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Subjects were shown letters of the alphabet and asked to name the letter in the
alphabet immediately before or afier the probe letter Subjects were also asked
to describe how they accessed the alphabet and from what point in the alphabet
they began their search. The structure of the reaction times (RTs) and subjects’
reports on alphabetic entry points are accounted for by a mode! of alphabetic
storage and retrieval: The model is a particularization of well-established general
theories of the structure of long-term memory. The alphabet is represented as a
two-level hierarchical list structure composed of six chunks that are in turn com-
posed of from two to seven fetters. Probe letters have direct access only to the
name of the chunk in which they are embedded, and alphabetic access consists
of serial, self-lerminating search at each level. A model using only a single pa-
rameter for the time required to access the next element at either the chunk or
letter level accounts for about 50% of the variance in RTs for our two experiments
A two-parameter model accounts for over 80% of the variance in previously
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published studies of covert and overt alphabet recitation.

In this article we propose a specific internal
representation for order information of the
alphabet, a detailed model of the processes
used to access the representation, and an es-
timate of the speed of the models basic pro-
cesses. In order to address the peneral ques-
tion of how familar, long lists are stored and
accessed in memory, we have focused on the
alphabet. It is a common long list, with little
explicit structure, learned very early and used
throughout life.

How is the alphabet structured? There is
evidence in the literature that long serial Hsts
are stored hierarchically as subgroups in
long-term memory (Anderson & Bower, 1973;
Broadbent, 1975; Chase & Ericsson, 1982).
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The standard theoretical interpretation is
that subgroup size is determined by the ca-
pacity of short-term memory because storage
operations as well as retrieval and search op-
erations are performed on chunks in short-
term memory. Therefore, following Ander-
son and Bower (1973) and many others, we
assume that long-term memory lists are
stored as hierarchical sublists in a link-node
structure such that sublists do not exceed the
capacity of short-term memory.

How is the aiphabet searched? Evidence
originating with the seminal work of Stern-
berg (1967) strongly suggests that search for
the location of an itern in short-term memory
is a serial, self-terminating process, Further-
more, due to constraints on short-term mem-
ory capacity, large lists are searched hierar-
chically: A serial, self-terminating search is
first performed at the top level in the hier-
archy followed by a serial search at the
subgroup level (Naus, 1974; Naus, Glucks-
burg, & Ornstein, 1972).

Three major experimental procedures have
been used in previous investigations of al-
phabet storage and access.

1. Order. The subject must decide whether
a presented letter pair is in the correct al-
phabetical order (Lovelace & Snodgrass,
1971). Reaction time (RT) is measured from
the onset of the letter pair until the subject
presses a response button.
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2. Recitation. The subject is presented
with a pair of letters and must recite the al-
phabet (covertly or overtly) from the first let-
ter to the second letter (Landauer, 1962;
Lovelace, Powell, & Brooks, 1973). RT (also
called recitation time) is measured from the
onset of the letter pair (at which point the
subject starts alphabetic recitation) until the
subject recites the final letter and pushes a
response bution.

3. Forward or backward search. The sub-
ject must say what comes nth afier or befoie
the presented letter. For example, “what
comes before P, or *what comes four letters
afier K7 (Lovelace & Spence, 1972). RT is
measured from the onset of the probe letter
until the subject’s verbal response triggers a
voice-actuated switch.

Regardless of the procedure used, if one
looks at RTs as a function of alphabetic po-
sition of the stimulus, two findings consis-
tently emerge: (a) At the agpregate level, stim-
ult near the end of the alphabet tend to re-
quire more processing time than stimuli near
the beginning. {b) RTs are definitely non-
monotonic across the alphabet, and the fine
structure of the RT pattern is similar across
a variety of procedures.

Lovelace and Spence (1972) used a for-
ward-search procedure and found an irreg-
ularly increasing RT as a function of alpha-
betic position {see bottom curve of Figure 1).
The increase from the early portion of the
alphabet to the final was substantial: RT for
the first six letters, A—F, averaged 890 msec,
and for the last six letters, T-Y, averaged
1,180 msec. Furthermore, there are several
prominent and reliable “peaks™ and *‘val-
leys” For example, it takes subjects almost
a half a second longer to name the letter that
follows K than to name the letter that follows
M. Also shown in Figure 1 are the results
from an earlier study by Lovelace and Snod-
grass (1971) using the order procedure. No-
tice that even with this procedural change the
RT patterns are very similar {average r = .§3).

Lovelace and his colleagues proposed two
possible explanations for the increasing RTs
across the alphabet. One possibility is that
there are lower associative strengths between
adjacent leiters near the end of the alphabet
and these weaker associative strengths lead
to longer RTs. The other possibility is that the
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Figure 1. Mean respense times in forward search and
order decisions {The bottom curve is from “Reaction
Times for Naming Successive Letters of the Alphabet”
by E. A Lovelace and W. A. Spence, Journal of Exper-
imental Psychology, 1972, 94, 231-233 Copyright 1972
by American Psychological Association. Reprinted by
permission. The top two curves are results of two ex-
periments from “Decision Times for Alphabetic Order
of Letter Pairs™ by E. A. Lovelace and R. D. Snodgrass,
Journal of Experimental Fsychology, 1971, 88, 258-264.
Copyright 1971 by American Psychological Association
Reprinted by permission.)

interletter associative strengths are equal
throughout the alphabet but there is differ-
ential access to particular letters. That is,
there might be preferred entry points in the
alphabet, with fewer entry points and/or
slower access to such entry points toward the
end of the alphabet. This would lead, on the
average, to longer search seguences (and
higher RTs) for probes near the end of the
alphabet.

1n order to discriminate between these two
possibilities, Lovelace et al. (1973) used the
recitation procedure and varied the number
of letters processed after accessing the probe
letter. They found that the recitaticn speed
did not decrease toward the end of the al-
phabet (see Figure 2), and they concluded
that the longer RT5 at the end of the alphabet
do not come from lower associative strengths.
Rather, these longer RTs come from a greater
difficulty of entering the alphabet near the
end (cf. Hovancik, 1975).

Several questions remain concerning the
structure and processing of the alphabet,



ALPHABETIC RETRIEVAL

30 ' . -

o

Lo

(L]

@

E

[=

o

o

=

o

o

©n

[o]

o
— Predicted
e Observed

bbb bbbt bbbk L el L Lt
ABCDEFGHIJKLMANDPQRSTUVWXYZ

Storting Lefler

Figure 2. Mean response times for forward recitation at
separations of two, four, and six letters from initial 10
final letter { From “Alphabetic Position Effects in Covert
and Overt Alphabetic Recitation Times” by E. A. Love-
jace, C. M. Powell, and R. J. Brooks, Journal of Exper-
imental Psychology, 1973, 99, 405-408 Copyright 1973
by American Psychological Association. Reprinted by
permission Also shown are predictions from a model
with chunk boundaries shown as vertical dotted lines )

1. Although the Lovelace et al. (1973)
study supporis the notion of preferred entry
points, it does not provide any direct evi-
dence. The present investigation demon-
strates such entry points.

2. The model, as stated thus far, is largely
intuitive, with no specification of the repre-
sentation or processes involved. This article
describes a detailed model written as a com-
puter simulation, with model parameters es-
timated from the data.

3. The fine structure of the RT patterns
has never been accounted for. The present
model is designed to predict the RT for each
alphabetic position in both forward and
backward search tasks.

A Theory of Alphabetic Access

In this section, we propose an information-
processing theory of these alphabetic search
tasks. The theory is consistent with generally
accepted ideas about the structure of long-
term memory. In a subseguent section, we
will describe a particular computer simula-
tion model derived from the theory.
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On the after task, in which the letter fol-
lowing the probe is sought, the theory works
as follows:

First, search from the beginning of the alphabet for a
subgroup containing the probe item

Having found the appropriate subgroup, search from the
beginning of the subgroup until the probe is found.

Once the probe is found, get the next item in the
subgroup and output that value

If the end of the subgroup is encountered, then get the
next subgroup and output the first item.

On the before task, in which the letter pre-
ceding the probe is sought,

Start by searching for the subgroup containing the probe

When the appropriate subgroup is located, search through
the subgroup while keeping track of the prior position.

When the probe is found, get the prior Hem and out-
put it

If the probe is the firsi letter of the subgroup, so that
there is no prior item, get the prior subgroup, search to
the end of that subgroup and output the last itemn

This theory makes several specific predic-
tions about search times in the alphabet. It
handles the well-known effect of increasing
RTs across the alphabet by assuming a serial,
self-terminating search of the subgroups at
the top level in the hierarchy. The fine-grain
structure of peaks and valleys in RIs, ac-
cording to this theory, is due to the relative
accessibility of letters within subgroups: EFar-
lier items within a subgroup are detected
faster by the serial, self-terminating search,
and the really slow times should occur when
the probe and the next (or prior) letter are
separated by a subgroup boundary. Thus,
according to this theory, local maxima in RTs
should occur at the end of a subgroup for the
afier task and at the beginning of a subgroup
for the before task. Local minima should oc-
cur at the beginning of a subgroup for the
after task and at the second element in a
subgroup for the before task.

Since none of the previous alphabetic
search studies used the before task,’ we con-
ducted an experiment to test these predic-
tions, using both before and gffer tasks

' Weber, Cross, and Carlton (1968) used both forward
and backward search, but the only letter sequence they
used consisted of the fve letters € through i
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Experiment |
Method

Subjecrs  Twelve adult subjects from introductory
psychology courses at Carnegie-Mellon University par-
ticipated in this experiment.

Materials  The stiruius letters were all uppercase,
helvetica medium, 38.1 mm high, black on a white 5 X
8in (127 X 203 cm) card. At a viewing distance of
45.7 cm, the letters subtended a visual angle of 4.78°

Procedure. Each subject received each of two exper-
imental conditions. In the before condition, there were
five successive preseniations of a randomized set of 25
stimulus letters B to Z, for which the subject was to name
the preceding letter In the afier condition, there were
five successive presentations of a randomized set of 25
stimulus letters A to ¥, for which the subject was to name
the following letter. The order of conditions was coun-
terbalanced across subjects.

On each trial, the subject looked into a tachistoscope
and pressed a button to stanl the trial when he or she was
ready. After 500 msee, the probe letter appeared in the
center of the ficld, and the subject named the preceding
or following letter in the alphabet as quickly as possible.
A standard timer, connected io a voice-actuated relay,
recorded RT 1o the nearest 100tk of a second Error trials
were rerun randomly within the remaining trials

Results

For each subject, the median RT (out of
five trials) for correct responses to each letter
was determined for the before and after tasks.
Figure 3 presents the means (over the 12 sub-

jects) for these median RTs as a function of

the alphabetic position of the stimulus letter.

The most striking feature of these curves
is their agreement with the predicted peaks
and valleys of the before and gffer curves. For
example, the first prominent local maximum
on the afler curve occurs at G and is followed
by a local minimum at H. For the before
curve, the maximum and minimum points
occur one letter later, at H and 1, respectively.
Strong boundary effects also occur between
Kk and L and between P and Q. Other bound-
ary effects are a bit weaker, and there are
some anomalies toward the end of the al-
phabet The model suggests that we should
get high correlations between agfter times and
lagged before times, If we exclude (Y, z), the
product-moment correlation for these lag-
ged times is .79. (For unlagged times, it is
only .2.)

It is also worth noting that the peaks and
valleys of the before curve are much more
proncunced than those of the affer curve, and
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Figure 3 Mean of median response times for forward
(afier) and backward (before) search {Experiment 1).

the before RTs are longer than the afier RT5.
This result is consistent with the subjective
impression. that the before task is the more
difficult of the two, and it is a direct conse-
quence of the postulated alphabetic struc-
ture: Elements are linked only to their suc-
cessors. Thus, locating the prior letter in a
list requires keeping track of both the prior
letter and the prior chunk. In a subseguent
section of the article, we make more precise
processing distinctions between the before
and gffer tasks when we develop parameter
estimates for the model.

Experiment 2

Although these results are consistent with
the predictions from the model, our decision
about how to segment the alphabet is based
on an informal post hoc analysis of local ex-
treme points. The fact that this segmentation
is consistent with the phrasing in the com-
mon nursery school “Alphabet Song™? pro-

* There are two principal variants of the “Alphabet
Song"” commonly used in nursery schools in the Pnited
States. Both of them are sung to the tune of *Twinkle,
Twinkle, Little Star)” and are in agreement with respect
to the G-, X~L, P-Q, and v-w boundaries (cf Betail,
1947). However, they differ in how they segment the let-
ters QRSTUYV: one version sings QRS and Tuv,” while
the other sings “QRST, U and v" (corresponding to the
“up above the world s0 high"” part of “Twinkle™)
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vides some additional basis for believing it
to be correct, but we have no direct inde-
pendent evidence that it is the segmentation
used by our subjects. In the second experi-
ment, we asked subjects to report directly
their “entry points,” if any. The independent
assessment of the segmentation allowed us to
perform a more rigorous evaluation of the
model.

Method

Subjects  Thirty studemts from introduciory psy-
chology classes at the University of Virginia participated
in this experiment,

Materials  Each subject was presented six sets of
slides. Each set contained one slide of each of the 26
ietters of the alphabet (Artype No. 1407 capitals). Se-
quencing of the letters within a slide set was random with
the restriction that no letter followed the same letter in
any two sets, On half the accurrences of a given letter
the subject was reguired to name the preceding letter of
the alphabet; on the remaining occasions the task was
to name the following letter. (On all six occurrences of
the letter A the task was to name the foliowing letter, and
on all oceurrences of Z, 10 name the preceding letter)

Procedure  Each subject was seated before a trans-
lucent screen in a sound-deadened chamber; the exper-
imenter and all apparatus for stimulus presentation and
response timing were outside the chamber. Single letters
were back projected onto the transtucent screen, and the
subject was 1o say aloud, as quickly as possible, either
the preceding or the following letter of the alphabet. Each
stimulus letter was preceded by a warning buzzer and by
one of the two different colored lights marked PRECED-
ING and FOLLOWING, which informed the subject of the
type of decision required on that trial A photocell on
the back of the screen activated a Lafayetie Model 5721
digital tirmer when the letter came on the screen. The
subject’s spoken response activated a voice key that
stopped the timer and advanced the projector to an
opaque slide. The experimenter initiated each trial man-
nally; the buzzer and Hght preceded the stimulus letter
by approximately | 3 sec Error trials were not rerun.
The stimulus letters were presented at a rate of about 12
per min

The subjects were also instructed to tell the experi-
menier what they had done to think of the correct re-
sponse after they had named the appropriate letter. These
verbal reports were classified into three categories: {a)
didu't have to do anything, the letter just occurred to
me; (b} had to coverily recite a specifiable portion of the
alphabey; or (¢) bad to do something, but not explicitly
described as a recitation of a specific portion of the al-
phabet. Whenever subjects reported covert recitation of
part of the alphabet, they were asked 10 indicate, if pos-
sible, the letter at which they began that recitation

Resulls

Most subjects were able to maintain very
high accuracy levels while operating with a
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speed set; overt errors of naming the wrong
letter occurred on less than 1% of the trials.
Voice-key equipment malfunctions and other
errors account for data lost on about 1.5%
of the trials.

For each individual the median RT for
correct responses to each letter was deter-
mined separately for the before and affer
tasks. Figure 4 presents the means of these
median RT% as a function of the stimulus let-
ter presented. There is a high correspondence
between the Lovelace and Spence (1972)
times (see bottom curve in Figure 1) and the
after condition in the present study (r = .81),
although the times were both longer and
more variable in the present study, perhaps
because before and afier tasks were mixed or
perhaps because subjects were assigned the
additional task of attending to and reporting
their thought processes on each trial. Even
s0, the RTs from Experiment 2 were highly
correlated with those from Experiment 1 (v =
.75 for afier; r = .94 for before).

Figure 5 shows the proportion of trials on
which subjects reported having to do some-
thing (combined response categories b and
¢) in order to respond to each stimulus letter
for before and affer. This occurred much
more frequently on before trials than on affer
trials, but the frequency in the latter case was
substantial, indicating that even when re-
quired to name the next letier of the alphabet,
subjects frequently could not immediately
access that item. In addition, it can be seen
that the relative frequency with which indi-
viduals needed to “do something” was re-
lated to position in the alphabet; this need
occurred more frequently for letters near the
end of the alphabet than for those near the
beginning. These relative frequencies corre-
lated highly with RTs on both before (r = .80)
and afier trials (r = 90) and with after RTs
in the earlier data of Lovelace and Spence
(1972; r = .88).

In most cases where individuals had to
“do something,” they reported covert reci-
tation from a specifiable letter (90% for afier
decisions, and 95% for before). Figure 6
shows the relative proportions with which
various letters of the alphabet were reported
as the beginning point on those trials when
covert recitation of a specific portion of the
alphabet occurred. This plot provides clear
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evidence that there are preferred points of
entry into the alphabet and that entry points
are, to a considerable extent, shared by in-
dividuals. The deviation from a rectangular
distribution (which would denote no pre-
ferred entry points) is clearly greater in early
portions of the alphabet than in later por-
tions. There are at least two plausible inter-
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Figure 5 Proportion of trials on which subjects reported
having to “do semething” in order to respond to the
probe in before and afier conditions (Experiment 2).

pretations for this deviation. Stable preferred
entry points may be less prevalent later in the
alphabet, or alternatively, the location of sta-
ble preferred entry points may be more vari-
able between subjects later in the alphabet.

The maximum values of this distribution
provide an empirically based segmentation
of the alphabet. Based on the peaks of the
before curve in Figure 6, the alphabet appears
to be segmented into chunks starting with the
following letters: A, H, L, Q, U, X. This seg-
mentation corresponds to one of the princi-
pal versions of the “Alphabet Song” (see
Footnote 1), except that the last chunk of the
song begins with w rather than X.
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Description and Evaluation of ALPHA: A
Model of Alphabetic Access

In order to generate RT predictions from
the model, we need to be more specific about
its component processes and about how each
process contributes to the overall RT. In this
section we describe a computer simulation
model, ALPHA, for the before and gfter tasks
used in this study. First, we describe the data
structure for the representation of the alpha-
bet. Then we discuss the processes that op-
erate on this structure and parameters asso-
ciated with these processes. Next, we estimate
the value of a single, key parameter for the
after and before tasks. Finally, our model is
extended to fit the recitation data of Lovelace
et al. {1973) and Browman and O'Connell
(1976).

Representation

Figure 7 illustrates the semantic memory
representation used by ALPHA. This figure
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depicts two components of semantic memory
separately: (a) The concept node, shown in
the lower right and labeled “Letter Recog-
nition,” and (b} the order information of the
alphabet, shown at the top of Figure 7 as a
link-node structure. The concept node of a
letter contains all the information directly
associated with that letter, including its gra-
phemic and phonemic properties, words be-
ginning with the letter, and so on. Included
in the concept node is the alphabetic location,
represented here as the name of the chunk
in the alphabet containing that letter.

We assume that when a letter of the al- -
phabet is recognized, its concept node in se-
mantic memory is activated. However, only
a few properties of that node are normally
activated, such as the graphemic and pho-
nemic descriptions and other associated
properties that are primed by the context.
Upon recognition, a letter’s alphabetic loca-
tion is not normally activated. However, in
the context of an alphabet-search task, we
assume that the alphabetic location is primed,
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Figure 7 Alphabet representation used by ALPHA, {The structure used by the alphabetic search processes
is shown in the upper portion. As shown in the lower right, letter recognition activates the letter node,
which has links to many nodes associated with the letter. The only association explicitly represented here
is the link to “aiphabet location™ The node for “A” is connected via the “alphabet location™ link to
“chunk e “B" is also associated with o, “H" with #, and so on )
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so that when a probe letter is recognized, the
name of the chunk containing its location is
activated. The name of the chunk is then
used to search the alphabetic structure,

In the hierarchical structure depicted at
the top of Figure 7, the alphabet is stored as
a list of chunks, with each chunk containing
its name and a list of letters in their proper
order. This list structure has the property that
each element is linked to its successor; thus,
each chunk is linked to the next chunk, and
within each chunk, each letter is linked to
the next. Lists are accessible only through
their beginnings, and only forward search is
possible,

The most important feature of this rep-
resentation is that probe letters do not have
direct access to their nexts or priors, instead,
they have direct access only to the name of
the chunk in which the probe is located. In
this list representation, the alphabet can be
entered directly only at chunk boundaries,
at the head of each sublist within the hier-
archy. In the alphabet-search task, when peo-
ple use these entry points, they do not choose
one at random. Rather, they tend to choose
the one that is “just ahead” of the probe
letter.

While this aspect of the model may, at first,
seem nonintuitive, it 1s simply a formaliza-
tion of the notion of preferred entry points.
It has been long known that access to parts
of well-learned series (songs, poems, tele-
phone numbers) generally requires access to
the bepinning of the series or to the beginning
of a subpart of the series (Miiller & Pilzecker,
1900). This entry-point phenomenon is mod-
eled in our theory by means of a hierarchical
list representation in conjunction with a sim-
ple forward-search process.

The name of a chunk should not be
thought of as a verbal Jabel but rather as an
internal address that links a letter’s concept
node to its alphabetic location This char-
acterization is similar to the “‘control ele-
menis” postulated by Estes (1972) to repre-
sent the hierarchical nature of order infor-
mation in serially learned lists. Simple
chaining of associations is inadequate to ac-
count for chunking, for the types of serial
order errors that occur and, in general, for
the hierarchical organization of serial behav-
ior{Lashley, 1951). Estes {1972) found it nec-
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essary to postulate the existence of a higher
level node in order to account for the various
phenomena of serial order within the frame-
work of an association theory. Estes’ theory
gives a detailed proposal for building lists out
of associations and is specifically designed to
account for chunking and serial order errors.
Our theory differs from Estes’ in that we sim-
ply assume a list structure representation and
that the heart of our theory involves search
mechanisms for lists.

The Search Process

The basic mechanism underlying the search
process is a simple NEXT operation that takes
an element in semantic memory and acti-
vates its successor. Thus, in the alphabetic
structure of Figure 7, search begins at the
head of the alphabet, and each successive
chunk is activated until the chunk containing
the probe is found. At this point, each suc-
cessive letter in the chunk is activated until
the probe is located. Then, depending upon
the task, the next or prior letter is located.
In our model, the interesting complexities
arise in how to get the prior letter with only
a NEXT operator and how to handle NEXT
operations across chunk boundaries.

Figure 8 provides flowcharts of ALPHA on
the two tasks,” showing the basic steps of the
program, with some of the detail suppressed
for clarity of exposition. The afier task (Fig-
ure 8[A) is the simpler process because there
is no need to keep track of the prior chunk
or prior letter. In this flow diagram, the top
loop characterizes the serial, self-terminating
search at the top level for chunk € containing
probe p. There are two ways to characterize
this rather nonintuitive part of the model.
One way is to assume that once a chunk is
activated, a high-speed scan for presence is
performed on the chunk to test for the pres-
ence of the probe (Sternberg, 1967). An al-
ternative is to assume that each letter is as-
sociated with its location within the alphabet.
Specifically, we assume that the probe acti-
vates the name of its associated chunk, and

* The program i5 written in FRANZ-LISP, & variant of
MACLISP used at Carnegie-Mellor University. Listings of
the program and sample runs are available from the first
author People with access (o the ARPA network can con-
tact KLAHR@CMUA
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Figure 8 Flowchart for ALPHA, a model for searching the two-level hierarchical alphabetic structure

shown in Figure 7. (A = gffer. B = before}

the top-level search is a serial, self-terminat-
ing scan for the name. In our model, we have
used the latter process, although in either case

the important assumption is that letters of

the alphabet are associated with their relative
locations within the alphabet; exact location
requires a hierarchical search process.

The next loop in the flowchart character-
izes the serial, self-terminating search within
the chunk, after the chunk containing the
probe is found. When the probe is located,
ALPHA gets the next letter and says it. The
one complication occurs when the probe is
the last letter in the chunk (depicted at the
bottom of the flowchart). When this happens,
ALPHA gets the next chunk and then pets the
first letter of that chunk and says it.

The logic of the before task (Figure 8[B])
is very similar except that the search is slower
because the prior chunk and prior letter are
saved at each step. Also notice that when the
probe is the first letter of a chunk, the process
must scan from the beginning to the end of
the prior chunk. Thus, the model predicts
extreme peaks for these points,

Model Evaluation and Parameter
Estimation

Model evaluation requires several steps:
1. Choose a segmentation for the alphabet.

2. Present ALPHA with each letter of the alphabet for
the before and affer tasks, and have it search the hier-
archical structure with the chosen segmentation
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3. Count the number of executions of the basic pro-
cesses in ALPHA for both the before and after tasks with
the chosen segmentation.”

4, Estimate, via repression analysis, the duration of
ihe basic processes by regressing RT against number of
basic operations predicted by ALPHA in both the before
and afier tasks

The predicted R¥s from ALPHA depend on
both the assumed segmentation of the alpha-
bet and the parameters used to estimate the
duration of each subprocess, Our first prob-
lem was to decide what segmentation to use.
As noted earlier, the subject-defined segmen-
tation of Experiment 2 (the peaks of the entry
point frequency function of Figure 6) cor-
responds to the “Alphabet Song™ segmenta-
tion, except for the last chunk boundary
{The subject-defined segmentation indicates
that there is a W-X chunk boundary, whereas
the “Alphabet Song” has a v-w chunk
boundary.) To determine which chunk
boundary to use in our model, we fit regres-
sion equations to RTs of Experiments 1 and
2 wsing both segmentations, and we consis-
tently obiained slightly better fits with a v-
w chunk boundary (by about 3% more vari-
ance accounted for in all our data sets). This
better fit is due to the presence of consistently
longer RTs for v in the gffer task and for w
in the before task, clearly indicating a v-w
chunk boundary. The more frequent use of
X, rather than W, as a starting letter in the
verbal reports of Experiment 2 (Figure 6)
may be due to the existence of a special Xyz
chunk in semantic memory. That is, ABC and
XYz may be special high-frequency phrases
in peoples’ lexical memories that intrude in
their verbal reports, but the semantic mem-
ory structure actually used in the search task
may contain the Wxyz chunk of the “Al-
phabet Song” segmentation, with chunks
starting with A, H, L, Q, U, and w.?

Our next problem was to decide what pa-
rameters of ALPHA to use in estimating RTs.
We finally decided on a linear regression on
the number of executions of a single internal
process: doing a NEXT operation on ali the
internal list structures in ALPHA.® That is, for
each of the 25 probes of the after and before
task, we computed the number of times that
the model did 2 NEXT operation on any of
its internal structures in order to find a re-
sponse to the probe. We fitted the affer and
before tasks separately because we expected

D KLAHMR. W CHASE. AND E. LOVELACE

that the NEXT process in the before task
would be slower due to the increased memory
load imposed by saving prior chunks and
prior letters. We made the simplifying as-
sumption that the time required to do a NEXT
at the chunk level is the same as that required
to do a NEXT within & chunk. A two-param-
eter regression that fits separate parameters
for NEXTs at the chunk level and NEXTs
within chunks accounted for only about 5%
more variance than the one-parameter fit.
Thus, we felt that the simplest and most ele-
gant regression was the one-parameter fit of
NEXTs because, as a first approximation, it
seems to capture the essential aspect of
searching the alphabet, namely, getting the
next element in a list structure.

Figure 9 shows a plot of RT versus the
number of NEXT operations for the before
and afier tasks of Experiments 1 and 2, along
with the straight-line predictions of the model.
Table 1 contains the regression equations and
the amount of variance accounted for by the
model] for each condition, as well as predic-
tions for the data (afier only) from the Love-
lace and Spence (1972) experiment. The
mode), with a single parameter,” accounts for

* ALPHA is a completely deterministic model that ac-
tually carries out the postulated processes on a specific
data structuere. It represents errorless performance of the
idealized subject. Note that this is not a Monte-Carlo
simulation, in which repeated runs are made in order
to discover the distributional properties of a complex
stochastic model

5 Another decision we faced was which version of the
“Alphabet Song™ to use, the one with the T beginning
the next-to-last chunk or the one with U We settled on
the latter one because it consistently gave slightly better
fits to the data (about 5% more variance accounted for)

® This is a simple count of all CDRs used by all the
functions in the LiSP program A CDR is the most basic
Lisp function for processing lists: It takes a st as input
angd outputs & new {ist consisting of the old st minus
the first element

" The intercept can be viewed as a “fitting” parameter,
or as a “‘base” time that contains all the other processes
of the model that are executed only once, independent
of the number of MEXT operations The intercept does
rol enter into the analysis of variance; the variance ac-
counted for by the model is the variance about the mean
of each condition that is accounted for by the slope of
the regression line, Note that much more variance is
accounted for by fisting a three-parameter model (two
slopes and an intercept difference) 10 the before and affer
conditions combined: 76% of the variance in Experiment
I and 69% of the variance in Experiment 2. The three-
parameter models are idertical to those shown in Figure
9 and Table !: the difference lies in whether variance is
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Figure 9 Observed and predicted response times {RTs) for the before and affer conditions of Experiments
1 and 2 as a function of number of executions of ALPHA’s basic processes (NEXTs). (Observed RTs are
indicated for each probe letter, with capital letters for the before conditions and small letters for the affer
conditions. Predicted RTs are depicted by straight lines.)

about half the variance in each condition by
assuming that search time is a linear function
of the number of NEXT operations.

computed about the mean of each condition separately
(the one-parameter fit) or about the mean of the whole
experiment {the three-parameter fit). Finally, it should
be noted that if only alphabetic position is used as the
independent variable without postutating a hierarchical
search process (thus capturing just the linear trend across
aiphabetic position in Figures 3 and 4 without taking
into account the peaks and valleys), much less variance
is accounted for: Experiment t before = 12.6%,
gfter = 35.5%; and Experiment 2 before = 15.6%,
after = 37.9%.

When RT is plotted as a function of al-
phabetic position, as in Figures 1 through 4,
the most prominent features are the local
extreme points caused by chunk boundary
crossings. Predicted RTs and chunk bound-
aries have been inserted in Figure 4, which
shows the results from both the before and
after tasks of Experiment 2 (the results for
Fxperiment 1 and Lovelace and Spence,
1972, are similar). ALPHA appears to capture
these peaks and valleys quite well on both
after and before tasks, although the first part
of the alphabet is in closer correspondence
with the model than the end of the alphabet.
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Table 1
Best Fitting Equations (in msec) for ALPFHA

P2 KEAHR., W (CHASE. AND E LOVELACE

% variance

Experiment Equation accounted for

Experiment |

After RT=716+39%91 XN 46.3

Before RT =925+ 925%xN 454
Experiment 2

After RFE=743+ 120 X N 60.0

Before RT = 863+ 233 x N 516
Lovelace & Spence (}972)

After RT =779+ 433 %X N 43.6
Lovelace, Powell, & Brooks (1973)

Covert recitation RT =405 4 550X N+ 185x 8§ 86.5
Browmazan & O'Connell (1976)

Overt recitation RT = 1,067 +663 X N+313%X8 866

Covert recitation RT =575+ 539X N+220x8 811

Note RY = reaction time; N = number of NEXTS: S = number of SAYS

Another interesting deviation from ALPHA’s
predictions are the slight but consistent
overpredictions for the first chunk, particu-
larly for the before times for the first few let-
ters. This might result from the alternative
representation {mentioned earlier) for these
items (the ABCs) that provide more direct
access than the full process modeled by
ALPHA.

At this point, we should comment on the
magnitude of the parameters we have ob-
tained, First, as expected, there is a substan-
tial difference in the NEXT time for the before
and gffer tasks. In the model (cf. Figure 8),
this extra time corresponds to the additional
step of saving the prior chunk and the prior
letter. However, it is also plausible that the
extra memory load involved in the before
task also increases the time to do a NEXT. A
second point worth noting about these pa-
rameters is that the time to do a NEXT is
substantially longer for Experiment 2 than for
either Experiment 1 or for the Lovelace and
Spence (1972) experiment. This slower pro-
cessing could be caused by either or both of
two procedural differences: (2) the afier and
before tasks were mixed together in Experi-
ment 2, and (b) subjects were asked to give
rather extensive retrospective reports in Ex-
periment 2.

. To what extent do individual subjects hdve
the same chunk boundaries as those deter-
mined by the aggregate analysis? At each

chunk boundary, the model predicts the RT
pattern shown in Figure 10. For the affer con-
dition, the RTs should reach a local maxi-
mum for the last item in a chunk { Figure 10,
A;). In addition, the first item in a chunk
(As) should be faster than the penultimate
item in the preceding chunk (A, )—unless the

Chunk Boundary -l
I B
|
Before
|
I Ba
I
w
£ [
o
® H
g {
g N
5 |
45
s
Adser |
Ay i
i Aq
|
|
’ i i i |

Alphabetic Position

Figure 10 Hypothetical reaction time patierns at chunk
boundaries for afier and before corditions
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Frequency of Subjects in Experiments 1 and 2 Passing Strong and Weak Tests

No. of times passing

Tests 0 | 2 3 4 5 53 7 8 9 10 Total
Strong
Experiment 1 2 1 3 3 3 12
Experiment 2 1 2 10 9 4 2 I 1 30
Total 3 3 i3 12 i 1 42
Weak
Experiment | 1 2 2 4 1 1 12
Experiment 2 4 3 2 8 i0 i 1 30
‘Total 1 6 5 3 12 R | 3 1 42

Note For the sirong test there are § chances to pass; expeciled chance frequency is 1.33 For the weak 1est there are

10 chances 1o pass; expected chance frequency is 5

preceding chunk has only two items. Thus
a “strong” test for a postulated chunk bound-
ary is that a subject’s RTs at the boundary
can be ordered: A, > A, > As. A somewhat
weaker test is that at the chunk boundary
there is a local dip in the RT curve: A, > A;.
A similar argument for the before case leads
to corresponding strong (B; > B; > B;) and
weak (B, > Bj) tests.

Paiterns of median RTs for individual sub-
jects in both experiments were analyzed in
order to determine the extent to which they
observed the postulated boundaries. We com-
puted the frequency with which each of the
12 subjects in Experiment ! and the 30 sub-
jects in Experiment 2 passed the strong and
weak tests at the five postulated chunk
boundaries.® We considered both before and
afier conditions, so each subject had 8 strong
tests and 10 weak tests. Table 2 shows the
freguency with which subjects in each ex-
periment passed the strong and weak tests.
For example, 3 subjects from Experiment |
and 10 subjects from Experiment 2 passed
the strong test two out of eight times. For the
strong test, there is one chance in six that a
random set of RTs would have the predicted
order, and for the weak test the probability
is 1/2. The null hypothesis is that the fre-
quencies shown in Table 2 come from bi-
nomial distributions (n = 8, p = 1/6 for the
strong test, and n = 10, p = 1/2 for the weak
test). To test this hypothesis, a chi-square for
lack of fit was computed, and exireme cate-

gories were collapsed such that all expected
frequencies were greater than one. In all
cases, the null hypothesis can be rejected with
reasonable certainty: (a) strong test: Experi-
ment 1, x3 = 14.8, p < .002; Experiment 2,
x3 = 54.8, p < .00001; and (b) weak test:
Experiment 1, x3 = 9.4, p < .06; Experiment
2, x} = 95.7, p < .0001. Thus, individual
subjects do indeed generate the predicted RT
patterns at chunk boundaries at a frequency
well above chance.

Another way to assess the reality of indi-
vidual chunk boundaries is to examine the
frequency with which each boundary shows
the predicted pattern. Table 3 shows the pro-
portion of subjects in both experiments (out
of 42) who passed the strong and weak tests
at each chunk boundary for the before and
afier conditions. For example, 45% of the
subjects passed the strong test in the before
condition at the G-H boundary. The bound-
ary effects are very clear at the first two
boundaries, and they are generally somewhat
stronger for the before condition than for the
afier condition. Even the two smallest bound-
ary effects (T-U and v-w) were detected by
the weak test at the .05 level.

As a final test of the model, we have ex-
tended it to fit the alphabet recitation data
of Lovelace et al. (1973) shown in Figure 2,

8 Because the uv chunk has only two elements, there
are onty four boundaries at which to make the strong
fest.
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Table 3

. I KLAHR. W CHASE. AND £ LOVELACE

Proportion of Subjects from Experiments 1 and 2 Passing Strong and Weak Tests at Each Postulated

Chunk Boundary in Before and After Conditions

Boundaries
Tests G-H KL P-Q T-U V-W
Strong
After 28 464 29* 09 P ¥ b
Before 45%%* 467> 22 17 — it Ll
Combined K ¥ A 4p%e* 26* 13 — A i
Weank
After &7 ) b 64* 52 63* BOW*
Before Bgwr T 61 H9** 57 GEwx
Combined FEwen TN 62* H0* Kili K WA

*pe< 05 % p< O p< 000]

as well as a replication of the Lovelace et al.
(1973) experiment by Browman and
O’Connell (1976). In this task, subjects are
presented with a pair of letters; the right-hand
letter of the pair is either two, four, or six
letters later in the alphabet than the left-hand
letter. The subjects’ task is to press a bution
as soon as they have recited all the letters
between and including the starting and end-
ing letter. Subjects performed both an overt
and a covert recitation; the difference is that
subjects did not say anything aloud in the
covert recitation condition. (Only the data
from the covert condition were available from
the Lovelace et al., 1973, study.)

The interesting thing about these data, on
close inspection, is the existence of promi-
nent peaks at points in the alphabet where
subjects have to recite across one or two
chunk boundaries and the valleys at the be-
ginning of chunks. Qur model of this task is
straightforward. We assume that subjects first
search the alphabet until they find the left-
hand letter. This search procedure is already
modeled in the gffer lask, and it is charac-
ierized by the top two loops in the flow dia-
gram of Figure 8(A). When the left-hand let-
ter is found, we assume that subjects say it
and then do a series of NEXTs and $ays unti
the right-hand letter is located. When subjects
encounter a chunk boundary, we assume that
they do a NEXT operation to retrieve the next
chunk and then another NEXT operation to
gel the first element of the chunk. When sub-

jects find the right-hand letter in the probe,

they say it, press the RT button, and that
completes the task.

To fit our model to the data of Lovelace
et al. (1973), we simply counted the number
of NEXTs and number of $avs for each of the
68 data points of Figure 2, and we ran a
multiple linear regression to estimate the
time to do a NEXT and the time 10 do a SAY.
The results of this analysis reveal the best fit
of our model so far. Figure 2 illustrates the
fit of the model 1o the data, with the predicted
times shown as heavy lines; the two-param-
eter regression equation is given in Table 1.
It accounted for 86.5% of the variance among
the 68 data points, F{2, 63) = 201, p < .001.
The amount of variance accounted for by
each parameter alone was 65.4% for the num-
ber of NEXTS, F(1, 64) = 121, p < .001, and
78.1% for the number of sAYs, F(I, 64) =
229, p < 001, and the correlation between
number of NEXTs and number of SAYs was
.67. Thus, the partial correlation between RT
and number of NEXTs with number of sAYs
partialed out was .62, and between RT and
number of SAYs with number of NEXTs par-
tialed out was .78. There were only two sig-
nificant outliers (greater than 2 standard er-
rors from predicted): the probe with A as a
first letter for Separation 6 was faster than
predicted, and there was a large peak at the
v—w boundary with Separation 2. This out-
lier was one reason for our use of the “Al-
phabet Song” segmentation.
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We also fit our model to the data of Brow-
man and O'Connell (1976), which is a rep-
lication of the Lovelace et al. (1973) experi-
ment. We were able to fit our model to both
overt and covert recitation conditions, since
Browman and O’Connell published both sets
of data. These data were virtually identical
to the Lovelace et al. (1973) data (r = .92 and
94 for covert and overt, respectively), and
our two-parameter model achieved good fits

to both sets of data, accounting for 86.6% of

the variance for overt recitation, F(2, 63) =
204, p < .001, and 81.1% of the variance for
covert recitation, F(2, 63) = 135, p < .001

The regression equations are given at the bot-
tom of Table 1.

Compared to the covert condition, the
overt condition causes about a half-second
delay in the button-push RT (the intercept},
it slows the NEXT operation down slightly
(from 53.9 to 66.3 msec, a 23% difference),
and it produces a substantial increase in the
say operation (from 220 to 313 msec, a 42%
increase).’ A close examination of the reci-
tation equations reveals that in other respects
the parameters are about the right magni-
tude. The NEXT parameter is in the 50-60
msec range, which is well within the limits
of the other estimates of Table 1. The 200~
300 msec range of the SAY parameter and the
slower rate for overt recitation are both in
close apreement with other published esti-
mates of rehearsal rates for letters of the al-
phabet. Chase (1977), for example, measured
rehearsal rates for random lists of letters that
varied from 170 to 310 msec per letter, de-
pending on the size of the list, and overt re-
hearsal was about 30 msec slower than covert
rehearsal. The fact that our model obtains
sensible parameter estimates is additional
converging evidence for the model.

General Discussion

In summary, ALPHA has provided a satis-
factory fit both to our own data of Experi-
ments 1 and 2 and to the data in the literature
of Lovelace and Spence (1972), Lovelace et
al. (1973), and Browman and O’Connell
(1976). An important feature of the model
is its ability to replicate the fine structure of
the peaks and valleys associated with pre-
sumed entry points. Another good feature is
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its simplicity in achieving satisfactory fits
with a single parameter, the time to do a
NEXT operation on a list. In the Lovelace et
al. (1973) and the Browman and O'Connell
(1976) data, an additional parameter was
needed to model the recitation time. Finally,
the magnitude of the NEXT parameter seems
to be in the right range relative to other stud-
ies in the literature on the speed of list search
processes, which vary from around 50 msec
per item for the fastest type of search—scan-
ning for the presence of an item in active
memory-—to around 250 msec per item for
the relatively slow process of scanning for the
location of an item within an arbitrary list
in active memory (Sternberg, 1967).

The present model provides a detailed ac-
count of processes involved in the retrieval
of alphabetic order information. The basic
structure of ALPHA ( Figure 7)—a hierarchi-
cal or multilevel model of serial search in
which access occurs in a top-down manner—
is similar to those previously advocated by
a number of researchers (Lesgold & Bower,
1970; Martin, 1974; Seamon, 1973; Seamon
& Chumbley, 1977).

As noted earlier, the preferred points of
entry and individual chunk boundaries are
shared in common by many individuals.
These shared boundaries may derive in part
from the “Alphabet Song,” but this raises the
issue of why the song has this particular struc-
ture. We speculate that the structure of the
“Alphabet Song” derives from two basic
mnemonie principles: chunk size and rhym-
ing. First, Chase and Ericsson (1982) have
recently proposed that order information for
Jong serial lists takes the form of a hierar-
chical structure and that the size of sublists
can not exceed the capacity of working mem-
ory because both storage and retrieval op-
erations on chunks must be carried out in
working memory Thus, according to this

? One would a priori suppose that overt recilation
should influence onby the say parzmeler, although in
retrospect there are plausible explanations why overt re-
citation might influence the other parameter as well
Overt recitation might induce the subject to change po-
sition on the speed-accuracy trade-off curve. Another
passibility is that the required monitoring of overt vocal
responses might compete for limited processing capacity,
thereby stowing down the NEXT process
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principle, alphabet sublists should contain
seven or fewer items, with the optimum size
being four items (Chase & ¥ricsson, 1982).
The second mnemonic principle states that
the phrases of the song should rhyme; that
is, all the sublists should end with the same
phonemic sound. The only exception to this
rule is the second chunk, which ends with K
because there is no alternative if chunk size
15 to be held to seveh or fewer items. Thus,
we are suggesting that the alphabetic struc-
ture revealed both by the behavior of our sub-
jects and by the “Alphabet Song” is the direct
result of the properties of the human memory
system.
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