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Collaborative learning in schoolage children ... is a well-established
phenomenon. Studies have demonstrated repeatedly that for children of this age
problem solving with a peer, even one who is no more knowledgeable than oneself, often

Jeads to greater task understanding than problem-solving alone or even, in many cases,
to problem solving in the context of instruction (Tomasello, Kruger, & Ratner, in press,

p. 1.

If the opinion expressed by Tomasello and his colleagues is accurate, one might wonder
why we need yet one more study to assess the effectiveness of peer collaboration. In fact, the
evidence used to support CE:;ims about the efficacy of peer interaction--especially interaction
between novices--for promoting cognitive growth is rather weak.

Much of the research on peer collaboration has been based on the idea that children make
advances in their reasoning when they recognize conflicts between their understanding of a
problem and the perspective of another (Piaget, 1932). It is widely believed that social (or socio-
cognitive) conflict is more conducive to learning than conflict between a child's understanding of 2
problem and task materials (Azmitia & Perlmutter, 1989). However, the results of studies designed
10 assess the efficacy of socio-cognitive conflict in promoting learning are far from conclusive.

Perhaps the most widely cited study used to support the view that interaction between
novices with different, but equally wrang, points of view can lead to cognitive growth is that
conducted by Ames and Murray (1982). In this study, children who failed to conserve on a series
of conservation of length tasks were assigned to one of a number of conflict conditions, including
a social interaction condition in which they were paired with another nonconserver who had

disagreed with them on the pretest conservation tasks. Ames and Murray found that
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nonconservers in the social interaction condition had higher conservation scores on both immediate
and delayed posttests than children in any of the other canditions, and that advancement to a
conservaton response on the postiests required exposure to a conservation explanation during the
social interaction. However, it must be noted that, when conservation judgements were given
during the social interaction session, they were almost always given on the first problem and, once
made, were the only judgement made about the item. This suggests that some of the children who
were nonconservers on the pretest became conservers by the first problem in the social interaction
session.

Thus, while the Ames and Murray study replicated earlier findings that nonconservers
paired with conservers often show progress in their reasoning (Miller & Brownell, 1975), the
findings cannot be used to support the claim that pairing children with equally unskilled peers can
lead to increased task understanding. While some researchers have had greater success in showing
that pairs of nonconservers benefit from collaboration (Mugny & Doise, 1978), these
dernonstrations are offset by other, better controlled studies in which such benefits have not
accrued (Russel], 1982; Russell, Mills, & Reiff-Musgrove, 1990). Do children benefit from
interacting with othérs no more knowledgeable than themselves? At this point, the data are
inconclusive, at least with respect to Piagetian tasks.

A weakness of many peer collaboration studies is the lack of precise assessments of
children's thinking before, during, and after interaction. As suggested by the Ames and Murray
study, it is impossible to examine whether social interaction between novices leads to learning
when the relative expertise of partners is unknznwn, changes suddenly, or is poorly specified from
the outset. Perhaps this is why the strongest conclusion that can be drawn about peer collaboration
is that much of the success can be attributed to the positive influence of a relative expert on the
performance of a less competent child (Azmitia & Perlmutter, 1989).

The advantages of using precise measures of children's thinking for disentangling the

benefits of interaction from that of expertise is illustrated by a series of studies examining peer
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collaboration on mathematical balance beam problems (Tudge, 1991; 1992). Tudge used Siegler's
(1976, 1981) rule assessment method to classify children according to one of six rules used 10
solve balance beam problems. This approach allowed Tudge to pair children who used the same,
partially incorrect rule to solve the balance scale problems and to compare the processes and
outcomes of their collaboration with that of dyads composed of relative experts and novices and the
performance of children working alone. He found that dyads were no more likely to progress to
an advanced rule than children working alone, regardless of whether the children were paired with
a partner who used the same incorrect rule or a more advanced rule. 1n fact, while some expert-
novice pairs advanced, regression on this task was as likely as improvement unless children were
provided feedback from either the experimenter or the materials as to the correctness of their
predictions.

The lack of precise measures of children’s thinking also mits what can be said about the
mechanisms by which social interaction promotes learning. So, while peer collaboration has been
shown to enhance performance on a variety of reasoning tasks, (Gauvain & Rogofi, 1989;
Kruger, 1992; Phelps & Damon, 1989; Teasley, 1993; Webb, 1991), our understanding of the
processes by which secial interaction led to improved performance on these tasks remains quite
vague.

The goal of the present study was to specify more exactly the mechanisms by which
collaboration leads to advancement by examining collaboration in a domain where we could (a)
obtain accurate assessments of individual performance prior to collaboration; (b) chart changes in
individual strategy use during collaboration and independent performance; and (c) examine whether
changes observed during collaboration ase maintained in subsequent individual performance. We
were especially interested in assessing the benefits of collaboration between peers who were
equally competent, yet not expert on a task because it is this particular arrangement that is least
understood. Finally, it seemed worthwhile to pursue this issue on academic tasks, since

collaborative problem solving has become such a popular feature in classroom instruction (Cobb,



Wood, Yackel, Nicholls, Wheatley, Trgatd, & Perlwitz, 1991; Saxe & Guberman, 1993; Webb,
1991).
Rule Use in the Domain of Decimal Fractions

Children Jearning decimal fractions often misapply mathematical rules that they have
acquired in the course of learning about whole numbers or common fractions. (Resnick, Nesher,
Leonard, Magone, Omanson, & Peled, 1989, Sackur-Grisvard & Leonard, 1985). Sackur-
Grisvard and Leonard (1985) detected the use of incorrect rules by asking children to order decimal
fractions Resnick et al (1989) contrasted the rates of use of these incorrect rules among children
in Erance, Israel, and the United States, and linked cross-national differences to differences in the
order in which children in the three countries were exposed to common and decimal fractions in the
school curriculum. The incorrect rules used by the children in both the Sackur-Grisvard and
Leonard study and the study conducted by Resnick and her colleagues were all variants of one of
two genesal rules Resnick labelled the Whaole Number Rule and the Fraction Rule. According to
the Whole Number Rule, the mare digits there are to the right of the decimal point, the larger the
number (e.g. 0.37 > 0.4). This rule reflects children's experience with whole numbers and may
arise from classroom practice with decimal nurnbers that are always the same length where treating
decimals like whole numbers always leads to the correct answer.

In contrast, children whao adhere to the Fraction Rule, believe that the fewer digits to the
right of the decimal point, the Jarger the number (0.7 > 0.94). The fraction rule may arise when
children attempt to apply their understanding of the relationship between the size and number of
parts denoted by the numerator and denominator in regular fractions to their as yet incomplete
understanding of decimal notation. Children who adhere to the fraction rule may argue that three
digit decimals are smaller than two digit decimals because thousandths are smaller units than
hundredths. Other fraction rule users translate the decimal number into a regular fraction, but treat
the digits to the right of the decimal point as the denominator yather than the numerator (e.g., 0.7 >

0.94 because 1/7 > 1/94). Resnick et al observed use of both the fraction rule and the whole



nusmber rule in each of their three samples. However, the rates with which the rules were used
differed across the samples. The fraction rule was used by less than 10% of the French children,
330, of the Israeli children, and 18% of the American children (although 35% of children in the
1).5. sample used the whole number rule and 29% could not be classified as to which rule they
used to compare the sizes of decimal fractions). Resnick et al attribute the different rates of use of
the two rules to the fact that students in the U.S. and Israel typically receive more in-depth
instruction on common fractions before they are introduced to decimal fractions; in France, decimal
instruction precedes instruction on common fractions by a substantial period of time.

The present study employs a rule assessment approach like that used by Tudge and Siegler
on the balance beam to determine the strategies children use to solve problems involving decimal
fractions. Itis especially interesting to examine the processes of collaboration in children's
explanations of decimal fractions, as children can bring very different, but equally wrong,
misconceptions to the domain. The present study examines (1) whether working on decimal
fraction prablems with a partner helps fifth grade children overcome misconceptions found to be
quite stable when children work alone; (2) whether social interaction is sufficient for children to
show improvement in this domain, or if feedback is also necessary; (3) whether dyads composed
of children who hold different misconceptions are more successful than those composed of
children who share the same misconception.

Method
Subjects

The children in our study came from ten schools serving ethnically-mixed, middle-income
communities. A sample of 517 fifth graders were presented an 80 problem pretest to identify the
rules they used to compare the relative sizes of decimal fractions. Ninety-three percent of the fifth
graders screened could be classified as using a fraction rule, whole number rule, or correct rule by
a criterion under which at least 80% of their 80 pretest responses needed to conform to the

prediction of that rule. One hundred and seventy-seven children who consistently followed either



the fraction or the whole number rile were assigned 1o solve a new set of decimal problems alone
or with a same-sex parmer. Of these, 36 (20%) switched the rule they employed to solve the
decimal problems between the pretest and a set of 20 warmup problems given at the beginning of
the experimental session. Children who did not meet the 80% criterion for the original rule on the
warmup problems or who were paired with partners who did not meet the criterion were dropped
from these analyses. The data from an additional 17 children were excluded from the analyses
because they were assigned to conditions dropped from the study, or because of problems with the
procedure or equipment. The data to be reported here are based on 124 children (68 gitls and 56
bays) who could be classified as using either the whole number rule or fraction rule on both the
pretest and warmup problems.

Materials

While previous studies suggest that the errors children make when comparing decimal
fractions can be classified according to several distinct rules derived from prior knowledge about
whole numbers and common fractions (Resnick et al, 1989, Sackur-Grisvard & Leonard, 1985),
these findings are based on children’s performance on 2 small number of problems. We employed
the rule assessment methad formulated by Siegler ( 1976, 1981) to generate a set of 22 different
types of problems which could be used as a more rigorous test of the stability of children's rule use
when coinparing decimal fractions (see Appendix A for a breakdown of problemn types). The rule
assessment approach allows for the classification of children's rules according to specific patterns
of correct answers and errors. Children were classified as using one of the target rules if 80% or
more of their responses corresponded to the pattern predicted by the mle.

Children’s understanding of the relative sizes of decimal fractions was assessed by asking
therm 1o circle which of two decimal fractions was bigger (e.g., 0.19 versus 0.147). The pre- and
posttests consisted of 80 of these problems; children were also presented 20 similar problems as
"warmup" problems at the beginning of the experimental session. During the experimental

session, children were asked to solve 12 more problems, each one representing a different problem



type. The 12 problems were presented on two sheets of paper, with 6 problems to a page. In the
feedback condition, correct answers weie indicated by arrows placed under the larger number.
The arrows were hidden by removable stickers, which children peeled off after they had given
their response  In the no feedback conditions, the children were presented the same problems
without the arrows and stickers (see Table 1).

Assignment to Rule

The 80 problem pretest revealed several variants of the whole number and fraction rules,
each reflected by different patterns of errors. For the analyses reported here, we have combined
all whole number rules and all fraction rules together. On the pretest, 63% of the children used a
whole number rule, 14% used a fraction rule, and 15% used a correct rule for comparing decimal -
fractions (see Appendix B for a list of rules).

Procedwre

Pretest,  Fifth graders were presented the 80 problem pretest in their classrooms. We
10ld the students that we were interested in how fifth graders think about decimal fractions because
we wanted to discover better ways to teach students. Because the students were sometimes
anxious that théy did not know how to work with decimal fractions, we emphasized that we did
not expect them to know how to do these problems, but wanted them to give it their best guess.
On average, the fifth graders completed the pretest in less than ten minutes. The pretests were then
scored to determine which rule children used to compare decimal fractions.

Dosign.  Children were assigned to work by themselves ("alones") or with a partner of
the same sex ("dyads"). Children were either paired with a partner who used the same rule
("whole/whole" dyads or "fraction/fraction” dyads) or with a child who used a different rule
("fraction/whole" dyads) on the pretest The subjects were then assigned to either a "“feedback” or
oo feedback” condition. Because it was difficult to secure a sufficient number of fraction rule
users to fill ali the cells in a complete factorial design, we eliminated two cells that required large

numbers of fraction Tule users and did not look to yield very interesting results--the
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fraction/fraction without feedback condition and the fraction alane without feedback condition (see
Figure 1).

Experimental Session. At the beginning of the experimental session, subjects were asked
to solve 20 problems individually. This phase served as a warmup for subsequent problems and
provided a means to assess whether children were using the same rule that day as they had on the
pretest “"Alones” or "dyads” in which one or both children used a different rule than they had on
the pretest were run in their assigned conditions; however, their data are not included in the
analyses to be reported here

The children were then presented with twelve decimal fraction problems to work on either
alone or with a partner. Dyads were instructed to solve one problem at a time following this
procedure: The children were first asked to independently determine which of two decimal
fractions they believed to be bigger. Then, they were to compare their answers, and to explain
why they believed the number they chose was bigger. Dyads in the feedback condition were then
allowed to peel up the stickers to reveal the correct answer. Children in the alone condition
followed the same procedure, except they were not asked to explain their answers. All children
were told that there were some ways to solve decimal problems that led to the right answer on
sorme problems, but to the wrong answer on others and also a way that got all the problems right
The children were encouraged to wurk [together] to find a way that got all the problems correct,
and were informed that they would be asked to individually solve another set of problems where
they would not find out if they were correct at the end of the session. After children completed
problems 6 and 12, they were reminded that the goal of the task was to find one way to get all the
problems right. In cases where both members of a dyad solved a problem incorrectly and received
feedback that they were wrong, they were asked if they could figure ont how the other number
could be larger. The dyadic interactions were videotaped.

Posttest. The postiest was identical to the pretest. Al children completed the postiest at the

end of the experimental session.



Coding

The explanations provided by the partners during the experimental session were transcribed
and coded by two raters. Explanations were coded as reflecting a fraction rule, whole number
rule, or correct rule to compare the decimal numbers. Explanations that did not fit any of these
three categories are combined here for the purposes of analyses as other explanations. The
explanations provided by children included those that emphasized the nofational features of the
numbers {(e.g., the whole number explanation, "0.94 is bigger than 0.7 because there are three
nurnbers in it and only two in the other”) as well as explanations that reflect children’s effoits to
think about the number in terms of the quantity the number represents (e.g., the whole number
explanation, "0.94 is bigger than 0.7 because 04 is bigger than 7--there is like more stuff in 94").
Children were credited as using a correct rule when they provided explanations that were
mathematically valid. Correct explanations included statements such as "if there is a 0 right next to

h ot

the decimal point, it means that that number is smaller (comparing 0.64 and 0.029)," "you can see
this one is bigger because if you add a zero, 40 is bigger than .37, or "0.536 is bigger than (.27
because it has 5 tenths and 0.27 only has 2 tenths and 5 tenths is bigger than 2 tenths.” Further
examples of these explanation categories as well as those included in the category of "other"
explanations are provided in Table 2. Inter-rater reliability, computed by exact agreement,
exceeded 90%. Disagreements were resolved through discussion.
Results

The questions we hoped to address with this study were: (1) Will children who have the
opportunity to collaborate on a series of decimial problems acquire a better understanding of
decimal numbers than children who solve the problems alone as measured by performance on an
individual posttest? (2) Is social interaction sufficient for children to show improved performance
on this task, or is feedback also necessary for progress 1o occur? (3) Are dyads composed of
children with different misconceptions more likely to promote understanding of the task than dyads

composed of children who share the same rnisconception? (4) Do interactions between children
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who have different misconceptions differ from those where children share the same
misconception?
Impact of Collaboration and F eedback on Postiest Performance

As can be seen in Table 3, the only children to become expert on the postiest were those
who received feedback about the comrectness of their answers during the experimental session.
Regardiess of their dyadic status, none of the children in the no feedback condition progressed 1o
expert status on the posttest, while 49% of those in the feedback condition did, 2(1)=39.36,p<
J001.

Since no children in the no feedback condition progressed to expert stats on the posttest,
the discussion of the impact of social interaction on postiest performance will be limited to children
in the feedback condition. Children who worked with a parmer during the experimental session
and received feedback were more than twice as likely to use a correct rule on the postiest as
children who received feedback but worked alone. Fifty-seven percent of the children who
worked with a partner progressed to expert status on the posttest, whereas only 22% of the

children who worked alone did so,(?(l): 6.66,p<.01. In addition, it was more likely for both

memebers of a dyad to become expert than one member of a dyad to become expert and the other to
use an incorrect rule on the posttest (41% versus 28% of the dyads, respectively).
Impact of Dyad Type on Posttest Performance

The percentage of children from the different dyad types who moved to expert status on the
postiest ranged from 45% (whole number rule usc s paired with other whole number rule users) 1o
67% (fraction rule users paired with whole number rule users). Fraction rule users appeared
slightly more likely to adopt the correct rule on the posttest than whole number rule users,
regardless of whether they were paired with other whole number rule users or other fraction rule
users (see Table 3). However, these differences are not statistically significant In addition, in

the feedback condition, fraction rule users who worked alone were no more likely to progress to



expert status than were whole numnber rule users who worked alone.
Impact of Dyad Type on Collaboration

While there were no significant differences in the number of children from each dyad type
who became expert on the posttest, we were also interested in whether there were differences in the
nature of the collaborations observed among the different kinds of dyads. In this paper, we will
focus our attention on changes in the kinds of explanations children in the different dyads offered
over the course of the experimental session. One way to examine these changes is to compare each
dyad type at the point during the experimental session where the children begin to consistently
offer correct explanations for ways to compare decimal fractions. We scored a child as
consistently offering a correct explanation at the point in the session where they gave a correct
explanation and never again offered an incorrect explanation (e.g., a fraction or whaole number
explanation). (About 60% of the children who ever offered a correct explanation offered an
incorrect explanation on a subsequent problern, while 40% of the children never offered an
incorrect explanation once they gave a correct explanation. They did, however, sometimes offer
explanations that we could not code as either correct or incorrect).

In the feedback conditions, there were differences between the different dyads with respect
to the point in the session when correct explanations began to be advanced consistently. Dyads
composed of two fraction rule users and one fraction rule user paired with a whole number rule
user were very similar in both the rate at which children begin to offer comrect explanations for
comparing decimal numbers, and the proportion of children in each dyad type who provided
correct explanations on all trials by the end of the experimental session. In both fraction/fraction
and fraction/whole dyads, about 20% of the children offeied correct explanations by the fourth
problem in the session, while 60% provided correct explanations by the tenth problem and on all
subsequent problems (see Figures 2 and 3). In contrast, only 5% of children in the whole/whole
dyads provided correct explanations by the fourth problem, while 25% offered correct explanations

by problemn 10 and on all subsequent problems. The percentage of children in whole/whole dyads
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offering correct explanations by the end of the session did not exceed 45%, while almost 70% of
the children in the whole/fraction dyads and 85% of the children in the fraction/fraction dyads were -
offering correct explanations by the end of the session. Chi square analyses revealed these
differences to be signiﬁcant,?(? (2)=13.87, p < .001; specific comparisons using Ryan's procedure
showed the significant difference to be between the whole/whole and fraction/fraction dyads. The
similarities between the fraction/fraction and fraction/whole dyads and the difference;s between
these dyad types and whole/whole dyads is even more striking when one compares the point in the
session where both members of the dyads begin to consistently offer correct rules for comparing
decimal numbers (see Figure 4). Note that the point in the session where partners consistently
begin to offer the correct explanation is more highly correlated in the whole/fraction and
fraction/fraction dyads than in the whole/whole dyads (r=74, .71, and .54, respectively) as well
(see Figures 6, 7, and 8).

While is clear from the previous analyses that children in the fraction/fraction and
fraction/whole dyads increased their use of a correct rule for comparing decimal numbers over the
course of the session when given feedback, it is not clear whether children in the whole/whole
feedback condition also shifted away from their original rule but failed to replace it with a correct
rule, or whether they continued to rely on the whole nurnber rule exclusively throughout the
session. Figure 9 illustrates changes in the proportions of correct, fraction, whole number, and
other kinds of explanations given by children in the whole/whole dyads in the feedback conditions
over the course of the session.

While whole number children in the no feedback condition showed little change in the
frequency with which they offer whole number explanations from the first four to the last four
problems (see Figure 3), whole number rule users in the feedback condition show a steady and
significant decrease in the number of whole number explanations given over the time, F (2,38) =
12.37, p < .01. These children also showed a slight increase in the number of correct explanations

offered, F(2,38) = 3 41, p < .05; post hoc Newman Keuls comparisons revealed that the
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significant increase occurred between the first four problems and problems 5 through 8. They also
showed an increase in the number of fraction rule explanations offered, F{2,38) = 3.28, p < .05;
post hoc comparisons showed the rumber of fraction rule explanations given on the last four
problems to be significantly higher than those given on problems 1 through 4 and 5 through 8. The
same pattern was found for explanations that fell into our “other" category, F(2,38) =479, p
<01. Itis notable that, by the last four problems, over 50% of the explanations provided by
children in the whole/whole with feedback condition were classified as "other”. It appears that
feedback informed the children in the whole/whole dyads that the whole number rule was wrong,
but it did not enable most children to discover the correct rule. Unable to figure out a correct way
to solve the problems, these children often resorted to guessing or established idiosyncratic
solutions such as comparing the right most digits in each number, or identifying a pattern in the
wily correct answers appeared in the right or left columns on the page. These idiosyncratic
solutions would not be supported if the children would test their rule on all problems, but as
studies of children’s scientific reasoning have shown, (Klahs, Fay, & Dunbar, in press: Kuhn,
1989). children often neglect to ry their rule out on a sufficient number of problems, or when they
do, they ignore problems that disconfirm their hypothesis,
Discussion

The results of this study demonstrate that children who do not yet use a correct rule to
compare decimal fractions are more likely to construct such a rule in collaboration with a partner
than when working alone. However, the ability to construct such a rule appears to depend on
receiving feedback as to whether the answers that result from proposed rules are correct or not.
We did not find that pairing children with partners who held a different misconception regarding
the relative sizes of decirnal fractions promoted a greater understanding of decimal fractions than
pairing children with others who shared the same misconception, although we did discover that,
under feedback conditions, the processes of collaboration differed depending on the composition

of the dyad. Under feedback conditions, dyads composed of two fraction rule users and those
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composed of one fraction rule user and one whole number rule user were very similar in the rate at
which children abandoned incorrect rules and adopted correct rules for comparing decimal
problems. In this section, we will discuss three issues raised by these findings: (1) Why was
feedback necessary for the construction of a correct rule, even for dyads with different initial rules?
(2) What aspects of the social interaction promoted children's understanding on this task? (3) Why
was collaboration between children who shared the same misconception as effective in facilitating
the use of a new strategy as collaboration between children who shared different rmisconceptions?
The Role of Feedback in Promoting Understanding

In order 10 use the correct rule on the posttest, children in this study first had to generate the
rule, then adopt it. Did feedback primarily influence the initial generation of a comect explanation, -
or was generation rather commonplace and feedback more important in helping children decide
which of a number of possible 1ules was the best one to use for comparing the relative sizes of
decimal fractions?

The idea that feedback influenced the generation of a correct explanation is supported by the
fact that the number of correct explanations advanced in the no feedback conditions was extremely
low, only 4 instances overall Does this mean that the effects of feedback were lmited to the
generation of correct niles? It is possible that, once generated, the correct ways of comparing the
relative sizes of decimal fractions would seem eminently more credible than any of the alternatives.
If this were the case, we would expect the correct rules to be adopted even without feedback.
However, none of the children who advanced the correct explanations in the no feedback
condition nor their partners adopted the correct rule on the posttest. Further, an average of 30% of
children in each of the dyadic feedback conditions generated a correct explanation at least once
during the interactive session, but failed to adopt it on the posttest.

Preliminary data from a follow-up study examining the interactions of experts and novices
on this samme task without the benefit of feedback further sugpgests that mere exposure to a correct

explanation does not guarantee adoption. In this study, novices were paired with “stable” experts
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(children who used the correct rule on both the pretest and warm-up problems) or “‘new”’ experts
(children who had used an incorrect rule on the pretest, but switched to a correct rule on the
warmup problems) and assigned to no feedback conditions. Two-thirds of the novices warking
with “stable” experts but only 17% of those working with “new’ experts adopted the correct rule
on the posttest. We have not yet compared the quality of explanations offered by “stable” and
“new" experts, although it seems unlikely that the quality of correct explanations offered by the
“new"” experts is, on average, significantly worse than that offered by novices in the dyadic
conditions studied here It should also be noted that about 15% of both stable and new experts
regressed to an incorrect rule on the posttest in the absence of feedback.

These data suggest that feedback served two roles in the study: First, it provided
compelling evidence to children that their old rules were not working and encouraged them to
generate new rules. Secondly, it did provide a means by which children could judge the quality of
the rules that were generated.

However, if feedback, and feedback alone, served these functions, why did so few
children who worked alone and recieved feedback adopt the correct rule on the posttest? Because
children in the alone conditions in this study did not provide explanations for their judgements on
each problem, we cannot determine whether they ever generated a correct explanation or not.
However, we conducted a follow-up study in which whole number 1ule users working alone and
receiving feedback were asked to explain their reasoning on each problem to the experimenter. In
this study, children working alone, receiving feedback, and giving explanations were half as likely
to generate a correct explanation than whole number rule users paired with other whole number
rule users (36% as opposed to 72%). Daoes this mean that the increase in corect explanations
generated in the dyadic conditions was simply due to an increase in the likelihood that a correct
explanation would be advanced by chance? Using the alone correct explanation generation rate of
36% as a base, only 59% of dyads including a whole number rule user would be expected to

snclude at least one child who generates a correct explanation at some point in the session. Why
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was feedback combined with social interaction more powerful than feedback alone in promoting
the generation of correct explanations?
Aspects of Social Interaction that Promote Cognitive Change

One important difference between the collaborative and alone conditions used in this study
is that children provided explanations in the collaborative conditions but were discouraged from
talking about the problems in the alone conditions. Itis often believed thdt social interaction
promotes better performance because children benefit when they verbalize their reasoning and
make it explicit, or because making statements publicly encourages children to be more reflective
and to solve problems more slowly. It is possible that the benefits accrued in the social
interaction condition were due to the fact that collaborating children verbalized the strategies they
were using on the task, but children working alone did not. However, as discussed above,
children in the follow-up study who provided explanations as they worked on the problems alone
were less likely to generate correct explanations during the experimental session than children
working with a partner. Further, they were no more likely to adopt the correct rule on the postiest
than children who worked alone and did not provide explanations, even though both groups
received feedback; only 2 of the 12 whole number rule users who gave explanations adopted a
correct rule on the postiest, as compared to 3 of the 12 whole number rule users who did not.

It is clear that collaboration on this task was beneficial beyond the verbalization of strategies
or rules. We are currently analyzing the collaborative interactions in order to determine how the
opportunity to collaborate impacted on children’s generation and adoption of correct rules,
Shared versus Conflicting Misconceptions

Researchers working from a Piagetian perspective have long argued that social interaction
among peers promotes cognitive development because it forces children to consider problems from
multiple perspectives. According to this view, children paired with children who hold different
misconceptions about a problem would experience socio-cognitive conflict and, in an effort to

reduce that conflict, would show advances in their reasoning. In this study, dyads composed of
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children with disparate misconceptions were no more likely to advance than dyads composed of
children who reasoned similarly. An implicit assumption of the socio-cognitive model of
cognitive change is that children adhere strongly to one perspective on a problem and experience
difficulty thinking about the problem from other perspectives. However, as in other areas of
mathematics (Siegler and Shrager, 1984), some of the children in this study appeared to have
several ways of approaching these problems. This suggests that the opportunity to debate the
strengths and weaknesses of different approaches does not require two people with different
perspectives, but two people who can think about different perspectives. While the members of
the whole/whole with feedback dyads were as likely to be experts on the posttest as children from
the other dyadic conditions, these children appeared to have greater difficulty considering
alternative ways of solving the problems once they discovered their old rule did not work. Asa
result, these children tended to make greater progress later in the interactive session than did
children from the other dyads, and it was more likely that one child rather than both children in a
dyad had mastered a correct rule than was the case for the other dyad types.
Conclusion

Children who had the opportunity to collaborate with a partner on a series of decimal
problems were more likely to use a correct rule on a postiest than children who worked alone, but
only if they were given feedback as to whether the answers resulting from proposed rules were
correct or not. Collaboration appeared to affect both the generation of correct rules and the
adoption of those rules. Collaborating groups generated correct explanations at a rate higher than
would be expected by chance. However, once generated, correct explanations were not alwayé
adopted Since it is clear that mere exposure to a correct explanation does not ensure immediate
adoption, it appears that collaboration also influenced whether the correct rules were adopted or
not.

The findings of this study also underscore the importance of obtaining precise measures of

children’s thinking. The orignal forumlations of socio-cognitive conflict acknowledged that



18

children may reason about a problemn in a number of ways, that some of those ways may piove to
be inconsistent, and that discussions among equals would might reveal those inconsistencies. In
practice, however, contemporary researchers tend to use rough assessments of children’s
reasoning, and classify children as belonging to broadly defined gioups (e.g., conservers and
nonconservers). In order to disentangle the effects of social interaction from that of expertise, it 15
critical that researchers consider the nature of what children are thinking about as caréfully as they

think about the processes of interaction.
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TABLE 1
PROBLEMS USED IN EXPERIMENTAL SESSION

(1) 0.94 0.7

(2) 0.24 0.178
(3 0.0 0.07
(4) G.64 0.029
(5) 0.60 0.089
(6) 0.37 0.4

(7) 0.628 0.64

&) 0.157 0.02
%) 0.9 0.03
(10) 6.07 0.036
(11 0.27 . 0.536

(12) 6.71 0.792



TABLE 2
EXPLANATIONS
WHOLE NUMBER RULE
! circled 94 because it s bigger than 7 (comparing .94 and .7)
Because, um, there’s two numbers after point zero. (comparing .94 and .7).

94 is bigger because the hundredths column will be bigger than the tenths column
(comparing .94 and .7)

FRACTION RULE
I mean the lower number is always higher than the higher number.
I picked that one because, like I said before, the bigger the number, the smaller the fraction
‘cause there's only two numbers after zere.. (comparing 0.628 and 0.64).

You see, this is 100ths. Oh, this would make a bigger fraction (explaining why 0.7 is
larger than 0 94)

If yout divided a pie into 7 pieces, you would have bigger pieces than if you divided a pie
into 94 pieces. {explaining why .7 is bigger than .94).

CORRECT RULE
CORRECT UNDERSTANDING OF 0
Zero is nothing--there is nothing there.

‘cause it doesn’t have two zeros...it only had one zere. {comparing 0.157 and
0.02).

CORRECT/ELIMINATE RAGGEDNESS
I pot 64 because it would be six hundred and forty (comparing 0.64 and 0.029).

Oh, maybe you take the first two numbers again and seventy-nine is higher than
seventy-one. (comparing 0.71 and 0.792).

1 just picked it because if you rounded, that would be 1.0 and it would still be

bigger than this (poimting to 0.03) comparing 0.9 and 0.03).
CORRECT/UNDERSTAND COLUMN VALUES

I go by this number 0.9, {(comparing 0.94 and 0.7).

Allrighe, I think thdr because 211 Oths is bigger than that 1110th, I don't know.
{comparing 0.24 and 0.178).



Because of the six fenths of 100 and 6 is bigger than (. {(comparing 0.64 and cause
a thousandths - @ hundred and sevenry-eight thousandihs is one block out of a
whole thing, out of @ whole thousandths blocks, and then twenty-fouy  hundredths
would be higher than a hundred seventy-eight thousandihs because hundredths are
bigger than thousandths. (comparing 0.178 and .24}

OTHER
INCORRECT UNDERSTANDING OF ZERO

I mean sixty-four hundredihs is less than twenty-nine thousandths but since it has a zero its
um just like twenty-nine hundredths (comparing0.64 and 0.02%)

Ok, oh, oh, twenty-nine, because it got two zeros (comparing 0.64 and 0.029)

IDIOSYNCRATIC WRONG REASONING
This category includes explanations that use numbers but are not grounded in mathematics

(e-g., numbers with two digits are larger) as weli as attempts to fipure out the answers by
“psyching” me out (e.g., the correct answers alternate from the right to the left side of the

page).

Something that it has with two digits. It has to have something with two digits.

1 found a pantern--its left, left, right, left, vight, right on the first page and left, left, teft,
right, right, right on the second!

INCOMPLETE OR INCOHERENT EXPLANATIONS

Umi, T just put because, I don't know, I heard something like this being like this not being
where they'd be asking 9/10ths of a hundred-

REITERATE ANSWER

This category includes answers that are non-explanations; that is, the child provides a
formal reply (often a complete sentence), but does not actually explain the reasoning
behind the answer (and typically cannot once prompted).

GUESS

I don’'t know..d think I just guessed.
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FIGURE 9

CHANGES IN PROPORTIONS OF EACH KIND
OF EXPLANATION OVER THE
INTERACTION SESSION
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APPENDIX B
LIST OF RULES
WHOLE NUMBER RULES

Pure whole number rule - The longer the number, the larger it is {e.g., 0.345 > 0.9).
Children who use this rule ignore the decimal points and tieat the numbers as if they weie whole
numbers.

Whole number with zero deletion - When there is a zero in the tenths position, delete the
zero and apply the whole number rule to what remains (e.g., 0.9 > 0.07 because 9> 7, and 0.013
> (.2 becanse 13 > 2).

Whole number with zero-is-less - The larger number is determined by the whole number
rule, except when there is a zero in the tenths position in one of the numbers being compared. In
this case, the number with the zero in the tenths position is always smaller (e.g, 0.4 > 0.092).

FRACTION RULES

Pure fraction rule - The shorter the number, the larger it is (e g., 0.3 > 0.945). This rule is
sometimes based on the notion that thousandths are smaller than hundredths, and hundredths are
smaller than tenths, so the longer the number, the smaller it is. Children who adhere completely to
this rule also believe that 0.0 is greater than any number with digits to the right of the decimal
point. Other children misinterpret the decimal notation to mean that the numbers to the right of the
decimal point refer to a denominator {e.g., 0.7 > 0.94 because 1/7 > 1/94). These children may
argue that 0.0 is larger than any decimal fraction because 0.0 = 0/0 or 1/0 =1.

Fraction rule with correct 0 - The larger number is determined by the fraction rule, except
when comparisons involve 0.0. In these cases, the children understand that any quantity is larger
than 0.0. (0.234> 0.0).

Fraction rule with zero deletion - When there is a zero in the tenths position,delete the zero
and apply the fraction rule to what remains (e.g., 0.03 0.6 because .3 > .6).

CORRECT RULE

Children are able to compare the relative sizes of decimal fractions accurately by (1) transforming
the numbers so they have an equal number of digits to the right of the decimal point, either

by adding zeros to the end of the shorter number (e.g., .0.94 > 0.7 because 0.94 > 0.70),
dropping digits from the end of the longer number (e.g., 0.64 > 0.628 because 0.64 > 0.62), o
rounding {e.g., 0.6 > 0.47 because 0 4 > 0.5); (2) translating decimal fractions into comimon
fractions and comparing them accurately; or (3) comparing the face values of the digits beginning
with the column with the greatest place value.



