new state is blended with the old state and pool C comes to
represent aspects of both “Mommy"” and “{ove.”

Processing in a network of this type involves more than
just storage of a superficial sequence of words or sounds.
For example, in the simulations of sentence processing de-
veloped by Eiman (1993), the output units are trained to
predict the identity of the next word. In order to perform in
this task, the network needs to implicitly extract part-of-
speech information from syntactic co-occurrence patterns.
Alternatively, the output units can be used to represent
comprehension decisions, as in the model of MacWhinney
(1996). In that model, part-of-speech information is as-
sumed and the goal of the model is to select the agent and
the patient using a variety of grammatical and pragmatic
cues.

Another method for dealing with temporal ordering was
developed by Grossberg (1978), In this system, linear order-
ing of elements such as the phonemes in a word is controlled
by cluster units which sit above the component phoneme
units and control their ordering as what Grossberg calls an
“avalanche.,” The Elman and Grossberg systems are de-
signed for markedly different problems. Grossberg’s system
works well for the learning of invariant serial orderings
such as those found in lexical phonology and Elman’s sys-
tem is more appropriate for the learning of flexible, variant
patterns of serial ordering, such as those found in syntax. It

would not be surprising to fird that other problems in serial
ordering required still other network architectures.

Aveiding Catastrophes. A serious limitation of the
backpropagation algorithm is its tendency toward develop-
mental instability. A backpropagation network trained on
one set of inputs can undergo a process of “catastrophic in-
terference” (McCloskey & Cohen, 1989) when the input
corpus is shifted to a markedly different structure, The
problem of catastrophic interference shows up clearly
when a network is trained with one language (1.1} and then
suddenly switched to dealing with input from a second lan-
guage (L2). What happens is that learning of L2 wipes out
knowledge of L1 {MacWhinney, 1996). Of course, no such
catastrophic interference occurs in real life. When we
learn a second language in real life, our knowledge of our
first language remains firm.

Catastrophic interference occurs in backpropagation
neiworks because new memories tend to overwrite old
memories. One class of solutions tries to address this prob-
lem by making minor changes to backpropagation. This can
be done by making weight changes only for novel aspects of
the input (Kortge, 1990), hand-tuning the input corpus to
avoid sudden changes (Hetherington & Seidenberg, 1989),
localizing the receptive fields for units (Kruschke, 1992),
or adding units with different learning rates (Hinton &
Plaut, 1987). Although these solutions solve the problem of
catastrophic interference, they often force us to make
overly restrictive assumptions about the possible distribu-
tions of cues in the environment.

Localized Memories. A more general approach to the
problem of catastrophic interference and other forms of
crosstalk focuses on the role of neuronal topology in con-
trolling neuronal recruitment and memory development. In
topological models, units are more specifically devoted to
specific memories, interactions between memories tend
to be confined to lucal areas, and rmajor shifts in the
character of the input do not overwrite these localized
memories.

Kanerva's Sparse Distributed Memory (SDM) is one
such topological approach. The SDM mode] allows for one-
shot storage of new memories without crosstalk. However,
memories must be stored at several neighboring locations
to guarantee consistent retrieval. A similar framework has
been proposed by Read, Nenov, and Halgren (1995) on the
basis of Gardner-Meadwin's (1976) model of hippocampal
functioning.
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The idea of encoding memories through topological or-
ganization in the brain is further elaborated in the self-
organizing feature map (SOFM) approach developed by
Kohonen (1982) and Miikkulainen (1990). Self-organizing
feature maps use an unsupervised, competitive learning
algorithm. All input units are connected to cluster units
which are organized in a two-dimensional topological grid
(see Figure 13.6), which is actually a compressed represen-
tation of a multidimensional space. When an input is pre-
sented, the cluster unit that responds most strongly
becomes the winner. The winning unit then decrements the
units that are just outside its immediate neighborhood so
that they are less likely to respond to a similar input when
it is next presented. The pattern of inhibition follows the
“Mexican hat” format found in cells of the visual cortex. In
this way, two units that initially respond to the same set of
inputs start to pull away from each other. As this process
continues, the radius for each unit decreases and its speci-
ficity increases. MacWhinney (1996) found that a self-
organizing feature map of 10,000 units was able to learn an
array of 6,000 words with 99% accuracy. Thus, it seems
that the SOFM architecture is well-suited for the learning
of arbitrary associations such as words.

lexicon

AN

OObOO

sound

COO0O0O0

meaning

Figure 13.6 A self-organizing feature map illustrating con-
nections for one iexical jtem.
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The success of feature maps in the learning of arbitrary
associattons, such as the sound-meaning associations in-
volved in words, stands in marked contrast to the problems
that backpropagation networks have with the same task.
The backpropagation architecture is designed to detect pat-
terns, rather than to encode arbitrary associations. When a
backpropagation network is trained with a long list of
English words, it will lose its ability to acquire new words
after learning the first 700 words or so. Adding more hid- -
den units to the network does not help at this point, since
the limitation seems to be in the basic resolution of the
weight space. The reason that backpropagation reaches sat-
uration for learning new words is not because of the short-
age of nodes, but because of problems with the basic
algorithm. Backpropagation uses hidden units not as indi-
vidual address spaces for individual lexical items, but as
pattern detectors that search for commonalities between
words. However, because words are really arbitrary associ-
ations between sounds and meanings, backpropagation is
frustrated in its attempt to pick up meaningful or useful
patterns. The SOFM architecture, on the other hand, can be
used to simply throw a large number of only weakly associ-
ated memories onto a large feature map. As MacWhinney
(1996) has found, feature maps and sparse distributed maps
can learn items up to the size of the feature map. In this
regard, they seem better suited to the task of lexical learn-
ing than does an architecture such as backpropagation.

Networks That Grow. In addition to the crosstalk
problen that lies at the root of catastrophic interference,
backpropagation networks also suffer from a problem with
commitments to local minima during early phases of train-
ing. These networks tend to isolate the major patterns in
the input early on and are often incapable of picking up
secondary strategies that conflict with the basic patterns in
the input One way of solving this problem is to force the
network to “start small.” By giving the network only mini-
mal resources at first and allowing it to recruit new re-
sources when the problem becomes more difficult, it is
possible to force the network to treat basic statistical regu-
larities as fundamental, while still learning higher-order
regularities later.

Within the backpropagation framework, there have
been quite a few recent proposals about how to add new
units during learning (Azimi-Sadjadi, Sheedvash, & Tru-
jillo, 1993; Fahlman & Lebiére, 1990; Frean, 1990; Hi-
rose, Yamashita, & Hijiva, 1991; Kadirkamanathan &
Niranjan, 1993; Platt, 1991; Wyane-Jones, 1993). One of
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these models is the “cascade correlation” approach of
Fahiman and Lebiére (1990) which adds units when error
reduction is not otherwise possible. The network begins its
existence with only input and output units and no hidden
units. In this form, it is equivalent to a perceptron. During
training, new hidden units are added to the net in an effort
to continually reduce the error in the output. As we will see
below, this expansion of computational space through re-
cruitment allows cascade-correlation networks to solve
developmental probiems that stymie standard backpropaga-
tion networks. '

The idea of adding new units to networks to increase
their computational capacity can be found in many frame-
works. Within the framework of Adaptive Resonance The-
ory or ART (Carpenter, Grossberg, Markuzon, Reynolds, &
Rosen, 1992; Carpenter, Grossberg, & Reynolds, 1991;
Grossberg, 1987), recruitment is a basic part of network
functioning. For example, Grossberg (1987) adds new units
to a network when no current unit matches a new input
within a certain level of tolerance. Blackmore and Miik-
kulainen (1993) present a self-organizing feature map
(SOFM) approach to incremental grid growing that allows
for the expansion of a feature map to correct for errors in
the compression of high dimensional feature space onto the
two-dimensional topological grid.

A crucial insight incorporated in the various recruitment
models is the idea that, by starting off with minimal com-
putational resources, the learning system is forced to deal
first with the most general patterns in the data. In effect,
the system can only deal with the first of the various fac-
tors that can be extracted by principal components analysis
(PCA). Once this first factor is learned, the network finds
that there is still some residual error and it recruits new
units to extract additional regularities. However, these new
units are then largely dedicated to a second aspect of the
problem. In this way, the network comes closer to modeling
the type of stage-like learning we see in the child.

Recruitment versus Deletion

Models that rely on the recruitment of new neurons have
been criticized on the grounds that they go against facts of
developmental neurobiology. We know that new neurons
are not added after birth. In fact, development is more
characterized by neuronal loss than by neuronal addition.
Some theorists have seized on this fact to argue that, like
the immune systemn, neural development works by generat-
ing a vast array of potential cognitive structures which
are then weeded out during development (Changeux &
Danchin, 1976; Edelman, 1987; Jerne, 1967). Extending

the analysis to issues in human development, Siegler
(1989), Piatelli-Palmarini (1989), and Campbell (1960)
have argued for the importance of “blind variation and
selective retention” in creative thought and cognitive
deveiopment.

Recent work calls into question some of the assumptions
of this selectionist approach. Although it is true that there
is a rapid loss of both cells and dendritic branches during
the first months of life, the period of ioss does not continue
through development. Reassessing earlier claims about
ongoing losses in synaptic density, Bourgeois, Goldman-
Rakie, and Rakic (1994) have found ongoing synaptogene-
sis in prefrontal cortex during development. These findings
match up with reports of increased volume of frontal cortex
during development (Dekaban & Sadowsky, 1978; Jernigan
et al., 1991) which indicate that brain development is not
fundamentally selectionist and that additional resources
may well be recruited during learning. This is not to say
that the actual mechanisms supporting recruitment have
yet been identified, only that models that use recruitment
cannot be excluded on peurological grounds.

CONNECTIONISM AND DEVELOPMENT

We now turn to an examination of connectionist models of
specific developmental processes. We will first look at
models of the various component processes in language de-
velopment. Second, we will examine general issues in cog-
nitive development and their rezlization in connectionist
models of specific cognitive tasks. Third, we will look at
models of additional issues in development, including
motor development and early brain maturation.

Connectionism and Language Development

The learning of language is a complex process that extends
over the course of many years and which relies on interplay
between several complex cognitive processes. Some recent
accounts of language learning (Lightfoot, 1989; Pinker,
1994) tend to focus rather exclusively on the learning of
grammatical markings and syntax, but language learning is
more than just the learning of a few rules of grammar. In
fact, the child devotes far more attention to tasks such as
word learning, concept acguisition, articulatory control,
discourse structuring, and conversational maintenance. No
symbolic or connectionist mode! has been formulated that
can handle all levels of language learning, although
MacWhinney (1978, 1982, 1987a, 1988} and Pinker {1984}




offered initial sketches in the symbolic framework. In the
next sections, we will look at current work in connectionist
models with an eye to discerning the shape of a new, more
detatled, synthetic approach

Word Learning

Current research in sentence processing (Juliano & Tanen-
haus, 1993; Trueswell & Tanenhaus, 1991, 1992) has
stressed the importance of individual words as determiners
of sentence-level processing. The central role of words in
phonological development and auditory learning has been
recognized for nearly two decades (Ferguson & Farwell,
1975). Even discourse processes and narrative structures
are grounded on specific lexical constructions {Goldberg,
1965).

For symbolic models, lexical learning is a computation-
ally trivial probiem, since symbolic models have no trouble
picking up arbitrary numbers of arbitrary associations.
However, the symbolic view of word learning as mere asso-
ciation does not match up well with developmental data.
We know that children can learn new words quickly on the
basis of a single encounter (Carey, 1978; Dollaghan, Biber,
& Campbell, 1995), but only a few mnew words can be
picked up at the same time. If we present a child with
dozens of new words at once, learning starts to fall apart.
Moreover, the exact nature of the representation con-
structed by the child learner or the adult second language
learner (Atkinson, 1975) is often heavily dependent on the
context of presentation (Kay & Anglin, 1982).

Networks that use backpropagation and hidden units
have exactly the opposite problem with modeling lexical
learning. These networks typically cannot learn more than
about 700 lexical forms. After this level, the hidden units
are so fully invested in distinguishing phonological and
semantic subtypes and their associations that there is sim-
ply no room for new words. Adding more hidden units
doesn't solve this problem, since all the interconnections
must be computed and eventually the learning alporithm
bogs down.

The problems faced by backpropagation are not general
to all network models. Building on earlier models from
Grossberg (1978, 1987), Houghton (1990), and Burgess
and Hitch (1992), Gupta and MacWhinney (1996) have
constructed a lexical learning model that uses three
hierarchically-ordered layers, as iilustrated in Figure 13.7.
The lowest layer is a set of phonological units for the
sounds of a word. Above this layer, is a set of phonological
chunks representing the various syllable patterns of the
language. On the top is a programmable level that controls
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Figure 13.7 A lexica! learning model using three hierarchically-
ordered layers. From “Vocabulary acquisition and verbal short-
term memory: Computation and neural bases,” by P. Gupta &
B. MacWhinney, 1996, Brain and Language. In Press. Copyright ©
1096 by Academic Press, Inc. Reprinted with permission.

the order of syllables within the word. Each new word is
learned as a new node on the top layer and a series of
weights on the connections from this layer to lower layers.
Gupta and MacWhinney show that this model does a good
job of accounting for a wide variety of well-researched
phenomena in the literature on word learning, immediate
serial recall, interference effects, and rehearsal in both
adults and children {Gathercole & Baddeley, 1993).

A major limitation of the Gupta and MacWhinney
model is its reliance on a rigid fixed level of items for the
top-level word nodes. Once the initial number of nodes has
been used up, the system would need to recruit a new node
for each new word. However, simply inserting a fresh node
into the model for each new word reguires us to make ex-
cessively strong assumptions about neuronal plasticity,
while also failing to capture the ways in which new words
interact with old lexical structures. As we noted earlier in
our discussion of the model of MacWhinney (1996), by re-
Iying on a fuller address space of the type proposed by
Kanerva or Miikkulainen, problems with the learning of
new lexical items can be minimized

Word Meuaning

The task of simulating the semantic aspects of word learn-
ing is extremely challenging, because of the open-ended
nature of meaning. Connectionist models have found two
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ways of dealing with this problem. One approach structures
the world as a miniature perceptual system. This mini-
world approach was developed [irst by Chauvin (1989) and
echoed in a replication by Plunkett and Sinha (1992) The
goal of the Chauvin model is to associate dot patterns with
arbitrary labels. Learning is done using autoassociation.
First the net is given an image and asked to activate a label,
pext it is given a label and asked to activate an image, and
then it is given a grial with both image and label presented
together. Plunkett and Sinha note that the cue validity of
the label in their input corpus is higher than that of the
image, since the label predicts a unique image, but an image
does not predict a unique label. Unfortunately, it is difficult
10 see how a relation of this type can map onto the facts in-
volved in rea} lexical structures where the opposite is usu-
ally the case.

Because the Chauvin/Plunkett-Sinha model uses back-
propagation, it does not perform well in the basic lexical
acquisition task. However, it does succeed in capturing
some of the other phenomena associated with lexical learn-
ing. In particular, Plunkett and Sinha claim that their
model captures these three phenomena:

1. The prototype effect. This effect replicates the original
findings of Posner and Keele (1968; 1970) and has been
ohserved in other connectionist models (McCielland &
Rumelhart, 1985; Schyns, 1991}, as well.

2. The word learning spurt. The modei only starts produc-
ing labels after the first 20 epochs. At this point, Plun-
kett and Sinha view the onset of learning as similar to
the “word spurt” that occurs in children. However, the
cause of the delay in the model is the low validity of
the image as a cue to the label and it is difficult to see
how this structuring of lexical validities maps onto the
real facts of lexical structures. Thus, it appears that
the model is demonstrating the word learning spurt for
the wrong reason.

3. The superiority of comprehension over production.
Here, apain, the reason for the superiority of compre-
hension is the higher cue validity of the label and it ap-
pears that the model is displaying the correct behavior
for the wrong reasons,

Despite these limitations, the Chauvin/Plunkett and Sinha
model serves as a useful starting point for thinking about
comprehension-production relations in development (Mac-
Whinney, 1990).

In another exploration within the mini-world frame-
work, Schyns (1991) applied a Kohonen network to the task
of learning three competing categories with prototype
structures. The three categories were geometric patterns
that were blurred by noise in order to creale a prototype
structure, although the actual prototypes were never dis-
played. The simulations showed that the network could
acquire the patterns and demonstrate human-like catego-
rization and naming behavior. When presented with a
fourth new word that overlapped with one of the first three
words, the system broke off some of the territory of the old
referent to match up with the new name. Schyns interpreted
this as evidence that the network was obeying the mutual
exclusivity constraint of Markman (1989). However, the
operation of his network can be understood even more
clearly in terms of the forces of contrast and competition
described by Clark (1987) and MacWhinney (1989).

An alternative approach to the development of word
meaning focuses on the learning of small fields of real
words. Three studies have been conducted to date. Shultz,
Buckingham, and Oshima-Takane (1994) use the cascade-
correlation algorithm to acquire the use of “you” and “me”
from two types of input: child-directed speech and speech
directed to a third party. The problem with learning the
meaning of words like “you” and “me” is that the actual
reference of the word is constantly changing. The best way
to figure out the meanings of these words is to observe two
other people using them. In this way, the child is able to see
that “you” is used for the addressee and “me” for the
speaker and that these words only have meaning in the con-
text of the speaker-listener relation. Research by Oshima-
Takane, Goodz, and Derevensky (in press) has shown that
fearning is faster when children are exposed to relatively
more speech addressed to a third party, typically an older
sibling, since this input makes the use of “you” clearer. By
comparing input corpora with varying amounts of speech
directed to a third party, Shultz et al. were able to model
this effect.

Another study of meaning development by Li and Mac-
Whinney (1996) used a standard backpropagation architec-
ture to model the learning of reversive verbs that used the
prefix “un-" as in untie or “dis-" as in disavow. The model
succeeded in capturing the basic developmental stages
reported by Bowerman (1982) and Clark, Carpenter, and
Deutsch (1993) involving the production of errors such as
unbreak or disbend. The network’s performance was based
on its internalization of what Whorf (1938; 1941) called the
“cryptotype” for the reversive which involved a “covering,
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enclosing, and surface-attaching meaning” that is present
in a word like untangle, but absent in a form such as un-
break. Whorf viewed this category as a prime example of
the ways in which language reflects and possibly shapes
thought.

The various models of learning word meaning we have
discussed so far all treat meaning as if it were a fixed set of
elements for any given word. However, nothing could be
farther from the truth. Virtuaily every common word in our
vocabulary has many alternative meanings and shades of
meanings. In extreme cases, such as the verbs “put™ and
“run,” the dictionary may list up to 70 alternative mean-
ings. Typically, the choice of one meaning over another is
determined by the other words in the sentence. For exam-
ple, when we say that “the ball rolled over the table,” we
are thinking of the word over as meaning across. However,
when we say that “Jim placed the snuffer over the candie,”
we are thinking of over as meaning covering. These compe-
titions between the various alternative readings of words
like “over™ were discussed from a general connectionist
perspective by MacWhinney (1989). Subsequently, an im-
plemented connectionist model of the learning of the mean-
ings of “"over™ by a network was developed by Harris (1990;
1994b). The Harris model is capable of taking new input
test sentences of the type “the pin rolled over the table”
and deciding on the basis of past learning that the meaning
involved is across, rather than covering or above. It does
this only on the basis of the co-occurrence patterns of the
words involved, rather than on information from their indi-
vidual semantics. Thus, it learns that combinations like
batl, roll, and table tend to activate across without regard
to facts such as knowing that balls are round and can rol!
or knowing that tables are flat and that rolling involves
movetnent.

Inflectional Morphology

One of the most active areas of connectionist modeling has
been the study of the child’s learning of the ways in which
words change when they are combined with grammatical
markings such as suffixes or prefixes. These markings are
called inflections and the system that governs the use of
these inflections is called inflectional morphology. A simple
case of inflectional learning is the system of patterns that
help us choose to say "bent” instead of “bended"™ as the past
tense of the verb bend. Inflectional learning is also involved
in the learning of the correct form of the German definite
article that we examined earlier. There are pow well over
thirty empirical studies and simulations investigating this
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topic from a connectionist perspective. The majority of
work on this topic has examined the learning of English
verb morphology with a particular focus on the English
past tense. The goal of these models is the learning of ir-
regular forms such as went or fell, along with regular past
tense forms such as wanted and jumped. Qther areas of in-
terest include German noun declension, Dutch stress place-
ment, and German participle formation. This work has
examined six core issues:

1. Cues versus rules. The most central issue addressed in
this research is whether or not one can model the learn-
ing of inflectional morphology without using formal
rules. Pinker (1991) has argued that irregular forms are
indeed produced by connectionist networks, but that
regular forms are produced by a regular rule. However,
Pinker’s attempts to preserve a role for rules in human
cognition runs into problems with the fact that even the
most regular patterns or “rules” display phonological
conditioning and patterns of gradience (Bybee, 1993) of
the type that are easily captured in a connectionist
network.

2. Phonological representation. Most current models of in-
flectional learning use a system for phonological repre-
sentation like the one introduced by MacWhinney,
Leinbach, Taraban, and MacDonald (1989). This system
assigns each node a status on each of three coding sys-
tems. The first coding system indicates the position of
the node in the syllable, the second indicates the posi-
tion of the syllable in the word, and the third represents
the presence or absence of a phonetic distinctive fea-
ture. Because this representational system relies on
standard linguistic concepts, it addresses most of the
concerns expressed by Pinker and Prince (1988) with
earlier connectionist models of inflectional learning. An
elaborated version of this same representational system
can be found in Gasser (1991, 1992). Gasser’s models
emphasize the serial quality of morphological forma-
tions by relying on predictive recurrent networks. The
system (asser proposes uses three separate recurrent
subnetworks for phonemic structure, syllabic structure,
and metrical structure. On the top level, the three levels
would be integrated in terms of lexical items. However,
exactly how this integration of separate recurrent sub-
networks should occur remains unclear, since Gasser
never fully implemented his model.

3. U-shaped learning. A major shortcoming of nearly all
connectionist models has been their inability to capture
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the patterns of overgeneralization and recovery from
overgeneralization known as u-shaped learning. Empiri-
cal work by Marcus et al (1992) has shown that strong
u-shaped learning patterns occur only for some verbs
and only for some children. The models of MacWhinney
and Leinbach (1991) and Plunkett and Marchman (1991)
showed levels of u-shaped learning in rough conformity
with the patterns observed by Marcus et al. Moreover,
Plunkett and Marchman showed that u-shaped learning
levels could be affected by changes in the type and token
frequencies of irregular verbs in the input,

4. Rote learning of irregulars. Although models like
MacWhinney and Leinbach or Plunkett and Marchman
succeed in demonstrating some u-shaped learning, this
success is at least in part misleading. In order to cor-
rectly model the child’'s learning of inflectional mor-
phology, models must go through a period of virtually
error free learning of irregulars, followed by a period of
learning of the first irregulars accompanied by the first
overregularizations (Marcus et al., 1992). No current
model consistently displays all of these features in ex-
actly the right combination. MacWhinney (1996) has
argued that models that rely exclusively on backpropa-
gation will never be able to display the correct combina-
tion of developmental patterns and that a two-process
connectionist approach will be needed. The basic pro-
cess is one that learns new inflectional formations,
both regular and irregular, by rote as items in self-
organizing feature maps. The secondary process is a
backpropagation network that uses the information in-
herent in feature maps to extract secondary productive
generalizations,

5. The role of semantic factors. The first attempts to
model morphological learning focused exclusively on
the use of phonological features as both input and out-
put. However, it is clear that the formation of past tense
forms must also involve semantic factors. In English, the
use of semantic information is associated with the irreg-
ular patterns of inflection. The idea is that, since we
cannet access “went” by combining “go” and “-ed,” it
might be that we can access it directly by a semantic
route. Of course, this idea is much like that underlying
the dual-route theory. In German gender, the role of se-
mantic information is much clearer. Kdpcke and Zubin
{(Kopcke, 1994; Kopcke & Zubin, 1983, 1984; Zubin &
Képcke, 1981, 1986) have shown that a wide variety of
both phonological and semantic factors are used in pre-
dicting the gender of German nouns and their plural.

Some of the features involved include: alcoholic bever-
ages, superordinates, inherent biological gender, gem
stones, body parts, rivers inside Germany, and light ver-
sus heavy breezes. Simuilations (Cottrell & Plunkett,
1991; Gupta & MacWhinney, 1992; MacWhinney,
1996) have integrated semantic and phonological infor-
mation in various ways. However, a better understanding
of the ways in which semantic factors interact during
word formation will require a more extensive modeling
of lexical items and semantic features.

6. Extensions af irregular patterns 1o new words. Extend-
ing earlier work by Bybee and Slobin {1982), Prasada
and Pinker (1993) examined the abilities of native En-
glish speakers to form the past tense for nonsense words
like plink, plup, or ploth. They found that, the further
the word diverged from the standard phonotactic rules
for English verbs, the more likely the subjects were to
form the past tense by just attaching the regular “-ed”
suffix. Ling and Maritnov (1993) noted that the original
verb-learning model developed by Rumelhart and
McClelland (1987) failed to match these new empirical
data, largely because of its tendency to overapply irreg-
ular patterns. To correct this problem, Ling and Marinov
created a nonconnectionist symbolic pattern associator
which did a better job modeling the Prasada and Pinker
data. However, MacWhinney (1993) found that the
network model of MacWhinney and Leinbach {1991)
worked as well as Ling and Marinov's symbolic model
in terms of matching up to the Prasada and Pinker gener-
alization data.

Phonology

In the area of speech processing, connectionist models have
been developed primarily as ways of simulating aspects
of adult word recognition. The recurrent backpropagation
architecture has been used in word recognition models
developed by Norris (1994), Waibel, Hanazawa, Hinton,
Shikano, and Lang (1988), and Watrous, Shastri, and
Waibel (1987). Recently, Markey (1994) has developed a
realistic physical representation of the young child’s vocal
apparatus and used it to model the development of phonetic
and phonological skills, Markey's model is able to capture
some of the basic aspects of early phonological develop-
ment. Hopefully, we will soon see additional models that
will allow us to better understand how much of early
phonological development is determined by the articulatory
apparatus and how much by the structure of the words
being learned.
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Reading

Sejnowski and Rosenberg (1988) presented an entertain-
ing demonstration of a system called NETtalk that
learned to read aloud. The system took as its input the or-
thographic representation of English words and was
trained to produce computerized speech as its output, At
first the network made only crude approximations to the
sounds of the words and then moved phonologically closer
and closer through training. In this regard, the network
fails to actually capture the nature of early reading in the
child where words are fully formed pﬁonologica!ly and
the task is to extract enough cues to effect retrieval of the
full word form (Simon, 1976; Simon & Simon, 1973).
However, a positive aspect of the NETtalk model is its
ability to extract local graphemic linear dependencies that
a beginning reader might use to derive the sound of a
word.

A more complete picture of the development of early
reading skills was provided in a backpropagation model
developed by Seidenberg and McClelland (1989). Anim-
portant quality of this model is that it emphasizes the
ways in which both regular spellings such as hint or mint
can be controlied by the same computational mechanism
that also controls irregular spellings such as pint. In the
traditional symbolic approach (Marshall & Newcombe,
1973), a distinction is made between rote storage for ir-
regular forms and pattern-based storage for regular
forms. This distinction motivates a dual-process or dual-
route approach to reading. Seidenberg and McClelland
show that one can model the learning and usage of both
regulars and irregulars in a single model with a single set
of processes.

The Seidenberg-McClelland model has been challenged
on empirical grounds (Behrman & Bub, 1992; Besner,
Twilley, McCann, & Seergobin, 1990; Coltheart, Curtis,
Atkins, & Haller, 1993). One problem with the model was
its inability to acquire its own training set. However, by
using a phonological input representation much like that
developed by MacWhinney et al. (1989), Plaut, McClel.
land, Seidenberg, and Patterson (1995) were able to im-
prove on the performance of the original model. A second
problem with the model arose in connection with the mod-
eling of data from neurological patients with deep dyslexia.
For these patients, the model underestimated the sparing
of high-frequency regular and irregular forms, as predicted
by the dual-route model. Here, again, the revised coding
system of Plaut et al. was able to improve on the perfor-
mance of the original model.
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In evaluating the status of the debate between single-
route and dual-route accounts of reading and lexical pro-
cessing, it is important to recognize that connectionist
theory makes no specific commitment to the single-route
concept. Moreover, it may be impossible to avoid some as-
pects of duality, even in the most homogeneous model. For
example, Kawamoto (1993; Kawamoto & Zemblidge, 1992)
has shown that subjects tend to produce incorrect pronunci-
ations of irregulars more quickly than correct pronuncia-
tions. Thus, the pronunciation of pint to rhyme with hint is
faster than the correct pronunciation of pint. Kawamoto
rmodels this effect using a ART-type model. At first, the
large number of words with the regular “-int” shape acti-
vate a common pattern. If the subject produces a reading of
the word at this time, it will be an error. A few millisec.
onds later, the slower connections to the irregular pronun-
ciation start to dominate and the correct pronunciation will
be produced. This is still a single mechanism, but the pres-
ence of two routes is simulated by contrasting pattern acti-
vations at different time points during the settling of the
network.

Syntactic Classes

Psycholinguists working in the standard symbolic tradition
{Chomsky, 1965; Fodor & Pylyshyn, 1988; Lachter &
Bever, 1988) have pointed to the learning of syntax as a
quintesseatial problem for connectionist approaches. One of
the key abilities involved in the learning of syntax is the ab-
straction of syntactic classes or “parts of speech,” such as
nouns, verbs, or prepositions. In the theory of unjversal
grammar, these categories are innately given. However,
their actual realization differs so much from language to
language that it makes sense to explore accounts that induce
these categories from the input data. Elman (1993) has pre-
sented a connectionist model that does just this. The mode?
relies on a recurrent architecture of the type presented in
Figure 13.7 above. The training set for the model consists of
dozens of simple English sentences such as “The big dog
chased the girl.” By examining the weight patterns on the
hidden units in the fully trained model, Elman showed that
the model was conducting implicit learning of the parts of
speech. For example, after the word big in our example sen-
tence, the model would be expecting to activate a noun. The
model was also able to distinguish between subject and ob-
Ject relative structures, as in “the dog the cat chased ran”
and “the dog that chased the cat ran.”

Even more interestingly, Elman found that the network
only learned to pick up these positional expectations when
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it began with a narrow perceptual window of two or three
words. If the network started with too large a window, it
could not focus on detection of the most basic determinants
of syntactic positioning. Elman interpreted this contrast as
underscoring the “importance of starting small.” In many
ways, this apalysis is much like the one offered by Schultz
for the importance of a learning algorithm that starts off
with limited resources and only recruits new resources
when it is unable to further reduce error.

Lexical Segmentation and Masking

In order to process sentences effectively, we need to be
able to segment out words from the ongoeing speech stream.
Norris (1994) proposes a system called ShortList which
uses a recurrent net of the type given in Figure 135 to
process incoming phonemes left-to-right. A network of this
type does fine with many words. However, it has trouble
with words like catalog which have what Norris calls a
“right context” probiem. When processing the word cata-
log, a simple recurrent net would recognize the word cat
and decide that this word had actually occurred, if it were
not somehow forced to hold off and process further right
context. In order to prevent this from happening, Norris
suggests that there must be 2 short list of competitors that
include words like cat, cattle, catalog, and others like them
that will compete for full recognition of the input material.
The ShortList implementation of this process uses a hand-
wired word list. However, Miikkulainen (1993) has sug-
gested that it would be possible to model this same process
using setf-organizing feature maps.

Once a word has been successfully detected, the sounds
that activated it need to be masked out, in order to block
multiple recognition of the same input by alternative com-
petitors. Take a sentence like “I gave my cat a Miranda
doll.” Orice the word cat has been selected, its component
phonemes are “masked” in order to avoid the additional
activation of the form ‘“catamaran” on the basis of the
string “cat a Miran” Once a word is fully recognized and
its component sounds are masked, it must then begin to par-
ticipate in higher level syntactic and semantic patterns.
The exact nature of this conversion is not yet clear. There
have been several suggestions regarding the nature of this
short-term verbal memory:

1. As soon as words are linked together into conceptual
clusters, they can be used to activate a unique underly-
ing meaning that no longer requires verbal storage.

2. Before this linkage occurs, words may be retained in a
phonological loop (Baddeley, 1986). This immediate

rehearsal requires that words be present in a primarily
articulatory form {(Gupta & MacWhinney, 1994).

It is also possible that some additional mechanism oper-
ates on lexical items to encode their serial occurrence
without reference to either meaning or sound. This could
be done in terms of some additional episodic, possibly
hippocampal, mechanism that stores activation levels of
words prior to masking. A system of this type is close to
the Competitive Queuing mechanism proposed first by
Grossberg and then again by Houghton.

et

Further experimental work will be needed to decide which
of these three mechanisms is involved at which points in
the storage of short term verbal memories. However, there
is already good (Gupta & MacWhinney, 1996) evidence
that various neural mechanisms are available to support
masking in the lexicon.

Bilingualism

The study of bilingualism and adult second language learn-
ing is a particularly promising and challenging area for
connectionist research. Recent research in second language
acquisition (Dechert & Raupach, 1989; Flege & Davidian,
1984; Hancin-Bhatt, 1994; Harrington, 1987; Johnson,
1989; MacWhinney, 1992; Odlin, 1989; Sasaki, 1994) has
underscored the importance of transfer of first language
skills to the learning of the second language. Because of its
emphasis on pattern generalization, the backpropagation
algorithm is well-suited to modeling transfer effects. In
one of the first simulations designed to examine these is-
sues, Gasser {1990) constructed an auto-associative net-
work that used backpropagation training for the learning
of basic word orders in second language learning. In one
simulation, the network was first trained with a first lan-
guage order of Subject-Verb (SV) and then exposed to a
set of second language sentences with Verb-Subject (VS)
order. In the other “mirror-image” simulation, the network
began with VS in the first language and then shifted to SV
in the second language. The network demonstrated a strong
tendency to transfer the first language word order to the
second language, particularly for words that were similar
semantically. This type of lexically-based transfer for word
order is exactly what one would expect for a strong pattern
generalizing network. However, there is not yet any actual
empirical data that would support the importance of this
effect in real second language learning,

MacWhinney (1996) reports on unpublished work by
Janice Johnson that adapts the architecture of the recurrent
network shown in Figure 13.5 to the problem of second
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Figure 13.8  Architecture for the Johnson-MacWhianey model
for second language learning.

language learning. The exact shape of the model is given
again as Figure 13.8.

In these simulations, the input in pool C is a pattern that
represents the status of the “current word™ along the di-
mensions of animacy, number, case, agreement-marking,
part-of-speech, and language. We assume that this informa-
tion is available through the individual lexical item. Note
that this highly structured form of the input differs radi-
cally from the raw word level input used by Elman (1993).
Because of the highly structured shape of the input, this
network performs much better than the Elman net as a sen-
tence processor and interpreter. The task of the network is
to assign the agent, object, and perspective roles to the cor-
rect words., In order to get these assignments right, the
network must activate the correct output units in pool A
For example, the network can choose between activating a
node that assigns the first noun as agent and a competing
node that assigns the second noun as agent. Training in-
volves the presentation to the network of sentences, one
word at a time. For example, the input could be “the dog is
chased by the cat.” In this case, the network might begin by
thinking that “the dog" is the agent. However, once the pas-
sive form of the verb is detected, the weight on this role as-
signment is decreased and the second noun is selected as
agent instead. When the network is processing passive sen-
tences, we find that it goes through an on-line reversal or
“garden-path,” first activating a choice of the first noun as
agent and then reversing this activation to choose the sec-
ond noun as the agent.

The network was trained initially with a wide variety of
English sentence patterns. At the end of this initial train-
ing, it was performing well in the role assignment task
for English. Then; the input was extended to include a full
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corpus of parallel sentences for Dutch. After a period of
mixed training, the network then continued with Duich-
only training for a further period The first basic finding of
this research was that the exact weights of the various cues
in the model matched up well with a large body of empiri-
cal research summarized in MacWhinney and Bates
(1989). In particular, the model learned the basic English
SVO pattern quickly and then continued to learn the VOS
and OSV patterns found in adult speakers. The second
finding was that, when learning Dutch, the model showed
exactly the type of word order transfer effects reported by
McDonald (1987, 1989) for the learning of Dutch by En-
glish speakers and the learning of English by Dutch speak-
ers. Finally, the model also showed a clear tendency toward
“catastrophic interference” if the period of mixed-language
training was omitted. A more robust, general approach to
the catastrophic interference problem in this network and
others like it could be developed if the network were given
a firmer grounding on the learning of syntactic patterns on
the basis of generalization from particular lexical items, as
we noted earlier.

Connectionism and Developmental Theory

Connectionism offers a fresh perspective on a variety of
issues of ongoing concern to developmentalists, including
the emergence of symbols and representations, the move-
ment between developmental stages, and the role of non-
linearities in development.

Stages and Transitions

The simplest developing system is one that shows only one
type of uniform change over time. For example, a falling
ball undergoes only one type of transition during its down-
ward movement. We can use Galileo’s equation for acceler-
ation to compute the distance traveled as a function of
acceleration a and time ¢. For this simple, uniform system,
we have a clear rule that allows us to predict the state of the
system at each time 1.

More complex systems can go through a series of stages
during state transitions. For example, a drop of rain can
begin as cloud vapor, form into a droplet, freeze into hail,
fall to the ground, and then melt into slush. Each of these
state transitions delimit specific stages in the life of the
droplet. In the human child, stages of this sort abound. For
example, after learning the first word, children spend sev-
eral months slowly picking up a few additional words.
Then, suddenly, we see a rapid growth in vocabulary that
has beern called the vocabulary “burst” The vocabulary
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burst does not emerge overnight, but builds over the course
of several weeks. However, if we plot the size of the vocab-
ulary on the y-axis and the child’s age on the x-axis we wil
note a marked upward acceleration at the beginning of
this period. Such changes indicate a stage-like quality in
development.

Piaget has characterized the intellectual growth of the
child in terms of four major epochs, each composed of sev-
eral periods with some further divisions of the periods into
subperiods. However, Piaget’s characterization of these
stages as invariant properties of human development is no
longer widely accepted and few researchers are interested
in developing simulations to account for the child’'s move-
ment through the classical set of Piagetian stages. This is
not to deny the reality of major gualitative changes in cog-
nition as the child moves from infancy to adolescence.
However, attempts to capture these changes across skill do-
mains have not been successful. Because of this, connec-
tionist models of stagelike transitions have tended to focus
not on broad changes in cognition, but on local discontinu-
ities within the development of specific skills. The areas
that have been most closely investigated are the balance
beam, velocity computation, and seriation.

Balance Beam

One of the clearest analyses of stage transitions in cogni-
tive development is the case of the balance beam probiem
studied first by Piaget. Earlier we examined the produc-
tion-sysiem accounts for learning of the balance beam
probiem by Klahr and Siegler (1978). McClelland {1989,
1995) has noted that, although these production-system
models provide a good description of the four balance
beam rules discussed earlier, they tell us little about the
forces that drive the child from one rule system to the next.

McClelland was able to construct a backpropagation
model of the balance beam problem that used 20 input
units. There were 10 positional units devoted to the 5 posi-
tions to the left of the fulcrum and the 5 positions to the
right of the fulcrum. The 10 weight units were dedicated to
represent the numbers of weights stacked up at a position
with 5 units for the possible number of weights on the left
and 5 units for the possible weights on the right. A given
problem could be encoded with a total of 4 units turned on.
For example, take a problem with 4 weights at a distance of
3 right and 5 weights at a distance of 2 left. The units
rurned on would then be 4-right-weight, 5-left-weight, 3-
right-distance, and 2.left-distance. In order to bias the net-
work toward reliance on the weight cue over the distance
cue, McClelland included a large number of cases in which

the distance cue was neutralized, theredy focusing the net-
work's attention to the weight cue.

Using this type of representation, McClelland was able
to mode} many aspects of the learning of this task. The net-
work began with performance that relied on Rule 1 and
moved on to learn Rule 2 and then Rule 3. It never acquired
fFull use of Rule 4, but, McClelland argues, this is because
some aspects of the use of Rule 4 in adults involve the ap-
plication of full mathematical analysis. However, the net-
work was able to capture aspects of the rather subtle
“torgue distance effect” detected in studies by Ferretti and
Butterficld (1986) and Wilkening and Anderson (1982)
These studies have shown that subjects perform best and
most consistently on balance beam problems when it is
elear perceptually that one side has an overwhelming com-
bination of weight and distance in its favor. When the bal-
ance between the two sides is closer numerically, decisions
are less consistent. Torque distance effects indicate that
subjects are not simply applying an all-or-none rule, but are
performing a type of cue-weighting that is much like that
conducted inside a neural network.

Shultz, Schmidt, Buckingham, and Mareschal (1995) ex-
tended McClelland's model by using the cascade correla-
tion variation of the packpropagation algorithm. Shultz
et al. argue that static backpropagation networks with only
a few hidden units can succeed at modeling the first stages
of development, but are unabie to reach higher levels of per-
formance, because their weights become 100 closely tuned
to solving the basic levels of the problem. This was true for
McClelland’s balance beam model, which learned Rules 1,
2, and aspects of 3, but was unable to learn Rule 4. How-
ever, using the cascade correlation framework, Shultz et al.
were able to model successful Jearning of all four rules.

These models make two important points. First, both the
McClelland and the Shultz et al. models show that connec-
tionist models can provide good accounts of perceptual
aspects of learning such as the torque distance effect. Sec-
ond, Shultz's model shows that static networks that begin
life with abundant numbers of extra hidden units may fail
to perform the type of architectural decomposition of a
problem space that is required for successful mastery.
Models that start out smatl and are forced to recruit new
units when they run out of steam are more likely to be able
to focus first on the core of a problem and then add the
details as elaborations of this core.

Other Physical Coordinations

In addition to their work on the balance beam problem,
Shultz and his colleagues have developed connectionist
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models for three other types of physical coordinations.
These include the learning of seriation, potency-resistance,
and velocity-distance-time relations. Mareschal and Shultz
(1993) developed a model of seriation that attempts to sim-
ulate the developmental progression reported by Piaget
(1965). The model’s task is to order a series of six sticks,
each with a different length, so that the shortest is on the
teft and the longest is on the right. This is done by placing
one stick in position at a time. The network is composed
of two independent modules—a “which” module and a
“where” module (Jacobs, Jordan & Barto, 1991). The
“which” module is given the task of deciding which stick to
move at a given point in the problem. The “where” module
is given the task of deciding where to position each stick in
terms of one of six possible spatial positions.

The results for these simulations of seriation learning
match up closely with the empirical findings reported by
Piaget. In stage 1, performance is close to chance. In stage
2, the network forms pairs and triplets that are correctly
ordered, but the whole array is not correct. In stage 3, the
whole array is ordered, but through largely trial-and-error
repetition of subgroup ordering. In stage 4, seriation is
performed correctly with previous analysis.

Buckingham and Shultz (1994) developed a model of the
learning of the relations inherent in the physical relations
expressed by these equations: d=vt, v=4d/, and ¢ =d/v.
These equations relate distance, velocity, and time through
mulitiplicative relations. Wilkening (1981) found that chil-
dren tend to progress through three levels of information
integration in learning these relations. First, they relate
each quantity only to itself. Second, they take into account
the effect of the other two determining variables, but em-
ploy subtraction or addition instead of the correct division
or multiplication rules. Third, they acquire the correct dj-
vision or multiplication rules. Buckingham and Shuitz
(1994) were able to capture this three-stage developmental
sequence in a neural network model. As in the other simu-
latioas reported by Shultz et al. (1995), the movement
through these stages was facilitated by use of the cascade-
correlation algorithm which tends to force simple solutions
at early periods, but allows for the recruitment of addi-
tional resources to solve problems in more complex ways
later on. In order to reach the more extreme values required
by the multiplicative rule, weights have to first move
through a set of values that match the additive rule. As ad-
ditional units are recruited, these weights move closer to
approximating a multiplicative relation.

Finally, Shultz and his colleagues have also studied the
learning of resistance-potency relations. When a force with
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& given potency goes directly against a force with a certain
resistance, the resuitant force is computed by subtracting
the two vectors. However, when a ramp is included in the
physical system, the sum of the two vectors is computed by
division, rather than subtraction. Shultz et al. (1995) were
able to simulate the learning of both types of computations
and showed that the subtractive relations were learned ear-
lier than the division relations. Again, these effects seem
to emerge from basic facts about the process of weight
changes in neural networks.

Attachment

Van Geert (1991) developed a dynamic systems model
designed to model growth curve developments in both vo-
cabulary acquisition and the formation of attachment re-
lations. One particularly interesting aspect of his model
is the analysis he provides for the interaction between two
competing developmental strategies. Van Geert shows
how a variety of growth curves can arise from the com-
petition and that the shapes of these curves depend on the
internal stability of the two separate processes. In a sys-
tem with optimally sensitive parenting, attachment grows
steadily over time to reach a ceiling level. In a system
with insensitive parenting, attachment grows weakly to
reach a lower, but steady state. In a system with inconsis-
tently sensitive parenting, the resulting attachment be-
havior of the child is extremely variable and unstable.
These patterns of growth match up well with empirical
data on the development of attachment under conditions
of consistent and inconsistent parenting (Ainsworth,
Blehar, Waters, & Wall, 1978; Belsky, Rovine, & Taylor,
1584).

Connectionism and Brain Development

Connectionist theory is extremely rich in terms of its im-
plications for brain development. The first major area for
which connectionism is relevant is brain development dur-
ing embryogenesis. Here, connectionist models suggest that
the commitment and inductance of particular neural areas
to particular functions is driven by connections between
areas and sensorimotor functions. The idea is that the
shape of the brain emerges under the real physical con-
straints of the sensory and motor systems to which it is
linked, rather than out of response to some abstract genetic
blueprint for a set of disembodied innate ideas. To consider
an example of how this works, consider the development of
columns in the viswal cortex (Hubel & Weisel, 1963).
Miller, Keller, and Stryker (1989) have formulated network
models that show how this columnar organization can arise
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from competitive interactions between signals from the
two eyes. In general, it may be true that patterns of connec-
tivity in the brain arise from the competition between sig-
nals arriving from different sensory systems and signals
being sent to motor processes {Waish & Cepko, 1992,
1993).

Connectionism may also help us to understand some of
the mysteries of brain development during infancy and
early childhood. Work on children with perinatal brain le-
sions (Aram & Eisele, 1992; Dennis, 1980; Feldman, 1993;
Feldman, Janosky, Scher, & Wareham, 1994; Thal et al.,
1991) has demonstrated the remarkable ability of the
young brain to acquire normal language functioning after
even the most severe early lesions. How the brain reorga-
nizes to achieve this dynamic response is one of the great
challenges facing developmental psychology and itis one in
which connectionist modeling can play an important role.
Recent constructivist accounts of brain development (Mon-
tague & Sejnowski, 1994; Quartz & Sejnowski, 1995) point
out some possible mechanisms for changes in brain func-
tion, even after major damage. These models note that the
continual refinement of patterns of connectivity is driven
by local mechanisms, including dendritic growth, synapto-
genesis, myelinization, and changes in membrane potential.
In a constructivist model of the brain new synaptic con-
nections are viewed as emerging through the action of ni-
trous oxide. When a cell fires, it broadcasts nitrous oxide
to nearby cells and encourages the development of projec-
tions in the direction of the gradient of diffusion. A mech-
anism of this type fits in well with ideas about topological
organization which we discussed earlier such as the self-
organizing feature map models of Kohonen and Miikku-
lainen or the sparse distributed memory of Kanerva.
However, a full account of reorganization after early brain
damage may require more than just the local reorganization
offered by these models.

‘The varioug connectionist models described in this sec-
tion represent only a first step toward resolving some of the
enduring issues in cognitive development. Bechtel and
Abrahamsen (1991) outline the further potential of such
models, including: (a) a new interpretation of the distinc-
tion between mataration and learning; (b) a computational
instantiation of the distinction between accommodation
and assimilation; (c) an account of context effects {in
which minor task variations have large effects on pre-
schooler’s performance {Gelman, 1978]); and {d} explana-
tions of many of the phenomena and anomalies associated
with stages and transitions.

FUTURE DIRECTIONS

Having presented a description of the two principal
approaches to computational modeling of cognitive devel-
opment, we close with a discussion of their similarities,
differences, and current inadequacies. Three themes run
through this final discussion. One is that the two approaches
are not as distinct as their practitioners often claim. The
second is that—for all of their accomplishments-—both ap-
proaches must solve some very difficult remaining prob-
lems. The third theme is that such challenges can only be
met by infusing computational techniques into the training
of the next generation of cognitive developmentalists.

Comparing Connectionist and
Production-System Models

Although connectionist forays into cognitive development
are often accompanied by the dismissal of “symbolic” ap-
proaches as unsuited to the task, we wonder whether the
differences are as substantial as are sometimes claimed.
Connectionist models are usually proposed as radically
different from production-system architectures, and more
neuronally plausible. However, one can ask where the fun-
damental differences lie: in the parallelism of the process-

ing, in the distributed knowledge, or in the connectivity of

that knowledge?

1. Parallelism can not be the source of the difference, be-
cause during the “match” or “recognize” phase of a pro-
duction system's recognize-act cycle, the condition side
of all productions are matched in parallel with all the
elements in working memory.® In some systems, work-
ing memory is defined as the set of elements in a vast
semantic memory that are above some threshold, so the
match process is massively parallel and the connectivity
between working memory elements and the productions
is dynamic and potentially unbounded.

What about distributed knowledge? The extent to which
knowledge is distributed or modularized in a production
system depends entirely upon the grain size that ele-
ments or productions are supposed to capture. Thus, a

[

6 The actual implementation of this paraliel match occurs in a se-
rial Vor Neumann machine. But so too do the implementations of
the learning algorithms in PDP models. This microlevel of im-
plementation s not regarded as part of either theoretical stance.
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single production might represent a very explicit and
verbalizable rule; it might represent a small piece of
processing for a complex, implicit piece of knowledge:
or it might represent a complex pattern of cue associa-
tions much like those found in connectionist models
(Ling & Marinov, 1993). Similarly, in PDP models, the
individual element can represent knowledge at any grain
size: from an individual neuron, to an assembly of
neurons, to the word “neuron.” There is nothing inherent
in either formulation that specifies what this grain
should be, until additional constraints are imposed on
the model. Such constraints might include attempting to
match production-system cycles to human reaction
times, or the connectivity of connectionist models 1o
neural connectivity.

Another purported difference between PDP models and
production-system models is the gradualism of the for-
mer and the abruptness of the latter. But as evidenced by
some of the models described earlier, one can create a
production-system architecture with continuously vary-
ing strengths of productions—hence production systems
can exhibit gradualism. Conversely, the higher order de-
rivatives of different learning functions in connectionist
systems can assume large values. Given the appropriate
grain size on a performance window, such models would
appear to be undergoing discontinuous changes (cf.
Newell's 1973 classic analysis of process-structure dis-
tinctions in developmental psychology).

e

These many points of similarity have also been noted
by advocates of the connectionist approach. Bechtel and
Abrahamsen summarize some of these areas of potential
overlap and rapprochement:

Mest of the modifications incorporated in the most recent
symbolic models have narrowed the gap between symbolic
and network models. . .. First, a large number of rules at a
fine grain of analysis (microrules) can capture more of the
subtleties of behavior than a smaller number of rules at a
larger grain of analysis. Second, rule selection, and perhaps
rule application as well, can be made to operate in parallel.
Third, the ability to satisfy soft constraints can be gained by
adding a strength parameter to each rule and incorporating
procedures that use those values in selecting rules. Fourth,
resilience to damage can be gained by building redundancy
into the rule system (e.g., making multiple copies of each
rule). Fifth, increased attention can be given to learning algo-
rithms, such as the genetie alzorithm (Holland, 1875; Koza,
1992), knowledge compilation and “chunking” of rules into
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larger units (Anderson, 1983; Newell, 1990}, and ways of ap-
plying oid knowledge to new problems, such as (Falkenheiner,
Forbus, & Geatner, 1989).

-+ . There presently is no adequate research base for deter-
mining what differences in empirical adequacy might result
from these differences, but the differences are likely to be
small enough that empirical adequacy will nat be the primary
determinant of the fate of symbolic versus connectionist
models. Within either tradition, if a particular inadequacy
is found, design innovations that find some way around the
failure are likely to be forthcoming. Personal taste, general
assumptions about cognition, the sociology of science, and a
variety of other factors can be expected to govern the individ-
ual choices that together will determine what approaches to
cagnitive modeling will gain dominance. (Bechtel & Abra-
hamsen, 1991, pp. 18-19)

Problems Facing Computational Models
Scalability

To date, both symbolic and subsymbolic models of cogni-
tive development have focused on highly circumscribed
domains, and within those domains, on small scale exem-
plars of the domain. For all of the work on connectionist
models of language, no one has yet been able to construct a
complete connectionist model of language acquisition. For
example, developmental neural networks are often con-
strained to well-defined topics such as the acquisition of
the English past tense (Cottrell & Plunkett, 199L), or
learning German gender (MacWhinney et al., 1989). The
toy mode! approach often reduces large problems such as
question answering (St. John, 1992) or word sense disam-
biguation (Harris, 1994a) to small problems by using only
a few dozen sentences or words in the input corpus. In
fact, there is not even a reasonably complete account for
smaller skill domains such as word learning or syntactic
development. For all of the work on Piagetian and other
types of problem solving, no one has constructed a produc-
tion system or a neural net that performs the full range of
tasks encountered by a normal 5-year-old child In
essence, all of the work so far has been on toy versions of
larger domains.

Computational modelers argue, either explicitly or im-
plicitly, that in principle, such models could be expanded
substantially with no major theoretical modifications. But
could they? Here, the plausibility of the claim varies ac-
cording to the approach, with the symbolic models having
the better track record. Although there are no large scale
developmental production systems, there do exist several
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very large production systems that start with a few hundred
initial “hand-coded” productions and go on to learn over
100,000 productions. Domains include both Al-type tasks
and cognitive models. (See Doorenbos, 1995 for a review
and evaluation of several such large-scale production
systems.)

With respect to scaling up connectionist systems, there
are grounds for skepticism For example, in the language
learning domain, when one attempis to add additional
words or sentences to many of the connectionist language
models, their performance begins to degenerate. One of the
major challenges for computational models then, is a direct
attack on this scalability problem.

Ad Hoc Assumptions about the Environment

Another problem facing both connectionist and production-
system models is the lack of a principted, data-constrained
theory of the effective environment in which such models
operate. For many models, the “training” to which they are
exposed is based on arbitrary, unprincipled, ecologically
ungrounded assumptions about the environmental inputs
that the child receives. Until we have better ways of mea-
suring the actual properties of patterns in the effective en-
vironment, we cannot really claim that our models are
being properly constrained by real empirical data,

Fortunately, there are two promising research avenues
that may soon begin to alleviate this problem. The first av-
enue is the development of rich computerized databases.
In the arca of language development the Child Language
Data Exchange System (CHILDES) database {MacWhin-
ney, 1993) has collected transcript data from dozens of
major empirical projects. These transcripts contain both
the language input to the child and the child’s developing
conversational competence. More recently, these data are
being supplemented by digitized audio and video records
that give researchers access to the full richness of the
original interactions. Because this database is computer-
ized according to a standardized format, it is possible to
use a wide variety of computer programs for search and
analysis of patterns in both the input and the child’s pro-
ductions. Increasingly, simulations of language learning
are being based on properties of the input as computed
from the CHILDES database and similar computerized
sources.

A second promising development is the growth of
microgenetic studies. This research is designed to capture
developmental processes as they occur by looking at
fine-grained moment-to-moment changes in cognition and

behavior, Kuhn (1995) has applied microgenetic technigues
to the study of scientific reasoning, and Siegler and Crow-
ley (1991) and Alibali (1993) have applied this methodol-
ogy to the study of strategy development in mathematics.
However, the technique can be used equally well with basic
behaviors such as walking (Adolph, 1995) or reaching
(Thelen & Smith, 1994). Because microgenetic methods
have such a fine-grained level of analysis, they collect
quantities of data that are rich enough to support interest-
ing tests of connectionist (MacWhinney & Leinbach,
1991), symbolic (Marcus et al., 1992), and dynamic sys-
tems (van der Maas & Molenaar, 1992) approaches to cog-
nitive development.

Hybrid Models

By now the reader has come (o appreciate the degree to
which connectionist models focus on low-level cognition,
jeaving the more complex aspects of cognitive performance
to full symbolic models. There are not yet connectionist
models of processes such as the learning of double-digit ad-
dition, gaining expertise in solving the Tower of Hanoi, or
solving cryptarithmetic problems. Is it possible that neural
networks are only appropriate as models of perception and
low-level aspects of language and cognition? If so, it would
make sense to graft together models that use neural net-
works for Jow-level tasks and production systems for high-
level tasks.

There are reasons to believe that it would be premature
to explore the construction of hybrid models of this type.
Before we start building Centaurs and mermaids, we
should complete our exploration of more complex, multi-
componential neural network models. By linking up sys-
tems for arbitrary pattern association such as SOFM or
SDM with other modules that use backpropagation or ART
to extract regularities and patterns, we can increase the
power of our models, while retaining the connectionist
framework. When we look at the complex architecture of
processing types implemented in brain structures such as
the hippocampus, thalamus, and cerebellum, we realize
that neuronally plausible connectionist models of tomorrow
will make the simple backpropagation models of today
seem primitive indeed.

Once this basic exploration of complex conpectionist ar-
chitectures has been completed, it may be propitious 1o ex-
amine the ways in which connectionist models implement
algorithms developed in symbolic models such as SOAR,
IBL, or ACT-R. A detailed example of close computational
equivalence between a low-level symbolic model and 2
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structured connectionist model can be found in the dialog
between Ling and Marinov (1993) and MacWhinney
(1993).

Why Compute?

Why should someone interested in cognitive development
be concerned about computational models of the sort de-
scribed in this chapter? The primary justification for
focusing on such systems is the claim that self-
modification is the central question for cognitive devel-
opmental theory. We are convinced that in order to make
major theoretical advances, it will be necessary to formu-
late computational models at least as complex as the sys-
tems described here.

As we noted previously, early commentators on compu-
tational models often faulted them for being insufficiently
attentive to the issue of self-modification. Such criticism
strikes us as misplaced and ironic. While it is easy to find
developmentalists who fault computational models, it is
even easier to find criticisms of the entire field of develop-
mental psychology for its inability to deal adequately with
transition and change:

I have asked some of my developmental friends where the is-
sue stands on transitional mechanisms. Mostly, they say that
developmental psychologists don't have good answers. More-
over, they haven't had the answer for so long now that they
don’t very often ask the question anymore—not daily, in
terms of their research. (Newell, 1990, p. 462)

Is this too harsh a judgment? Perhaps we can dismiss it
as based on hearsay, for Newell himself was not 2 develop-
mental psychologist. But Newell's comments simply echoed
an earlier assessment from one of the central figures in the
field:

-~ serious theorizing about basic mecharisms of cognitive
growth has actually never been a popular pastime, .. . It is
rare indeed to encounter a substantive treatment of the prob-
lem in the annual flood of articles, chapters, and books on
cognitive development. The reason is not hard to find: Good
theorizing about mechanisms is very, very hard to do
(Flavell, 1984, p. 189)

Even more critical is the following observation on the
State of theory in perceptual development from one of
the area’s major contributors in recent years:
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Put simply, our models of developmental mechanisms are dis-
appointingly vague. This observation is rather embarrassing
because the aspect of perceptual developmental psychology
that shouid set it apart from the rest of perceptual psychology
is the explanation of how development occurs. and such an ex-
planaticn is precisely what is lacking (Banks, 1987, p. 342)

It is difficult to deny either Newell’s or Bank’s asser-
tions that we don’t have good answers, or Flavell’s assess-
ment of the difficulty of the question. However, the good
news is that the question is no longer being avoided: many
developmentalists have been at least asking the right ques-
tions recently. In the past decade or so, we have seen Stern-
berg’s (1984) edited volume Mechanisms of Cognitive
Development, MacWhinney's (1987b) edited volume Mech-
anisms of Language Acquisition, and Siegler’s {1989) An-
nual Review chapter devoted to transition mechanisms. So
the question is being asked.

And the answers are, increasingly, coming in the form of
computational models. Only a few of the chapters in the
1984 Sternberg volume specify mechanisms any more
precisely than at the flow-chart level, and most of the pro-
posed “mechanisms” are at the soft end of the information-
processing spectrum. However, only five years later,
Siegler (1989) in characterizing several general categories
for transition mechanisms (neural mechanisms, associative
competition, encoding, analogy, and strategy choice) was
able to point to computationally-based exemplars for all but
the neural mechanisms (Bakker & Halford, 1988: Falken-
heiner et al,, 1989; Holland, 1986; MacWhinney, 1987a;
Rumelhart & McClelland, 1986; Siegler, 1988). The recent
Simon and Halford (1995) book, consisting e'ntirely of
computational models of developmental processes, pro-
vides a ciear indication of this trend toward “hardening the
core” (Klahr, 1992).

The advantage of such computational models is that
they force difficult questions into the foreground, where
they can be neither sidetracked by the wealth of experi-
mental results nor obscured by vague characterizations of
the various “essences” of cognitive development. The rel-
ative lack of progress in theory development—noted by
Banks, Flavell, and Newell-—is a conseguence of the fact
that, until recently, most developmental psychologists
have avoided moving to computationally-based theories,
attempting instead to attack the profoundly difficul: ques-
tion of self-modification with inadequate tools. In con-
trast, computational models render these issues into a
form sufficiently specific that it is possible to assess
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theoretical progress (see Mareschal & Shultz, 1996, for a
cogent example).

The Future of Computational Models of
Cognitive Development

That brings us to our final topic: The educatlon of future
cognitive developmentalists. As this book goes to press, the
conceptual and technical skiils necessary for computa-
tional modeling of developmental phenomena are taught in
only a handful of graduate programs. However, we see the
current situation as analogous to earlier challenges to the
technical content of graduate training When other kinds of
computational technology that are now in common use—
such as statistical packages—were first being applied to
psychological topics, journal articles invariably included
several pages of description about the technique itself.
Writers of those early articles correctly assumed that their
readers needed such background information before the
nsychological issue of interest could be addressed. Today,
writers of papers using analysis of variance, or path analy-
sis, or logistic regression simply assume that their readers
have had several courses in graduate school learning the
fundamentals.

Simllarly, in the early years of computer simulation, the
necessary resources of large “main frame” computers were
limited to very few research centers, and exposure to com-
putational modeling was inaccessible to most developmen-
talists. Even today, very few developmental psychologists
have had any training with computational models, and
only a handful of computational modelers have a primary
interest in cognitive development. Nevertheless, as evi-
denced by the work described in this chapter, the intersec-
tion of these two areas of research is growing. Moreover,
with the increasing availability of powerful workstations,
the proliferation of computer networks for dissemination
of computational models, the increasing number of pub-
lished reports on various kinds of computationally-based
cognitive architectures, the appropriate technology and
support structures—such as summer workshops—are be-
coming widely accessible. All of these activities will in-
crease the poel of appropriately trained developmentalists.

Even then, mastery of these new tools for computational
modeling will not be easy. Nevertheless it appears to be a
necessary condition for advancing our understanding of
cognitive development. As Flavell and Wohlwill (1969)
noted nearly thirty years ago: “Simple models will just not
do for developmental psychology.”
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