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E Learning, Development, and Production Systems

Robert Neches, Pat Langley, and David Kiahr

The fields of cognitive science and artificial intelligence attempt to under-
stand the mechanisms underlying mtelligent behavior. However, many
different approaches are consistent with this general goal, and vanous
frameworks have been proposed for explaining intelligence. In this bock
we focus on one such approach, known as production systems, that has
received considerable attention both withm cognitive psychology and ar-
tificial intelligence. Moreover, we will limut our atlention to production
system models of learning and deveiopment, simce this has been an active
area of research that we feel has considerable long-term significance.

In the current chapter we will introduce the production-system frame-
work and argue for the importance of studymg learning phenomena. We
base our discussion on the assumption that our understanding of the
psychological phenomena can be advanced by constructing and evaluating
computational models of intelligent behavior, Although some readers may
question this assumption, we do not have the space to defend 1t here.
However, we refer interested parties to treatments of the issue by Newell
and Simon {1972) and Anderson (1976).

Even when applied to relatively circumscribed domains, and even without
the added complexity of self-modifiability, production systems are difficult
to formulate and to understand. It 1s not surpnsing therefore that after
almost two decades. only a handful of psychologists have attempted to use
them. For some investigators, production systems have a forbidding aura
of esoteric mystery and complexity. For others, they seem to represent an
unconstrained proliferation of arbitrary assumptions and idiosyncratic
notations. The “cost” of production systems 1s obviously figh, and the
“benefits” have not been immediately apparent.

In this chapter we will attempt to clarify the benefit and, to some extent,
reduce the cost by explaining the basics of production systems and discus-
sing their relation to other areas of psychology and artificial mtelligence.
As editors. we are well aware that many of the subsequent chapters 1n this
book are not easy reading. However, we will make a case for why they are
worth the reader's effort. The central argument has two parts. First,
“learning and development are the fundamental issues in human psy-
" chology. Second, self-modifying production systems, although admttedly
. .complex entities, represent one of the best theoretical tools currently avail-
- able for upderstanding learning and development.
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{n making this argument, (L 18 important to distinguish between two
related but necessarily distinect views of the role of production system
models. The first framework treats production systems asa formal notation
for expressing models. Viewed in this way, it 15 the content of the models,
rather than the form of their expression of their interpretation scheme, that
is the object of interest. For example, one might characterize the rules a
person uses to perform some task mn terms of a production system. This
type of modeling represents an attemnpt to formally specify the allowable
“hehaviors” of a system just as a grammar s ntended to define the legal
sentences in a language. Other formalisms for expressing the same content
are possible (e.8., scripts, LISP programs, and flowcharts), and one can
debate their relative ments (see Klahr and Siegler 1978).

in contrast, the second view treats the interpreter of a production
systern as a huighly specific theory about the architecture of the human
information processing system.* Inits strongest form, this view asserts that
tumans actually employ the functional equivalent of productions it rea-
soning, understanding language, and other ntelligent behavior. This second
view also attributes great importance 10 the ability of production systems
models to modify themselves in ways that capture many of the central
features of learning and devetopment.

We beljeve that it is the second view, originally put forward by Newell
(1967) and most extensively applied by Anderson (1983), that provides the
major justification for the use of production systems ol modeling human

behavior. In other words, if we are simply interested in the content of a
domain, then in many cases the complexity of a production system formu-
{ation may just not be worth the effort. On the other hand, if we view the
production system framework as a serious assertion about the fundamental
&rganization of performance and learning processes. then the effort is

justified. -

Even the earliest production system models were designed to capture the
characteristic features of the human cognitive architecture. Efforis to
explore those characteristics at deeper and more concrete levels led—not
surprisingly—to the discovery of technical and theoretical problems con-
cerning management of search and control of attention. Efforts to address
those problems, within both the community of production systenl builders
and the closely related community of rule-based expert system builders,
have fed back into the search for architectures that more closely reflect

properties of human cognition. Issues of learning and human development
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have been a major forcing function in the definition of the problems and
havc served as a crucial testing ground for proposed solutions. The result-
ing architectures have implications not only for fearming, but also for the
broader nature of intelligent behavior and the structure of intelligent
systems.

We begin the chapter with an introduction to production systems, using
a simple example from the domain of multicolumn subtraction, and follow
this with a brief history of the development of production systems in
psychology. We then consider some phenomena of learning and develop-
ment, and review some of the mechanisms that have been proposed 1o
account for these phenomena within the production-system framework. In
closing, we discuss some implications of learning 1ssues for production-
system models.

1.1 An Overview of Production Systems

Before moving on to the use of production systems in modeling learning
and development, we should first mtroduce the reader to the concepts and
mechanisms on which they are based. In this section we outline the basic
components of production system architectures and follow this with an
exampielof a simple production system program for solving multicolumn
subtraction problems. After these preliminaries we review some of the
argufncnts that have been made in favor of production system models and
consider exactly what we mean by a production system “architecture.”

The Components of a Production System

The basic structure of production system programs {and their associated
interpreter) is quite stmple. In 1ts most fundamental form a production
system consists of two interacting data structures, connected through a
simple processing cycle:

1. A working memory consisting of a collection of symbolic data items

. called working memory elements.

2: A production memory consisting of condition-action rules called produc-
tions, whose conditions describe configurations of elements that mught
appear in working memory and whose actions specify modifications to the
contents of working memory.
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Production memory and working memory are refated through the
recognize-act cycle. This consists of three distinct stages: '

1. The match process, which finds productions whose conditions match
against the current state of working memory; the same rule may match
against memory in different ways, and each such mapping is called an
instaniiaiion.

2. The conflict resolution process, which selects one or more of the instan-
tiated productions for appiications.

3. The act process, which applies the instantiated actions of the sefected
rules, thus modifying the contents of working memory.

The basic recognize-act process operates 1 cycles, with one or more rules
being selected and applied, the new contents of memory leading another set
of rules to be applied. and so forth. This cycling continues until no rules are
matched or until an explicit halt command is encountered. Obviousty this
account ignores many of the details as well as the many variations thatare
possible within the basic framework, but it conveys the basic idea of a
production system.

A Production System for Subtraction

Now that we have considered production systems in the abstract, let us
examine a specific example from the domain of anthmetic. Multicolumn
subtraction problems are most naturally represented in terms of rows and
columns. with each row-column pair containing a number or a blank. The
bastc operators in subtraction involve finding the difference between two
numbers in a given column, decrementing the top pumber in a colurmn, and
adding ten to the top number in a column. However, the need to borrow
forces” some sort of control symbols or goals, in order to distinguish
between the column for which one 1s currently trying to find an answer and
the column from which one is currently trying to borrow.

Before considering our production system for subtraction, we should
consider the representation used for elements in working memory against
which our rules will match. Suppose we have the problem 87 — 31, before
the system has started trying to find an answer. We will represent this as a
number of separate propositions, one for each number. For instance, the
fact that the number 8 ocours in the top row and the feftmost column would
be stored as (8 in column-2 row-1), in which the names for columns and
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rows are arbitrary. The positions of the remating numbers would be
represented by the elements (3 in column-2 row-2), (7 1 column-| row-1),
and (1 in column-1 row-2). Since the position for each column’s result
is blank, the elements (blank resuft-for column-2) and (blank result-for
column-1) would also be present.

Three types of relations must afso be stored i memory. The first two
involve the spatiai relations above and left-of, and are used in elements like
{row-| above row-2) and (column-2 ieft-of column-1). These translate into
English as “row-1 is above row-2" and “column-2 15 left of column-1"",
respectively. Naturally the arguments of above are always rows, whereas
the arguments of left-of are always columns. The final predicate 15 the
greater-than refation, which takes two numbers as its arguments. This
relation occurs in clements such as (3 greater-than 1), which means “3 1s
greater than 1.2

One must also be able to distinguish between the column for which we
are currently computing a result and the cofumn that is the current focus of
attention. We will use the label processing for the first and the labet Socused-
on for the second. Since one always starts subtraction problems by working
on the rightmost column, and since the initial focus of attention also resides
there, we would begin with the additional elements (processing column-1}
and (focused-on column-1}.

Now let us examine the productions that operate on this representation.
We will present an English paraphrase of each rule and consider the role
played by each condition and action. Italicized terms in the paraphrased
rules stand for variables, which can match against any symbol as long as
they do so consistently across conditions. In our discussion of a given
production we will refer to specific conditions by their position in the rule.
For instance. the parenthetical expression (2) will stand for the second
condition in a production. After we have described each of the rules
individually, we will examine the manner 1n which they interact during two
sample runs.

The most basic action in subtraction problems involves [inding the
difference between two digits i the same column. The FIND-
DIFFERENCE rule is responsible for implementing this behavior and
matches when the column currently being processed (I) contains a top
number {2, 4) that is greater than or equal to (5) the bottom number {3, 4).
Its actions include computing the difference between the two numbers and
writing the difference as the result for that cotumn. We are assuming that
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the system has the primitive capability of correctly finding the difference
between two digits.

FIND-DIFFERENCE
IF you are processing cofunmn,
and number! is m column and rowl,
and muanber2 is 1n cofumn and rowZ,
and row/{ 1s above row2,
and munber] is greater than or equal to number2,
THEN compute the difference of number] and number2,
and write the result in colummn.

Once the result for the current column has been filled 1n with a digit (i.e.,
when the current column has been successfully processed), it 13 time to
move on. If there is a column to the left of the current cofumn (3), then the
riule SHIFT-COLUMN matches, shifting processing and the focus of
attention to the new column. Thus this rile is responsible for ensuring that
right to left processing of the columns ocours.

SHIFT-COLUMN
IF you are processing columnl,
and you are currently focused on cofurm],
and the result in cofwnl is not blank,
and column?2 is left of colurmnli,
THEN note that you are now processing columnl,
and note that you are focusing on cofumnZ.

A special operator 15 needed for cases in which the bottom row 1n a
column is occupied by a blank (since one can only find differences between
numbers). The FIND-TOP rule handles this situation, matching n any
case involving a number above a blank (2.3,4) 1n the column being pro-
cessed (1). On application, the rule simply stores the top number as the
result for that column. This will only occur in the leftmost columns of
certain problems, such as 3456 — 21

FIND-TOP
IF you are processing column,
and number is in column and rowl,
and cofunmn and row?2 is blank,
and rowl is above rowZ,
THEN write number as the result of cofumn.
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In cases where the top number in a column is smaller than the bottom
number, the ADD-TEN rule must add ten to the top number (2, 3) before
the system can find an acceptable difference for the column curgently m
focus (1). However, tius rule will only match if the system has just applied
its DECREMENT operator (4), and finding a column from which one can
decrement 1s not always a simple matter, as we will see.

ADD-TEN
IF you are focusing on cofummnl,

and mumber] 18 1 columnl and rowl,

and rowl! 15 above rowZ,

and you have just decremented some number,
THEN add ten to mumberl 1n cofwmnn and rowd.

Before the ADD-TEN rule can apply, the system must first apply the
DECREMENT rule. This matches in cases where the system has shifted its
focus of attention away from the column currently being processed (1, 2),
and the top number in the new column s greater than zero (3,4, 5). Upon
firing, the rule decrements the top number by one and returns the focus of
attention to the column immediately to the right (6). A negated condition
(7) prevents DECREMENT (rom applying more than once in a given
situation.

DECREMENT
IF you are focusing on colunnl,
but you are not processing colusmm/,
and number{ is in cofurmnl and rowl,
and row/ is above rowZ,
and mumber! is greater than zero,
and cofumn{ 15 left of cofumi2,
and you have not just decremented a number,
THEN decrement numberl by one in colwmnl and rowl,
and note that you have just decremented a number,
and note that you are focusing on cofumn.

However, before the system can decrement the top number in a column,
it must first be focused on that column. The rule SHIFT-LEFT-TO-
BORROW takes the first step in this direction. matching in precisely those
cases in which borrowing s required. In other words, the rule applies if the
system is focused on the column it s currently processing (1, 2), if that
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column contains two numbers (3, 5), if the bottom one larger than the
top one (4,6), and if there 1s another column to the left (7) from which
to borrow. A pegated condition (8) keeps this rule from matching if
DECREMENT has just applied, thus avoiding and infinite loop. Under
these conditions SHIFT-LEFT-TO-BORROW shifts the focus of atten-
tion to the adjacent column.

SHIFT-LEFT-TO-BORROW
IF you are focused on cofurmnl,

and you are processing colunnl,

and numberd 1s 1n coltonnl and rowl,

and rwuméber2 1s in columnl and row2,

and rowl 1s above row2,

and mwnber2 1s greater than manberl,

and coiumn2 15 left of colunmi,

and you have not just decremented a number,
THEN note that you are focusing on columnZ.

For many borrowing probiems {(e.g., 654 — 278) the SHIFT-LEFT-TO-
BORROW rule is quite sufficient, since one can borrow from the column
immediately to the left of the one being processed. However, if the column
to the lelt contains a zero as its top number, one must search further. The
rule SHIFT-LEFT-ACROSS-ZERO handles cases such as these, matching
if the system has shifted its focus of attention (1, 2), if it has found a zero (3)
in the top row {4) of the new column, and if there is another column to the
left (5). When these conditions are met, the rule shifts attention to the
column immediately to the left. Agan this will not occur if DECREMENT
was just applied (6), since this would cause an infinite loop. On problems
inv‘oiviﬁng multiple zeros in the top row (e.g., 10005 — 6), SHIFT-LEFT-
ACROSS-ZERO will apply as many times as necessary to reach a number
which it can decrement.

SHIFT-LEFT-ACROSS-ZERO
IF you are focused on cofurnni,
and you are nol processing cofumnnl,
and the number 1 colmnl and rowl is zero,
and row! 18 above rowl,
and column2 1s left of cofumnl/,
and you did not just decrement a number,
THEN note that you are focusing on cofurmnl.
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The preceding rules handle the major work mvolved m muiticolumn
subtraction, but the system must also have some way to know when 1t has
completed solving a given problem. The rule FINISHED 15 responsible for
noting when there is no longer a blank (3) in the result position of the
leftmost column (1, 2). In such cases this rule fires and tells the production
system to halt, since it has generated a complete answer to the probiem.

FINISHED
IF you are processing columnl,
and there is no cofumn2 to the left of columni,
and the result of cofurmi 15 not blank,
THEN you are fimished.

A Simple Subtraction Problem

Now that we have examined each of the rules in our system, fet us consider
its behavior on some specific subtraction problems. Presented with the
probiem 87 — 31, the system begins with the problem representation we
described earlier.® This consists of 10 basic working memory elements:

(8 in column-2 row-1)

{7 in column-1 row-1)

(3 in columa-2 row-2}

(1 in column-1 row-2)
(processing column-1)
{focused-on column-1)
{blank result-for column-2)
(blank result-for column-1}
{column-2 left-of column-1)
{row-1 above row-2)

We are assuming here that greater-than relations are tested by LISP
predicates rather than being explicitly represented i memory, but the
relations above and left-of are stored directly. Note that the nightmost
column (column-1) 15 labeled for processing first, and that this column is
also the imitial focus of attention.

Given this infermation, the rule FIND-DIFFERENCE matches against
the elements {processing column-1}, (7 in column-1 row-1), {1 in column-1
row-2), (row-1 above row-2), and (7 greater-than 1). The action side of this
production is instantiated, computing the difference between 7 and 1.
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and the number 6 is “written’ in the results column. This [ast action 15
represented by the new element (6 result-for column-1}.

Now that there 1s a result in the current column, the rule SHIFT-
COLUMN matches against the elements (processing column-1), (focused-
on column-1), and (column-2 left-of column-1). Although thus production
has four conditions, only the first, second, and third are matched, since the
third is a negated condition that must not be met. Upon application, the
rule removes the elements (processing column-1) and (focused-on column-1)
from memory, and adds the elements (processing column-2) and (focused-on
column-2). In other words, having finished with the first column, the system
now moves on to the adjacent one.

At this point, the conditions of FIND-DIFFERENCE are again met,
though this time they match against a different set of elements: (processing
column-2), (8 in column-2 row-1), (3 in column-2 row-2), (row-1 above row-2),
and (8 greater-than 3). As before, the rule computes the difference of the
two digits and adds the element (5 result-for column-2) to working memory.
The presence of this new clement serves to trigger the conditions of
FINISHED, since both columns now have answers, Having generated a
complete answer to the problem (56), the system halts.

A Complex Subtraction Problem

Since the preceding problem involved no borrowing, we saw only a few
of the rules in action, so let us now turn to the more difficult problem
305 — 29. At the outset of this task, working memory contains the foliowing
elements:

(blank in column-5 row-2)
(3 in column-5 row-1)
{coluran-5 left-of column-4)
(2 in column-4 row-2}-

(0 in column-4 row-1) )
{column-4 left-of column-3)
(9 in column-3 row-2)

{5 in columm-3 row-1)
(focused-on column-3)
{(processing column-3)
{row-1 above row-2)

If we measure complexity by the number of efements in memory, this
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probiem 15 only slightly more complex than our first examplie. However,
the manner in which these elements interact with the various productions
jeads to significantly more processing than in the earlier case.

As before, the system begins by attempting to process the righimost
column. Since the greater-than condition of FIND-DIFFERENCE 15 not
met (5 1s not greater than 9), this rule can not apply immediately. Instead,
the production SHIFT-LEFT-TO-BORROW matches, and shifts the
focus of attention to the column to the left (column-3). On many borrowing
probiems the system would apply DECREMENT at thus point, but the
conditions of this rule are not met erther (zero 15 not greater than zero).
However, the conditions of SHIFT-LEFT-ACROSS-ZERO are met. and
this leads to system to move its focus even further left, to column-3.

Finally, the system has reached a column in which it can apply
DECREMENT, and in doing so, it replaces the element (3 in column-5 row-
1) with the element (2 in coiumn-5 row-1). This rule aiso moves the focus
back one column to the right, making column-4 the center of attention.
Given this new situation, ADD-TEN matches and the 0 1n the middle
column is replaced with the “digit” 10. This 1s accomplished by replacing
the element (0 in column-4 row-1) with the new element (10 in column-4
row-1).

Now that the system hasa number larger than zero in the middle columnm,
it can decrement this number as well. The DECREMENT production
matches against the current state of memory, replacing the recently gen-
erated 10 with the digit 9. In addition the rule shifts the focus of attention
from the middle column (column-4) back to the rightmost column {column-
3). Since the system has just decremented a number in the adjacent columa,
the rule ADD-TEN now replaces the 3 in the rightmost column with the
“diget”” 15. This in turn allows FIND-DIFFERENCE to apply, since the
number 1 the top row of this column 1s now larger than the number n the
bottom row. The effect is that the difference 6 {i.e., |5 — 9)is added as the
result for column-3.

The presence of a result in the current column causes SHI FT-COLUMN
to match, and both the processing marker and the focus of attention
are shifted to the center column. Since the top number 1n this column 1s
farger than the bottom number (from our earlier borrowing), FIND-
DIFFERENCE matches and computes 3 — 2. The resulting difference 7 is
“written’’ as the resuit for the middle column, and this in turn jeads SHIFT-
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COLUMMN to fire again, shifting processing and attention to the rightmost
cofumn.

In this case the bottom row of the current column 1s blank, so the only
matched production 1s FIND-TOP. This rule decides that the result for the
rightmost column should be 2 (the digit in the top row), and since all
columns now have associated results, the rule FINISHED applies and the
system halts, having computed the correct answer of 276.

Comments on Subtraction

Although we hope that our program for subtraction has given the reader a
better feel for the nature of production system models, it 1s important to
note that it makes one major simplification. Since only one rule (and only
one instantiation of each rule) matches at any given time, we were able to
1gnore the ssue of conflict resofution. Although this was useful for instruc-
tional purposes, the reader should know that there are very few tasks for
which it is possible to model behavior in such a carefully crafted manner,
and conflict resclution has an important roie to play in these cases.

Qur choice of subtraction as an example gives us some mtial insight into
the advantages of this framework, which we consider in more detail shortly.
Brown and Burton (1978) and Brown and VanLehn (1980) have made
significant strides in classifying children’s subtraction errors, and i ac-
counting for these errors using their “repair theory.” However, Young and
(O’Shea (1981) have proposed an alternative model of subtraction errors
based on a production system analysis. They account for many of the
observed errors by omitting certam rules from a modef of correct behavior.
Langley and Ohlsson {1984} have taken this approach further, accounting
for errors only in terms of incorrect conditions on the rules shown here.
Within this framework they have developed a system that automatically
constructs a model to account for observed errors. This is possible only
because of the inherent modularity of production system programs.

Before closing, we should point out one other feature of the production
system approach—it does not completely constrain the systems one con-
structs any more than other computer programming languages. For
example, Anderson (1983) has presented a production system model of
multicoiumn addition that is organized quite differently from our subtrac-
tion system, despite the similarity of the two tasks. The point 1s that there 1s
considerable room for different *programming styles” within the produc-
tion system framework, since people can employ quite different represen-
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tations and control structures. Thus Anderson’s model makes heavy use of
explicit goals that are held m working memory; our “processing” and
“focus” elements play a similar role but organize behavior in a different
fashion.

Advantages of Production-System Models

Now that we have seen an example of a production-system model, 1t is
appropriate to consider the advantages of this approach. The fact that
production systems allow onme to carry out subtraction or any other
behavior is not sufficient—most programming languages arc equivalent
computational power. However, Newell and Simon (1972) have argued
that production systems have a number of features that recommend them
for modeling human behavior. Let us recount some of these characteristics:

1. Homogeneity. Production systems represent knowledge In a4 very
homogeneous format, with each rule having the same basic structure and
carrying approximately the same amount of informatien. This makes them
much easier to handle than traditional flow diagram models.

2. Independence. Production rules are relatively independent of each
other. making it casy to insert new rules or remove old ones. This makes
them very useful for modeling successive stages i a developmental se-
quence and also makes them attractive for modeling the incremental nature
of much human learning.

3. Parallelfserial nuture. Production systems combine the notion of a
parallef recognition process with a serial application process; both features
seem o be charactenistic of human cognition.

4, Stimulus-response flavor. Production systems inherst many of the
benefits of stimufus-response theory but few of the limitations, since the
notions of stimuli and responses have been extended to mclude internal
symbol structures.

5. Goal-driven behavior. Production systems can also be used to model
the goal-driven character of much human behavior. However, such
behavior need not be rigidly enforced; new mformation from the environ-
ment can interrupt processing of the current goal.

6. Modeling memory. The production-system framework offers a viable
model of long-term memory and its relation to short-term memory, simce
the matching and conflict resolution process embody principles of retrieval
and focus of attention.
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Taken together, these features suggest the production system approachasa
useful framework within which to construct models of human behavior. Of
course, this does not mean that production systems are the onfy such
framework, but there seems sufficient promise to pursue the approach
vigorously.

As we will shortly see in the historical section, production systems have
been used successfully to model human behavior on a wide range of tasks.
As we will also see, Newell and Simon's initial ideas on the nature of the
human cognitive architecture have been revised along many dimensions.
and many additional revisions will undoubtedly be required before we
achieve significant understanding of human learning and performance.
This observation feads us back to the 1ssue of viewing production systems
as cognitive architectures, to which we now turn.

Production Systems as Cognitive Architectures

The term “‘cognitive architecture” denotes the mnvariant features of the
human information processing system. Since one of the major goals of any
science is to uncover invariants, the search for the human cognitive archi-
tecture shouid be a central concern of cognitive psychotogy. The decision to
pursue production systermn models invofves making significant assumptions
about the nature of thus architecture, but within the boundaries defined by
these assumptions there remains a large space of possibilities.

In later chapters we will see many different instantiations of the basic
production-system framework, but let us anticipate some of these vari-
ations by considering the dimensions along which production-system
architectures may differ:

Working Menmory Issues
2

1. The structure of mempry. Is there a single general working memory, or
multiple specialized memories (e.g., data and goal memories)? In the latter
case, which are matched against by production memory?

2. The structure of elements. What is the basic form of working memory
glements {e.g., list structures, attribute-value pairs)? Do elements have
associated numeric parameters, such as activation or recency?

3. Decay and forgetting. Are there limits on the number of items present
in working memory? If so, are these time-based or space-based limitations?

4, Retrieval processes. Once they have been “forgotten,” can elements
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be retrieved at some later date? If so, what processes lead to such retrieval?
For example, must productions add them to memory, or does “spreading
activafion” occur?

Production Memory Issues

1. The structure of memory. lsthere a single general production memory,
or are there many specialized memories? In the fatter case, are all memories
at the same level, or are their orgamzed fuerarchically?

2. The structure of productions. Do productions have associated numeric
parameters (e.g., strength and recency) or other information beyond con-
ditions and actions?

3. Expressive power of conditions. 'What types of conditions can be used
to determine whether a rule is applicable? For example, can arbitrary
predicates be mcluded? Can sets or sequences he matched against? Can
many-Lo-one mappings occur?

4. Expresswe power of actions. What kind of processing can be per-
formed within the action side of an individual rule? For example, can arbi-
trary functions be evoked? Can conditional expressions occur?

5. Nature of the match process. Are exact matches required or 1s partial
matching allowed? Does the matcher find all matched rules, or only some
of them? Does the matcher find all instantiations of a given production?

Conflict Resolution Issues

{. Ordering strategies. How does the archutecture order instantiations of
productions? For example, does 1t use the recency of matched elements or
the specificity of the matched rules?

2. Selection strategies. How does the architecture select instantiations
based on this ordering? For example, does it select the best mstantiation, or
does it sefect all those above a certam threshold?

3. Refraction strategies. Does the architecture remove some nstanti-
ations permanently? For example, it may remove all instantiations that
applied on the last cycle, or all instantiations currently in the conflict set.

Self-Modification Issues

1. Learning mechanisms. What are the basic learning mechamsms that
fead to new productions? Examples are generalization, discrimination,
composition, proceduralization, and strengthening.
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2. Conditions for learning. What are the conditions under which these
learning mechanisms are evoked? For example, whenever an error 1s noted,
or whenever a rule is applied?

3. Interactions between mechanisms. Do the learning mechanisms com-
plement each other, or do they compete for control of behavior? For
example, generalization and discrimnation move 11 opposite directions
through the space of conditions.

To summarize, the basic production-system framework has many possible
incarnations, each with different implications about the nature of human
cogmtion. The relevance of these 1ssues to endumng questions in the
psychology of learning and development should be obvious. The chapters
in this volume represent only a smail sample from the space of possible
architectures, although they include many of the self-modifying production
systems that have been proposed to date. Before elaborating some of the
issues involved with the formulation of learmng systems, we will digress
slightly in order to establish some historical context for production
sysfems.

1.2 The History of Prodaction-System Models

Although they have their roots in the formalisms of computer science and
mathematics, the relevance of production systems to psychology began
some 20 years ago, when Newell (1967) first proposed them as one way to
formulate information processing theories of human problem-solving
behavior. Their initial use was to provide theoretical accounts of human
performance on a variety of tasks, ranging from adults’ behavior on various
puz'"zie’si (Newell and Simon 1972) to children’s responses to class-inclusion
questions (Klahr and Wallace 1972). However. it soon became apparent
that they were eminently well suited for dealing with 1ssues of development
(Klahr and Wallace 1973, 1976) and learning (Anderson, Kline, and Beas-
ley 1978; Anzai and Simon 1979; Langley, Neches, Neves, and Anzai 1980).
In this section we review the history of these efforts, including specific
models and general production system architectures.

Specific Production-System Models

The early production-system models were not implemented on a computer
and required “hand simulation” in order to determine their consequences.
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The first runming production system appears to have been Waterman’s
(1970) poker-playing program. It is interesting to note that this was also a
learning system, though it was not an attempt to model the human learming
process.

Soon thereafter, Newell (1972) described the implementation of a gen-
eral purpose production-system interpreter (PSG) that could be applied to
a wide range of cognitive domains. Newell’s first two applications of PSG
were atypical of the subsequent use of production systems. The firsi (New-
ell 1972) focused on stimulus encoding, and the second (Newell 1973)
modeled performance on the Sternberg memory-scanning paradigm. Both
papers presented a much finer-gramed analysis than the majority of pro-
duction system modeis have employed. Klahr's (1973) model of basic
quantification processes was aiso designed to account for very fine-grained
encoding processes.

A few years later, Waterman {1975) reported new resulis with adaptive
production systems. One of these systems implemented EPAM-like dis-
crimination networks as production rules, and another focused on se-
quence extrapolation tasks. Again, neither was intended as a cognitive
stnulation, but both were interesting in their adaptive charactenstics. One
year later Rychener (1976) completed a thesis in which he reimplemented a
variety of well-known AI systems as production systems. This work con-
vincingly demonstrated that the production system {framework was as
powerful as other existing representationai schemes and that it was a useful
framework for unplementing complex models of intelligence.

Anderson, Kline, and Lewis (1977) went on to use production systems o
model the complexities of natural language understanding, and Anderson
(1976} also applied the approach to a variety of other information pro-
cessing tasks. Thibadeau, Just, and Carpenter (1982) went even further,
showing how production-system models could account for reaction time
phenomena in reading tasks. Finally, Ohisson (1980b) employed the pro-
duction system framework to model detailed verbal protocols on transitive
reasoning tasks. Since 1980 the use of production systems in modeling
human performance has spread, but since performance 1s not our central
concern, let us turn our atiention {o other matters.

In addition to Waterman’s early concern with jearning, a number of
early researchers empioyed production systems in meodeling cognitive de-
velopment. However, rather than develop models of the transition process
at the outset, they constructed models of behavior at successive develop-
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mental stages. Klahr and Wallace (1973, 1976) carried out the earliest work
of this type, constructing stage models of behavior on a variety of Piagetian
tasks, including class inclusion and conservation of quantity. The basic
approach involved modeling behavior at different stages in terms of
production-system programs that differed by only one or a few rules.

Baylor, Gascon, Lemoyne, and Pother (1973} extended this approach to
Piagetian length and weight seriation tasks, and Young {1976) carried out
an even more detailed analysis of length seriation in his thesis research.
Klahr and Siegler (1978) developed similar production-system stage
models for Piaget’s balance scale task, combining this with detailed empir-
ical studies of children’s behavior on the task. Larkin (1981) used a com-
parable framework to model adult expert-novice differences in physics
probiem solving, and Ohlsson (1980a) modeled similar differences m abil-
ity on his transitive reasoning tasks.

These stage models were tantalizing, in that they explained behavioral
differences at successive stages in terms of slightly different rule sets, but yet
provided no mechanisms to account for the transition process. {The work
by Klahr and Wallace did eventually lead to a transition model, as we will
see in chapter 8.) After Waterman's early forays the first truly adaptive
production-system models were reported by Anderson, Kline, and Beasley
(1978); these employed mechanisms of generalization, discrimination, and
strengthening, which will be discussed further by Langley in chapter 3.

Shortly thereafter, production-system models of learning became an
active research area. For instance, Anzai (1978) reported a model of human
iearning on the Tower of Hanei puzzle, and Neves (1978) proposed a model
of algebra learning. At about the same time, Langley (1978) developed an
adaptive production system for concept attainment, sequence extrapola-
tiof, apd simple empirical discovery, and McDermott (1979) described a
production system approach to reasoning by analogy. (FHowever, neither
Langley nor McDermolt’s systems were concerned with modeling human
behavior in any detail.) Finally, Lews (1978) introduced the mechanism of
composition, which he describes in more detail in chapter 7.

Research on adaptive production systems continued into the 1980s, with
Neves and Anderson (1981) extending Lewis's notion of composition and
introducing the mechanism of proceduralization. Neches (1981a, 1981b)
took a quite different approach in his theory of strategy transformation
(see chapter 4), and Newell and Rosenbloom (1981) proposed a theory of
learning by chunking (see chapter 5). Since then research in production-
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Figure 1.1
Development of product:on-sysicriz architectures

system models of learning has continued unabaled, and many of the
researchers in the new field of machine learning have taken a closely related
approach.*

Research on Production-System Architectures

Our treatment of production systems would not be complete without some
discussion of the history-and development of production system architec-
tures and their implementations as programming fanguages. On exanining
the history of research on production systems, one 15 struck by an cbvious
trend—nearly every researcher who has developed production system
models of significant complexity has developed fus own architecture and
associated language. However, many of these architectures are very
similar, and it is worthwhile to trace their evolution over time. Figure [.1
summarizes this evolutionary process.
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The first widely used production system programming language was
PSG (Newell and McDermott 1975). Rather than embodying a single
architecture, PSG provided a number of parameters that defined an entire
class of architectures. Thus the modeler could explore different memory
limitations, alternative conflict resolution schemes, and similar issues.
However, PSG did assume a “queue” model of working memory, with
elements stored m an ordered list. Many of the early production-gystem
models were implemented in PSG, including Newell’s (1973) model of the
Sternberg phenomenon and Klahr and Wallace’s (1976) developmental
stage models.

Another early production-system language was Waterman’s PAS. This
was not intended as a sertous model of the human cognitive architecture,
but it did have some primitive learning capabilities.” Conflict resolution
was based on the order of productions, and working memory was stored as
a queue. Ohlsson (1979) developed a similar production system language
called PSS, which he used in his models of transitive reasoning. This was
very similar to PAS in that it used production order for conflict resolution
and a queue-based model of short-term memory; however, one could
also divide production rules into a number of sets that were organized
fuerarchically.

Rychener's PSNLST (1976} incorporated a number of novel features.
First, the main conflict resolution method was based on recency, with
preference being given to instantiations that matched against more recent
elements. Rychener used this bias to ensure that subgoals were addressed in
the desired order. Second, PSNLST dynamically reordered productions
according to the number of times they had been placed on the candidate
match list. This led the architecture to prefer rules that had recently shown
prdmiie and had a quite different flavor from the static ordering schemes
that had prevailed 1n earlier languages.

The history of production systems took another significant turn when
Forgy and McDermott (1976} developed the first version of OPS. This
language was the vehicle of the Instructable Production System project at
Carnegie-Mellon University, led by Allen Newell. The most important
feature of OPS was its pattern matcher, which allowed it to compute
efficiently the matched instantiations of all productions. This in turn made
possibie experiments with different conflict resolution strategies and made
the notion of refraction tractable. OPS also assumed a working memory of
unlimited size, with the associated theoretical claim that human memory
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only appeared limited due to a recency-based conilict resolution scheme
(similar to that used by PSNLST).

Forgy's initial version of OPS was followed by OPS2 (1977) and OPS4
(1979a), which were minor vanations implemented in different program-
ming languages. By OPS84, the basic conflict resolution strategies had
stabilized, with refraction given first prionty, followed by recency of
the matched elements and specificity of the rules. Rychener’s (1980) OPS3
was a descendant of OPS? that stored elements in terms of attribute-value
pairs in an effort to provide greater representationai flexibility.

The next incarnation, OPS5 (Forgy 1981), also used an attribute-value
scheme, but in a much less flexible manner than OPS3 did. However, the
main goal of OPS5 was efficiency, and along this dimension it succeeded
admirably. Over the years, 1t has become one of the most widely used Al
ianguages for implementing expert systems, but it was never intended as a
serious model of the human cognitive architecture. We direct the reader to
Brownston, Farrell, Kant, and Martin (1985) for an excellent tutortal n
OPS5 programming techniques. More recently, Forgy (1984) has devel-
oped OPS83, a production-system language with many of the features of
PASCAL, making it an even less plausible cognitive modet than was QPSS
(though again. this was not its goal).

Although never implemented, OPS6 (Rosenbloom and Forgy, personal
communication} included a number of ambitious ideas. For instance, both
lists and sets were to be supported as basic data structures in both working
memory elements and productions. In addition, multiple working mem-
ories and production memories were to be allowed, each having its own
sub-architectural characteristics. This flexibility was n direct contrast to
the restrictions imposed for the sake of efficiency i OPS5.

In parallel with the work at “Carnegie-Mellon University,” Anderson and
his colleagues at Yale were developing ACTE (1976), 2 production-system
framework that was intended to model human behavior. This architecture
mcluded two declarative respositortes—a long-term memory and an “‘ac-
tive” memory that was a subset of the first. Productions matched only
against elements in active memory, but these could be retrieved from long-
term memory through a process of spreading activation. Conilict reso-
lution was tied to the strength and specificity of rules, and to the acltivation
levels of the matched elements; moreover, the final selection of mstan-
tiations was probabilistic. Its successor was ACTF (Anderson, Kline,
and Beasley 1978), an architecture that included mechanisms for learn-
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ing through generalization, discrimination, and strengthemng of rules.
Methods for learning by composition and proceduralization were added
[ater (Neves and Anderson, 1981,

When Anderson moved to Carnegie-Mellon University in 1978, a
pew generation of languages began to evolve that incorporated Forgy's
matcher. Two architectures—ACTG and ACTH—existed only 1 transi-
tory form, but these were followed by GRAPES (Sauers and Farrell 1982),
a production-system language that placed goals in a special memory.
Methods for learning by composition and proceduralization were also
included in GRAPES, and were closely linked to the processimg of goal
structures.

Concurrently with the GRAPES effort Anderson (1983) developed
ACTsx, apparently the final installment in the ACT series of arclutectures.
This framework employed the notion of excitation and inhibition among
the conditions of various productions, and implemented a partial matching
scheme based on a variant of Forgy's matcher. ACT= also employed three
forms of declarative representation—list structures (like those used in most
production systems), spatial structures, and temporally ordered lists. The
architecture also supported a variety of learning methods carried over from
ACTF, though the notion of spreading activation differed considerably
from earlier versions.

The short-lived ACTG was developed by Langley, but a collaboration
with Neches fed to PRISM (Langley and Neches 1981), a production-
system language that supported a cfass of cognitive architectures m the
same spirit as PSG. PRISM incorporated some features of OPS4, ACTF,
and HPM (MNeches, chapter 4), including two declarative memories, mech-
anisms for spreading activation, and methods for learning by discrim-
m'ét:o’p, generalization, and strengthemng. Since it employed the OPS4
matcher, the language provided considerable flexibility in conflict resolu-
tion. Based on the PRISM code, Thibadeau (1982) developed CAPS, an
activation-based architecture that employed a notion of thresholds and
allowed rules to fire in parailel.

PRISM’s major limitation was the large number of unstructured para-
meters used to specify a given architecture. In response, the researchers
developed PRISM2 (Langley, Ohisson, Thibadeau, and Walter 1984),
which organized architectures around a set of schemas, each with a few
assoctated parameters. This language was strongly influenced by the Ros-
enbloom and Forgy OPS6 design, and allowed arbitrary sets of declarative
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and production memones, each with its own characteristics (e.g., decay
functions and conflict resolution schemes).

Rosenbloom’s interest tn motor behavior led to XAPS (1979) and
XAPS2 (see chapter 3), architectures that allowed parallel application of
productions. The first of these was activation based, and the distimguishing
feature of the second was its method for learning by chunking, Laird (1983)
developed SOAR, an architecture that combined the production system
framework with Newell’s (1980) problem space hypothesis. Finally, Laird,
Rosenbloom, and Newell (1984) reported SOAR2, an architecture that
combined the problem-soiving features of SOAR with the chunking abil-
ities of XAPS2.

We have attempted to summarize the developmental tnfluences among
these architectures in figure 1.l. For instance, the sequence of OPS lan-
guages descended directly from one another, though QPS3 and OP34
should be viewed as coexisting rather than as parent and child. ACTF and
OPS4 were tie main influences on the iitial version of PRISM, whereas
PRISM?2 derived from PRISM and the OPS6 design. We have not at-
tempted to give an exhaustive treatment here. However, the archiiectures
we have reviewed seem to be the mainstream of production system research,
and most of the architectures described in this book can be traced back to
one of the {frameworks we have described.

1.3 The Nature of Learning

The term “learning” 1s similar to the term “art,” in that 1t 1s very difficult
to generate a satisfactory defimtion of either term.® Learming is clearly
a multifaceted phenomenon that covers a variety of quite different be-
haviors. Perhaps the most commonly accepted “definitton’ 15 that learn-
ing is ““the mprovement of performance over time.”” However, other re-
searchers view learming as “increased understanding,” while still others
view learning as involving “data compression” or the summarization of
experience.

Examples of Learning

Rather than attempt to define such an ambiguous term, et us consider
some examples of learning ‘“tasks” that have been discussed in the litera-
ture of cognitive psychology and artificial mtelligence. The most common
of these 15 the task of “learning from examples,” in which one is presented
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with positive and negative instances of some concept, and attempts to
formulate some general description that covers the positive instances but
none of the negative instances. For this class of tasks, improvement consists
of increasing one’s ability to correctly predict exemplars and non-
exemplars of the concept. Chapter 3 gives a fuller treatment of this prob-
lem, which has a long history within both psychology and Al In many
ways this is the simplest.of the learning tasks that has been studied (Win-
ston 1975; Hayes-Roth and McDermott 1978; Anderson and Kline 1979;
Michaisk: 1980).

A more complex task is that of “learning search heuristics,” in which one
is presented with a set of problems that require search in order to find the
solution. After suitable practice on these tasks the learner is expected to
acquire heuristics that reduce or eliminate the search he must carry out n
solving the probiems. This task has received considerable attention within
Alin recent years and is also discussed in greater detail in chapters 2and 3.
The vast majority of work in this area has been within the production
system framework (Brazdil 1978; Neves 1978 Langley 1983; Mitchell,
Utgoff, and Banerji 1983), though only a few researchers have attempted to
model human learning in this domain (Anzai 1978; Ohisson 1983).

In the heunstics learning task the notion of improvement mnvolves a
reduction in search. On another class of procedural learning tasks improve-
ment consists of reduction in the amount of time required to carry out an
algorithmic procedure. Chapters 4, 5, and 7 focus on how such speedup
effects can result from practice. In general, the mechanisms proposed to
account for speedup have been quite different from those posited to ac-
count for reduced search (Lewis 1978; Neches 1981a; Neves and Anderson
1981). However, Laird, Rosenbloom, and Newell (1984) have recently
o‘étiiged a production system theory that accounts for both using the same
mechanism.

The task of languape acquisition has also received considerable atten-
tion, though most work in this area has focused on the subproblem of
grammar [earning (Hedrck 1976; Berwick 1979; Anderson 1981; Langley
1982). In this task, the learner hears grammatical sentences from the
language to be acquired, together with the meanings of those sentences.’
The goal is to generate rules for mapping sentences onto their meanings, or
meanings onto grammatical sentences. In the grammar learning tasik,
improvement involves generating ever closer approxumations to the aduit
grammar. This task is described 1n more detail in chapter 3
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The final class of tasks we will consider (though we have not attempted
to be exhaustive) 1s that of cogmitive development. Obviously this term
covers considerable ground, but in this context we assume & fairly specific
meaning. Cognitive developmental researchers have studied children’s
behavior on a variety of tasks, many originally invented by Piaget. There s
considerable evidence that children progress through identifiable stages on
each of these tasks. and one would like some theory to account for this
progression. In this case, improvement consists of changes that Jead toward
adult behavior on a given task. Relatively few learning models have been
proposed to account for these data, but we will see two of them in chapters
3and 8.

In addition to accounting for improvement, models of human learning
should also account for side effects of the learning process. For example,
one effect of speedup seems to be a lack of flexibility 1n the resulting
procecure. Neves and Anderson (1981} have shown that such phenomena
arise paturally from their composition model of speedup, leading to
Einstellung i problem-solving behavior. The list of such successful predic-
tions is small, but at this stage in the development of our science, even
theories that account for the fact of improvement must be considered
major advances.

The reader may have noted that we have focused on learming from
experience, as opposed to learning from instruction or learming by deduc-
tion. Similarly, we have focused on the acquisition of procedures, rather
than the acqusition of declarative knowledge. This reflects a bias of the
editors, and this bias 1s reflected 1n the following chapters {the chapter by
Wallace, Kiahr, and Bluff is the exception, addressing non-procedural
issues). We will not attempt to justify this bias, for certamly non-
procedurai, non-experiential learning 1s equally a part of the human con-
dition and must ultimately be included in any integrated model of human
behavior. However, we should note that our emphasis on procedural,
experience-based learning reflects current trends 1n cogaitive science and
Al so we feel our bias is representative of these fields.

Components of Learning

Now that we have examined some examples of learning tasks, let us turn to
some common features of these tasks. In particular, within any task that
involves learning from experience, one can identify four component prob-
lems that must be addressed:®
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1. Aggregation. The learner must identify the basic objects that consti-
tute the instances from which he will learn. In other words, he must identify
the part-of relations, or determine the appropriate c/nmks.

2. Clustering. The learner must identify whicli objects or events should
be grouped together into a class. In other words, he must identify the
mstance-of relations, or generate an extensional definition of the concept.

3. Characterization. The learner must formulate some general descrip-
tion or hypothesis that characterizes instances of the concept. In other
words, he must generate an intensional definition of the concept.”

4. Storagefindexing. The learner must store the characterization in some
manner that lets him retrieve it, as well as make use of the retrieved
knowledge.

We would argue that any system that learns from experience must address
each of these four issues, even if the responses to some are degenerate. In
fact, we will see that many of the traditional learning tasks allow one to
ignore some of the components, making them idealizations of the general
task of learnming from experience.

For instance. the task of learning from examples can be viewed as a
degenerate case of the general learning task, in that the tutor solves the
apgregation and clustering problems by providing the learner with positive
and negative instances of the concept to be learned. In addition, since only
one (or at most a few) concept(s) must be acquired, there 1s no need to index
them 1n any sophisticated manner—a simple list 1s quite sufficient. Thus,
the task of learning from examples can be viewed as “distilled” character-
zation, since this 1s the only compaonent of learming that must be addressed.
This simplification has proved quite useful to fearming researchers, and
many; of the characterization methods that were initially developed for the
task of learning from examples have been successfully transferred to more
complex problems. ~

Similarly the task of heuristics learning ignores the issue of aggregation,
assuming that individual problem states constitute the objects on which
fearming should be based.*” However, methods for heurstics learning must
directly respond to the clustering 1ssue because no tutor 1s available to
identify positive and negative instances. In fact, within the framework of
fearning search heuristics, the clustering problem 1s identical to the well-
known problem of credit and blame assignment. Methods for heuristics
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fearning must also address the characterization problem because one must
generate some general description of the situations under which each
operator should be applied. Finally, the storage 1ssue has generally been

- ignored in research on heunstics learming because relatively small numbers

of operators have been involved.

Many of the models of speedup invotve some form of chunking, and this
approach can be viewed as another variant on the general task of learning
from experience. In this case the structure to be learned 1s some sequential
or spatiai configuration of perceptions or actions. Unlike the tasks of
fearning from exampies and heuristics learning, chunking tasks forceone to
directly address the aggregation issue because one must decide which
components to inciude as parts of the higher-level structure. However, Inn
most chunking methods the characterization problem 1s made trivial
because new rules are based directly on existing ruies, for which the level of
generality 1s already known. Also even m methods that address 1ssues of
characterization, chunks are based on single instances, so that the clusrer-
ing problem s also bypassed.

Finally, the grammar learning task can be viewed a fourth variant on the
general probiem of learning from experience. Like the chunking task, it
forces one to respond to the problem of aggregation because it must form
sequential structures such as “‘noun phrase’” and “verb phrase.” Like the
heuristics fearning task, 1t requires one to address the clusterug problem
because it must group words mto disjunctive classes like “noun” and
“verb” without the aid of a tutor. It also forces one to deal with character-
ization issues, though in some approaches the set of chunks in which a class
like “noun’” occurs can be viewed characterization of that class. Storage 15
also a significant issue in grammar learmng because many rules may be
required to summarize even a small grammar.

It 1s interesting to note that production system models of learmng
sometimes provide their own answer to the storage/indexing problem
because the conditions of productions can be efficiently stored in a dis-
crimination network that both reduces space requirements and speeds up
the matching process. Forgy (1982) has described this storage scheme in
some detail, and many of the models described in this book rely on Forgy's
approach. Thus, one can argue that withun the production system {rame-
work, only the issues of aggregation, clustering, and characterization must
be addressed. Although some readers may disagree with this assumption,
most of the chapters in this volume adopt it etther implicitiy or explicitly.
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Mecharisms of Learning

In the preceding sections we considered the learning phenomena that re-
quire explanation, followed by the components of learning that any model
must address. In this section we consider various mechanisms that have
been proposed to account for the learning process, both in the following
chapters and elsewhere in the literature.

Within the production-system framework the nature of the recognize-act
cycle constrains the points at which learning can have an effect. There are
three such choice-points; a production system’s repertoire of behaviors can
be changed by affecting the outcome of (1} the process of matching produc-
tions. (2) the process of conflict resolution, and (3) the process of applying
productions. Let us examine different mechanisms that have been pro-
posed in terms of the manner in which they affect the recognize-act cycle.

The most obvious way to affect the set of applicabie productions found
by the matching process is to add new productions to the set. However, this
makes certain assumptions: matching must either be exhaustive, or the new
production must be added 1n such a way that guarantees it will be consi-
dered by the matcher. Waterman’s (1970, 1975) early work took the latter
approach, adding new rules above those productions they were mntended to
mask (since rules were matched in a linear order). The work on stage
models of development (Young 1976) employed similar methods. Alter
Forgy (1979b) presented an efficient method for computing all matched
instantiations, the exhaustive scheme became more popular,

" The earliest approach to creating new rules employed a production-
building command in the action side of productions. This function took an
arbitrary condition-action form as its argument and, whenever the rule
containing it was applied, would instantiate the form and add a new rule to
production memory. Of course, simple instantiations of a general form are
not very interesting,-but one could use other productions {0 construct more
useful rules, which were then passed to the production-building rule. The
OPS family of architectures called this function build, while the ACT family
used the term designate. Although this method was quite popular 1n the
early work on adaptive productions, it has now been largely replaced by
other methods.

Another way to affect the set of matched productions is to modify the
condittons of existing rules or to construct varants on existing rules with
slightly different condition sides.!* In practice, most researchers have
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opted for the latter approach. sometimes to mode] the incremental nature
of human learning and other times to respond to complexities in the
learning task such as the presence of noise. In such approaches, the gener-
ation of variants must be combined with methods for modifymg the
conflict resolution process, so that better variants eventually come to mask
the rules from which they were generated,

Two obvious methods present themselves for modifying the conditions
of productions. Although these mechanisms had been present in the Al
literature for some time, Anderson. Kline, and Beasley (1978) were the first
to use them in models of human learning, labeling them with the terms
generalization and discrimination. The first process mvolves crealing a new
rule {(or modifying an existing one) so that it is more general than an existing
rule, meanwhile retaining the same actions. The term ™ generalization™ has
also been used to denote any process for moving from data to some general
rule or hypothesis, but Anderson mtended a much more specific sense. The
second process of discrimination involves the creation of a new rule (or
modifying an existing one) so that it 15 fess general than an existing rule,
while still retaining the same actions. The two mechanisms [ead to opposite
results, though in most models they are not nverses in terms of the
conditions under which they are evoked.

Within production-system models there are three basic ways to form
more general or specific rules, each corresponding Lo a different notion of
generality. First, one can add or delete conditions from the left-hand side
of a production. The former generates a more specific rule, since it will
match m fewer situations, while the latter gives a more general rule. The
second method mvolves replacing vanables with constant terms, or vice
versa. Changing variables to constants reduces generality, whereas chang-
ing constants to variabies increases generality. The final method revolves
around the notion of class variables or 1s-a herarchies. For example, one
may know that both dogs and cats are mammals and that both mammals
and birds are vertebrates. Replacing a term from this huerarchy with one
below it in the hierarchy decreases generality, while the inverse operation
increases generality,

These techniques have been used m programs modeling behavior on
concept acquisttion experiments (Anderson and Kline 1979), language
comprehension and production at various age levels (Langley 1982; An-
derson 1981), geometry theorem proving (Anderson, Greeno, Kline, and
Neves 1981), and various puzzle-solving tasks (Langley 1982). We wili not
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elaborate on these learmng mechanisms here; Langley describes them in
considerable detail in chapter 3.

Note that methods like discrimination and generalization directly re-
spond to the characterization issue we described in the last section. Both
methods require instances that have been clustered inte some class, and
both attempt to generate some general description of those classes based on
the observed instances. As one might expect, these methods were first
proposed by researchers working on the task learning from examples
(Winston 1975; Hayes-Roth and McDermott 1978: Mitchell 1982; Brazdil
1978).

Once a sel of matching rule instantiations have been found, a
production-system architecture still must make some determination about
which instantiation(s) in that set will be executed. Thus, conflict resolution
offers another decision point in the recognize-act cycle where the behavior
of the system can be affected. This turns out to be particularly important
because many models of human learning attempt to model its incremental
nature, assuming that learming invoives the construction of successively
closer approximations to correct knowledge over a series of experiences.

The knowledge represented in new production rules are essentially hypo-
theses about the correct rules. A learning system must maintain a balance
between the need for feedback obtained by trying new productions and the
need for stable performance obtained by relying on those productions that
have proved themselves successful. This means that a learning system must
distinguish between rule applicability and rule desirability, and be able to
alter its selections as it discovers more about desirability. Production
systems have embodied a number of schemes for performing conflict
resolution, ranging from simple fixed orderings on the rules i PSG (Newell
and McDermott 1975) and PAS (Waterman 1975), to vanous forms of
weights or “strengths” (Anderson 1976; Langley, chapter 3), to complex
schemes that are not uniform across the entwre set of productions as in
HPM (Neches, chapter 4). Combined with certain timing assumptions,
these schemes can be used to predict speedup effects as well as affect more
global behavior.

Any production-system model of learning must take into account the
parameters used during conflict resolution. This concern goes beyond
learning models, since any system with multiple context-sensitive knowi-
edge sources may have overlapping knowledge items that conflict.!?
However, the problems of conflict resolution are exacerbated in a learning
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system because the knowledge items being resolved may change over time
and because new itemns must be added with consideration for how conflicts
with existing items will be handled. Later in the chapter, we will return to
the constraints that learning umposes on acceptable conflict resolution
mechanisms.

After conflicts have been dealt with, the mstantiation(s) selected for
execution are applied. Although the opportunities arising at this point
largely parallel those involved in matching, there 15 little parallel in the
methods that have been propesed. For mstance, one can imagine methods
that add or delete the actions of existing rules, but we know of only one
such suggestion in the literature (Anderson 983).

However, three additional learning mechamisms have been proposed
that iead to rules with new conditions and actions. The first of these 15
known as composition, and was onginally proposed by Lewis (1978) to
account for speedup as the result of practice. Basically, this method com-
bines two or more rules into a new rule with the conditions and actions of
the component rules. However, conditions that are guaranteed to be met by
one of the actions are not included. For instance, if we compose the rules
(AB — CD) and (DE — F), the rule (ABE — CDF) would resuit. Of course,
the process is not quite this simple; most composition methods are based on
instantiations of productions rather than the rules themselves, and one
must take varable bindings into account in generating the new rule. The
presence of negated conditions also complicates matters.

Note that composition s a form of chunking, and thus is one response to
the aggregation problem we discussed earlier. However, the combination
procedure outlined here 1s not sufficient; this must be combined with some
theory about the conditions under which such combinations occur. Some
theories of composition {Lewis 1978; Neves and Anderson 1981) assume
that composition occurs whenever two rules apply in sequence, while
others (Anderson 1983) posit that composition transpires whenever some
goal 15 achieved. Naturally, different conditions for chunking lead to
radically different forms of learning. The chapter by Lewis describes the
composition process in more detail.

Newell and Rosenbloom {1981) have proposed another response L0 the
aggregation issue 1n their theory of learning by chunking, showing that the
learning curves predicted by their model are quite similar to those observed
in a broad range of learning tasks. Rosenbloom and Newell (chapter 3)
present results from this approach to modeling practice effects.
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Yet another mechanism for creating new rules has been called pro-
ceduralization (Neves and Anderson 1981). This involves constructing a
very specific version of some general rule, based on some mstantiation of
the rule that has been applied. Ohisson (chapter 6) has used a similar
mechanism to model learning on transitive reasoning tasks. In some ways,
this method can be viewed as a form of discrimimation learning because it
generates more specific variants of an existing rule. However, the con-
ditions for application tend to be quite different, and the use to which these
methods have been put have quite different flavors. For nstance, dis-
crimination has been used almost entirely to account for reducing search or
eliminating errors, whereas proceduralization has been used to account for
speedup effects and automatization. But perhaps these are simply different
names for the results of the same underfying phenomena.

Additional Learning Mechanisms

Langley, Neches, Neves, and Anzai (1980) have argued that self-modifying
systems must address two related problems: including correct rules for
when to perform the various actions available to the system and developing
imteresting new actions to perform. However, most of the models that have
been developed in recent years have focused on the first of these issues, and
some researchers (e.g., Anderson 1983) have asserted that mechanisms
such as composition, generalization, and discrimination are sufficient to
account for all learning.

Nevertheless. evidence is starting to build up that these processes,
although apparently necessary components of a computational learning
theory, are by no means sufficient. The evidence for this comes from a
number of recent studies that have tried to characterize differences between
the strgtegies employed by experts and novices. For example, Lews (1981)
has documented differences between expert and novice solution methods
for algebra expressions: and shown that the differences coukd not have been
produced by composition. Lewis’ argument consists of a demonstration
that the procedures produced by a process of composition would not
apply correctly in all cases. To ensure that a new procedure would work
correctly, additional rules must be produced by some process other than
composition.

Another example of complex expert strategies appears in Hunter's
(1968) analysts of the procedures employed by a “mental calculator,” a
subject with highly exceptional skills at mental arithmetic. There appear to
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be a number of aspects to the subject’s special abilities. Some, such as
his large collection of number facts, might be explamed in terms of mecha-
nisms like the Neves and Anderson (1981) “knowledge compilation” model.
However, there are many aspects of the subject’s performance for whicl it
1s very difficult to see how syntactic learning mechamisms could have
produced the observed results.

For instance. Hunter found that his subject’s supenior ability to mentally
solve large multiplication problems was due toa procedure that performed
the component multiplications in left-to-nght order while keeping a run-
ning total of the intermediate products. Thus contrasts to the traditional
pencil-and-paper algorithm 1n which cofumns are multiplied right-to-left,
with the subproducts written down and totaled afterward in order to
compute the product. The left-to-right procedure, which drastically re-
duced the working memory demands of any given problem, requires a
massive reorganization of the control structure for the traditional muiti-
plication procedure.

The reorganization involves much more than refinements 1o the rules
governing when suboperations are performed. Such refinements could
presumably be produced by generalization and discnmination mecha-
nisms. However, producing this new procedure requires the introduction of
new operations (or at least new goal structures), such as those involved 1n
keeping a running total of the subproducts. Those new operations, and the
controf structure govermng the sequence of their execution, require the
introduction of novel elements or goals—something that generalization,
discrimination. and composition are clearly not able to do.

Similar conclusions can be drawn from studies on expert/novice dif-
ferences in physics problem solving (Simon and Simon 1978; Larkin 1981).
A general observation 1n those studies is that experts rely on working-
forward strategies while novices are much more inclined to use means-ends
analysis. Generally, the mechanism used to explain this relies on a method
first devefoped by Anzai called “block-elimination” (Anza: and Simon
1979). In this method one remembers a state S in which some desired action
(operator) A cannot be executed because its preconditions are not met. If
heuristic search later generates another action B that eliminates the block-
age (enabling A to be applied), then a new rulein constructed. This rule has
the form: “If you are 1n state S and you want to apply action 4, then try to
apply action B.” In other words, this approach leads to new subgoals and
to rules that propose when they should be generated.
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“The examples presented thus far provide motivation for seeking learning
mechanisms beyond composition, proceduralization, generalization, and
discrimination. However, our argument has rested on cases in which no
evidence was available about the intermediate forms of the acquired proce-
dures. There are very few studies in which learning sequences, and the
intermediate procedures produced within them, have been directly ob-
served. Fortunately, a similar picture emerges from two studies in which
those observations could be made.

In the first of these studies, Neches (1981b) traced procedure develop-
ment in the command sequences issued by an expert user of a computer
graphics editing system. In doing this, he found a number of changes that
involved reordering operations and replanning procedure segments on the
basis of efficiency considerations. In the second study, Anzai and Simon
(1979) examned a subject solving and re-solving a five-disk Tower of
Hanoi puzzle. They found a number of changes in procedure that seemed
inconsistent with strict composition / generalization /discrimimation mod-
els. These inciuded eliminating moves that produced returns to previ-
ously visited problem states, establishing subgoals to perform actions that
climinated barriers to desired actions, and transforming partially specified
goals (e.g., moving a disk off a peg) into fully specified goals (e.g., moving
the disk from the peg to a specific other peg).

A key observation about these examples is that the learning appears to
involve reasoning on the basts of knowledge about the structure of proce-
dures in general, and the semantics of a given procedure 1n particular. In
each of the examples we have considered, procedures were modified
through the construction of novel elements rather than through simple
deletions, additions, or combinations of existing elements. This leads us to
believg there exist important aspects of learning that involve the use of both
general and domain-specific knowledge about procedures. Neches (chapter
4} examines this form of learning 1n more detail.

1.4 Implications of Learning for Production-System Architectures

In the preceding sections, we have been concerned with the mapping
between learning phenomena {viewed from a psychological perspective)
and explanations of these phenomena in terms of production systems.
Attempts to build production-system-based learning models have ied,
among other things, to a much better understanding of what does and does
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not work i production-system architectures. In thus section, we try to
summarize the lessons that that have been learned for three major aspects
of production systems.

Pattern Matching

In practice, languages for expressing production conditions generally
turn out to be fairly simple. In particular, they generally rely on pattern-
matching rather than the testing of arbitrary predicates. That is, the lan-
guage of condition sides describes abstract configurations of data elements.
A production’s conditions are said to be satisfied when data in working
memory instantiates the described configuration in a consistent manner.
This means that the condition side specifies a pattern consisting of con-
stants and variables, and the data 1n working memory matches that pattern
by utilizing the same constants in the same places as they appeared in the
pattern, with constants that correspond to variables in the pattern appear-
ing consistently in the same places as those vaniables.

The description in the preceding paragraph may seem both obvious and
redundant, given our discussion of production systems. However, note that
rule-based systems need not operate within a pattern-matching paradigm.
In principle, the condition sides of production rules couid be arbitrarily
complex and have arbitrarily powerful predicates.’® From a logical stand-
point, any class of expressions that evaluated to true or false (applicable or
not applicable) couid serve to specify production conditions. It is worth-
while to examine the advantages of the pattern-matchung paradigm. We will
argue that there are three constraints on production systems that have
emerged from learning research and that the pattern-matching paradigm
serves to satisfy:

i. Efficiency and adapuwity. Since the grain size of productions 1s rela-
tively small (i.c., little happens with each production firng), and since
fumans are reai-time systems that must make timefy responses to external
events, 1t 15 important to iterate through the recogmze-act cycle as quickly
as possible.

2. Even granularity. Learming mechamsms often depend on taking frag-
ments of different existing rules, making inferences about the contribution
of those fragments to the “success’ or “failure” of the rule, and modifying
rules by adding or deleting those fragments. Therefore, it ts important that
those fragments all represent small and approximately equal units of
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knowledge. If a fragment represents too large a decision, then the reasoning
that went into that dectsion is not accessible to learning mechamsms. This
means that that reasomng cannot be re-used elsewhere if it 1s correct, and
cannot be corrected if it 15 not.

3. Analyzability. As just mentioned, learning mechanisms operate by
manipufating fragments of rules (or instantiations of rules}, either to
construct new rules or to “edit” existing rules. This can only occur if the
mechanisms can predict the effect their mampulations will have on
behavior, and this in turn requires that there be consistent principles about
the nature of conditions and the effects of altering them. Put another way,
for learning mechanisms to operate n a domain-independent way (i.e.,
without built-in knowledge about the domain in which learning is taking
place}, these mechanisms. must operate on the structure or syntax of
productions rather than on their content or semantics.

To understand the implications of these constraints, let us first consider
why they rule out the extreme opposite of pattern matching: using the
connectives of first-order predicate calculus to combine predicates m-
plemented as functions that return a truth value. In a rule-based system
that allowed such conditions, one could generate rules with condition sides
that required extremely long (if not infimte} amounts of time to test, thus
violating the efficiency constraint. It would be possible to (in fact, it would
be difficult nof to) have 2 set of predicates that differed widely in their
complexity, sophistication, and generality, thus violating the granularity
constraint. The absence of restrictions on the form of expressions (much
less the content of the predicates) would make it very difficult to predict the
effects of any but the simplest changes to a condition side. This means that
fwo syntactically equivalent modifications could have semantically quite
different effects, due to differences between predicates. Thus, the analyza-
bility constraint 1s aiso violated.

Caonflict Resolution

Something like the analyzability constraint for pattern matching applies to
conflict resofution as well. In order for [earning mechamsms (o alter
behavior, the productions they generate must be applied, which in turn
means that they must be selected for application. Frequently, to achieve the
desired effect of altering behavior, the new rule must “mask™ some other
rule that previously would have fired in the current circumstances; in other
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words, the new rule must be selected in piace of the old rule. This means
that the mechanisms that create and modify new rufes must be designed
with significant respect for the mechanisms of conflict resclution, and vice
versa.

The earliest versions of production systems relied on a conflict resolution
policy called “production ordering,” in which the set of productions was

" completely ordered by each rule’s position 1n a list. The highest-ranked

production whose conditions were satisfied was selected for finng. In some
variants on this approach, productions were only partially ordered; these
systems assumed that the conditions on the unordered productions would
be mutually exclusive. Lacking any efficient method for computing all
matches, this conflict resolution scheme was a natural approach.

Difficulties arose for this approach when a new production was added to
the set, since some mechanism had to decide the position of the new
production in the ordering. One solution was (o blindly add the new
production to the top of the list. Waterman (1975) employed a more
sophisticated method, adding a new rule immediately above the highest
existing rule that shared a condition element with the new rule. The
reasoning behind this heuristic was that any rules sharmg a common
condition were likely to be reiated, and that old rules shouid be masked by
new rules since the new rules are likely to be improvements.

The problem with this approach (and others we will be considermg) is
that it still has only a weak notion of which rules are related 1n the masking
sense. Consider the following example from Neches’s goal-oriented HFM
system (chapter 4). At any point in time, a number of different goals may be
“active,” which means that they are posted as requiring attention. Toavoid
a proliferation of goals, the system must terminate unnecessary or un-
achievable ones as eariy as possible. Productions that do so will appear {o
have much in common with productions that help process such goals. Yet,
if the system acquires a new goal-processing production, ths rule shouid
not mask any goal-termmating productions. The syntactic nature of
production-ordering methods makes it difficult to find a place to add new
rules that will respect such constramts.

Production ordering also fails to satisfy a number of other criteria foran
effective conflict resolution policy. The most important 15 mamtaining
balance between persistence on existing goals and sensitivity to changes n
the environment. (For a more thorough discussion of these issues, see
McDermott and Forgy 1978.) The production system must give enough
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priority to the results of its own recent activity to focus on a goal and carry
it through to completion (as opposed to oscillating between many different
goals while only stowly making progress on any given goal). At the same
time, humans must interact with an external environment, and this requires
that production system models of human behavior be able to shift attention
n response to events in the outside world.

In order to meet these demands, production systems generally employ a
hybrid approach, in which the set of applicable productions 1s whittled
down by applying a sequence of conflict resolution policies, rather than a
single all-encompassing policy. OPS2 (Forgy and McDermott 1977) 1s an
example of this approach. The OPS2 conflict resolution scheme operates in
five successive stages:

I. Refraction. Onceexecuted, annstantiation of a given production may
not be executed again (until one of the matched elements has been deleted
and readded to working memory).

2. Recency. Production instantiations matching recently asserted data
should be selected over those matching older data.

3. Specificity. Instantiations of productions with the greatest number of
condition elements and constant terms should be selected.

4. Production recency. Instantiations of recently created productions
should be selected over those from older productions.

5. Random selection. If the preceding rules were not sufficient to produce
a unique selection, then a production instanfiation should be chosen at
random.

These policies were intended to satisfy a2 number of concerns. Refraction
en_s{fred#that the system would move on to new tasks and would not tend to
enter infinite loops. Recency ensured that the system would not tend to
oscillate between goals but would focus on the most recent one, attending
to that goal until it was accomplished. At the same time, this policy still
allowed for switching attention in response to external events, since those
also would entail new data in working memaory.

The third criterion, specificity, attempted to ensure that the “best”
production would be sefected. Since rules containing more conditions and
more constant terms tend to be more specific than those with fewer con-
ditions or constants, and therefore the one most closely tailored to fit the
current situation, they should be most appropriate. The criterion of pro-
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duction recency was intended to favor the results of learning. Much like the
notions behmd production ordening, the assumption was that new rules
were likely to be improvements over old rules and therefore should be given
an opportunity to mask the prior ones. The final policy of random selection
was intended to ensure that the system would only fire one production per
cycie; in parallel systems that allow more than one production to be
executed in a cycle, it 15 possible to execute productions that are at cross-
purposes.

Policies like those in the QPS family of languages have generally been
successful at controlling production systems which do not change greatly.
They have been used in practical applications, such as McDermott’s (1982)
RI expert system, mnvolving large numbers of productions and calling for a
high degree of efficiency. However, though they are clearly an improve-
ment, such policies have not proved completely satisfactory where learning
is concerned. Fortunately, Forgy’s (1979b)} work on matching provides a
method for efficiently computing all matched rules. This in turn provides
considerable flexibility in the conflict resolution process, so that one 15 not
locked into a particular set of decision cnteria.

One early target of dissatisfaction concerned criteria that favored newly
acquired rules over older rules. Such policies ignored the need for learning
mechanisms that relied on incremental refinement of rules. Any policy that
always favors new productions ignores the possibility that intermediate
stages of learning might produce errorful rules. Furthermore, such a policy
provides no help in selecting between multiple vanants of an existing rule
which are generated by some learning mechanisms. Langley’s work on the
AMBER and SAGE systems (chapter 3) illustrates both the problems and
the general approach taken toward solving them in many recent produc-
tion systemn architectures.

The basic idea was to introduce a notion of production strength as a
factor 1n conflict resolution. The strength (or weight) of a productionis a
parameter that is adjusted to indicate the system’s current confidence in the
correctness and/or usefuiness of that rule. There have been a number of
different approaches taken in various production system architectures
toward making use of this general concept. In some variants, the strength
or weight of productions are subject to a threshold; rules below the thres-
hold ssmply are not considered. In other variants, the strength is a positive
factor in selection; “stronger” rules are preferred over weaker ones. In still
other variants, the notion of strengti: 1s used to make selection less deter-
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ministic; strength is treated as a measure of the probability that a rule will
fire given that its conditions are satisfied.

Although these vanants all make different statements about the precise
usage of production strength, the particular mechanisms all serve a com-
mon purpose—enabling a phase of evaluation and testing for proposed
rules. rather than forcing an all-or-nothing decision about them. To this
end, mechamisms for affecting the strength of a rule are needed. Some
researchers have postulated automatic mechamsms. For example, in
Langley’s AMBER and SAGE systems a rule is strengthened gach time a
learning mechamsm rediscovers it; thus, more wéight is given to rules that
have been learned a number of times, even if they have been created by
different learning methods.

Although the notion of production strength is probably the major
change in production system architectures that has resulted from research
on learning, other problems have also received attention. In particular,
Neches (1981b) has argued that a uniform conflict resolution scheme places
an excessive burden on learning mechanisms. (By a uniform conflict reso-
lution scheme, we mean a set of conflict resotution policies that are applied
consistently to all applicable productions with no special exceptions.) The
argument, which 1s only briefly touched on in his chapter in this volume, is
that a uniform conflict resolution scheme forces several different kinds of
knowledge to be confounded in the conditions of productions. Three kinds
are particularly important:

|. Conditions that define the context in which the production is ap-
plicable—in other words, knowledge about the circumstances in which 1t
is meaningful to execute the production.

2. Conditions that enable processing on the action side of a rule, usually by
causm’é values to be assigned to varables that are referenced on the action
side—in other words, knowledge about prerequsite information for oper-
ations on the right-hand side.

3. Conditions that serve to affect flow of control by causing otherwise
applicable productions to be inapplicable or by affecting the ranking of
applicable productions during the selection process—in other words,
heuristic knowledge about desired sequencing of productions.

In response to these observations, Neches has proposed having different
conflict resolution associated with different classes of rules, with each class
being responsible for different aspects of behavior.
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Working Memory

All modern notions of the human information processing architecture,
although differing in their details, agree on the importance of distingmsh-
ing two aspects of memory. On the one hand, there seems to be a limited
capacity working memory that changes rapidly over time. Working mem-
ory plays the same role for humans as inputfoutput buffers and processing
registers play for computers. On the other hand, there s also a large
capacity, long-term memory that is much more stable. We have already
seen how production system models instantiate this distinction.

The production system for subtraction that we presented earlier was
quite simple, requiring only a few types of working memory clements.
However, this was a performance model, and learning sysiems require
more information than is strictly necessary for performance. 14+ This extra
information must be retained somewhere, and the most likely place is
working memory. Thus, a focus on learning imposes constraimts on modeis
of working memory that would not anise from a concern with performance
alone.

The state of the art 1s not sufficiently advanced that we can exhaustively
list all of the different kinds of information used by learning mechanisms,
but we can extract a partial list from the mechamsms discussed elsewhere mn
this chapter. For example, the minimum information requirements of
composition methods are behavioral records (in the form of at least two
production instantiations), afong with temporal information (in the form
of the sequential ordering between the two instantiations).

Generalization and discrimination methods require more information,
inciuding knowledge of the success/failure of rules and the contextin which
that success or failure occurred. In simple tasks such as learning from
examples, immediate feedback 15 provided to the learner. However, more
complex learmng tasks require the system to mfer the success or failure of
individual rules; Minsky (1963} has called this the credit assignment prob-
jem. Moreover, since credit or blame may not be assigned to a rule until
jong after it has applied, the context of that application {generaily the state
of working memory at that point) must be stored for later retrieval,

For example, when generalization and discrimmation methods are used
to determine heuristic conditions for problem-sofving operators (Sleeman,
Langley, and Mitchell 1982), the learning system must retain information
about its search toward a problem solution. After the problem is solved by
weak search methods, feedback is obtained by asking whether or not
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actions that were tried were on the final solution path. Credit assignment is
performed by attributing success to the-productions that suggested actions
on the solution path, and by attributing failure to productions that sug-
gested actions leading off the final solution path. In these more sophisti-
cated models, information must be retained about the sequential ordering
of previous knowledge states, as well as the states themselves.

Similar themes can be found in Anzai’s work on “learning by doing,”
which is reviewed as part of chapter 2. Anzai models a number of comple-
mentary processes that contribute to the development of procedures for
solving problems that can initially only be solved by general search
methods. His view of learning involves several phases. In the first phase a
system learns to a narrow the search space by avoiding unproductive
branches in the search tree (“‘bad moves”). The key to this phase is the use
of heuristics for identifying bad branches, such as noting action sequences
that return a problem solution to a previous state. This first phase imvolves
retaining much the same sort of knowledge as required by generalization
and discrimination.

In Anzai’s second phase of learning, a system attempts to infer subgoals
(“‘good moves’"). This depends on noting actions that cannot be carried out
when they are first proposed because some preconditions are violated but
that are applied later, after another action has satisfied those precon-
ditions. This second phase of learning requires information that goes
beyond that needed for the first phase, since 1t must retain in memory both
unsatisfied goals and the reasons they were not satisfied. More generally,
the kind of information being retained has to do with planning, that is, the
consideration of actions separate from the performance of those actions.

Anzai’s later phases of learning mvolve acquiring associations between
actton sequences and the subgoals learned in the second phase, as well as
grouping sequences into useful umts. Thus, the subgoals acquired in the
preceding phase now become additional information items that must be
retained.

The developmental mechanisms described in chapter 8 on BAIRN
by Wallace, Klahr, and Bluff rely on analyzing and comparing multiple
sequences of actions. The information required fo do so s organized
primarily at the levet of “nodes,” which are groups of related productions.
(Nodes may be loosely analogized to Anzai’s subgoals, but are much more
fundamental to the BAIRN architecture.) A “time line” represents the
chronological sequence of node activations, along with the activating
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input, the resulting state, and a flag for cases of unexpected results. (Thus,
information about expectations s an additional mplicit aspect of the
information demands of their fearning model.} If a node s 1n “focal
conscrousness” (i.e., in the foreground of conscious attention), then n-
formation is also retained about the sequence of productions fired in the
course of processing that node. In addition to this information, the learning
mechanisms also make use of an “experience list” assoaated with each
node, which contains the memory of action sequences that commonly
follow the given node. BAIRN also makes use of information about the
applicability conditions of nodes, and about therr superordinate/sub-
ordinate relationships io other nodes.

The strategy transformation model described in Neches’ chapter focuses
on the refinement and optimization of procedures that are already well
defined. His approach postufates a set of heuristics for detecting opportu-
nities to improve the cognitive efficiency of procedures. After analyzing the
information requirements of these heuristics, he proposed 1] information
categories utilized by his learning mechanisms.'® Most of the cases de-
scribed here also seem to fit into these categories:

1. Goals and procedures.

2. Episodes—the structure representing a single problem solution.

3. Events—individual instances of goals with particular inputs.

4. Inputs—nternal concepts or representations of external states consi-
dered by a goal.

3. Results—concepts or state representations resulting from a goal.

6. Relationships between goals and therr subgoals.

7. The effort associated with achieving a goal.

8. Temporal ordermgs of events (or production finngs).

9. Processmg information (size of working memory, presence in working
memory, etc.).

10. Descriptive mformation—assertions about properties associated witha
concept.

1. Frequency mformation—knowledge about how frequently a concept is
accessed.

The work by Neches and others indicates the large variety of information
that is prerequisite to learming. This also has implications for the sheer
ameunt of information that a learning/performance systemn must be able to
sift through. Models of performance, or even of particular learning mech-
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anisms, can gloss over this issue by considering only the mformation
relevant to the topic being modeled. However, a complete model of an
informatton-processing system must handle the entire range of information
categories.

Since a system cannot know in advance what information it will need in
order to learn, it must be prepared to cope with all information that it 1s
likely to need. There are two ways in which it could do so. One is a strategy
of neglecting some of the information available, perhaps even on a random
basis, and relymg on the large number of learning opportunities presented
by the world to ensure that important aspects that are missed on one trial
will be found on another. The other is a strategy of retaining all sorts of
information and relying on strong attention-focusing processes to sift out
information that will lead to productive learning. The distinction between
these two approaches centers on whether the amount of potential infor-
mation is reduced to manageable quantities by refusing to represent the
full set to begin with, or by attending to items selected from a relatively
larger pool.

We have just seen that the range of information required for learning can
be rather broad. Mechanisms of the first sort, those which try to neglect
information, would have to be very weak and would have to be designed to
err 1n the direction of keeping unnecessary information. Any other alter-
native risks eliminating juxtapositions in memory of information items
critical to learning. Therefore, mechanisms for controlling focus of atten-
tion—already an important issue in production system architectures
because of the data-driven nature of such systems-—become a vital concern
in production system architectures for learning. This is particulariy so
when we wish to map such production system architectures back to models
of human informatton architectures.

There are a number of critical choice points in the design of a production
system architecturé where the attention-focusing issue must be addressed
(Neches 1982). These primarily fall into two classes: processes governing
the contents of working memory and processes goverming conflict reso-
lution. Processes involved in conflict resolution contribute primarily in an
indirect way, by enabling processes that manage working memory to be
designed in ways that mimimize working memory size.'® For example, as
Neches argues in his chapter, systems that allow multiple productions fo
fire within a single cycle reduce the amount of time that data must reside in
memory before receiving attention. This allows data to be moved out of
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workmg memory sooner than would otherwise be possible, thereby reduc-
ing the amount of information requiring space 1n working memory at any
given point n time.

As the size of working memory grows, so do the difficuities of a system
trying to sefect productions and maintain a consistent pattern of behavior,
simply because the number of distracting alternatives increases. Thercfore,
itis important to keep working memory relatively small. The processes that
move information into working memory have to be oriented toward enter-
g as little as possible. Processes that remove items {from working memory
need to be oriented toward eliminating as much as possible and toward
doing this as soon as possible.

1.5 Summary

The goal of this chapter has been to provide both an overview of
preduction-system architectures and a perspectrve on the 1ssues that arise
in applying them to the areas of learning and development. We have
attempted to provide readers with a framework for understanding the
~ different systems described in this book 1n terms of the issues that each
system was designed to address. Our framework rests on three fundamental
premuses:

b, The structure of production-systent architectures provides msight into the
nature of the fuuman mformation-processing system architecture. This prem-
1se derives from observations about sinilarities in terms of both structural
organization and behavioral properties. Structurally, production systems
provide analogies to (and, m fact, have heiped fuel} modern cogmitive
psychology’s notions about the relationship between long-term memory
and short-term working memory, and about the interaction between pro-
cedural and declarative knowledge. Behaviorally, strong analogies can be
seen between humans and production systems with respect to their abilities
< o mix goal-dniven and event-driven processes, and with their tendency to
- process information in parallel at the recognition [evel and serially at higher
cognitive levels.

2. Learning is the fundamental aspect of intelligence; we cannot say that we
- understand intelligence. or the structure of the human mund, until we have a
model that accounts for how it learns. Although the first 20 years of the
" information-processing approach to psychology paid little attention to
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learming, 1n recent years its centrality has been reasseried by many resear-
chers (cf. Anderson 1982; Langley and Simon 1981).

3. All information-processing-system architectures. whether human or ar-
tificial, must obey certain constramts in order to facilitate the process of
learning. It is these constramts that give rise to the seemungly complex
particulars of individual production system architectures. Thus, following
from our second premise, an understanding of production-system models
of learmmng and development 15 not just a step toward understanding of
machine fearning. It is a step toward understanding the nature of human
learning and. by extension, a necessary step toward a complete understand-
ing of both human and machine intelligence.

Given these prenuses, the starting point for discussion has been the
adaptation of the generic architecture of production systems to the specific
needs of learning. All production systems consist of a working memory, a
collection of condition-action rules that apply to and operate upon that
memory, and a processor that executes the recognize-act cycle of selecting
productions to apply and evaluating them to determine their effect upon
the working memory. In considering the learning-relevant specializations
of this generic description, we emphasized two broad topic areas: the nature
of the learning task, and the choice-ponts for introducing learning mecha-
nisms fito production-system architectures.

The Nature of the Learning Task

Throughout this chapter we reiterated two different, but complementary,
themes about the design issues that researchers in learning must face when
building a particular learning model. We urge readers to consider the
following chapters with respect to the checklist of issues that can be
constfucted from these two themes. The first theme was essentially oriented
toward characterizing the methods necessary in a complete learming
system. The second was concerned with the goals of learming systens.
First, under the rubric of “components of learning,” we presented some
assertions about requirements for learning systems. We argued that there
were four subproblems that all learning researchers must address—either
by providing mechanisms in their model, or by narrowing their self-
assigned mission so as to render the requirement moot. Aggregation is the
problem of identifying the data from which learning will be done, scparat-
ing sipnal from noise. Clustering is the problem of developing extensional
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defimtions for concepts based on those data (e.g., recogmzing positive and
negative mstances of a concept). Characterization is the problem of devel-
oping intensicnal hypotheses or descriptions of concepts and classes identi-
fied in clustering, so that instances not previously encountered can be
recognized and utilized. Storage/Indexing 1s the problem of saving those
characterizations so that they can be retrieved and applied in appropriate
situations.

Second, under the vanous headings of “correct versus interesting’ oOr
“applicability versus desirability,” we suggested that learning is focused
toward some purpose. Learning systems must address two concerns. They
must ensure that the conditions of their new rules are (or eventually will
become) correct, in the sense that the rules are applicable whenever appro-
priate and not applicable under any other circumstances. They must also
ensure that the actions of these rules are useful, 1n the sense that there is
some criteria by which the system is better off for having behaved according
to its new rules rather than its oid ones. Not everything that could be
learned 1s worth learmng; therefore mechanisms that produce correct rules
do not necessarily produce useful rules.

Introducing Learning Mechaanisms into Production-System Architectures

Operationalized into production-system terms, a system has “learned” if,
as a result of experience, 1t comes to apply a different production in some
situation than it would have applied in the equivalent situation at an earlier
point in its lifetime. Given the processing cycle of production-system
architectures, all learning mechanisms can be characterized as seeking to
accomplish this goal by mampulating one or more of the following pro-
cesses withmn that cycle: production matching, cenflict resolution, and
application.

We also presented several constraints to which learning systems are
subject, and argued that the natures of both fearning mechamsms and
production-system architectures are shaped by the need to interact in ways
that satisfy these comstramts. Among the constraints considered were
efficiency and adaptinty, even gramdarity of ruies, and analyzability of
riles. In preceding sections, we indicated how these constraints have led
modern production-systemn theories in particular directions. These in-
clude favoring exhaustive pattern-matching processes over other possible
ways of stating and testing production conditions, moves toward refined
conflict resolution techniques invoiving notions like “strength” of produc-
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tion rules, and an increased emphasis on building a sensitivity to goals into
the architecture for both conflict resolution and control of working mem-

ory conteints.
We hope that the present chapter has provided a useful overview of

production systems and their role in modeling learning and development.
As we will see in the following chapters, different researchers have taken
quite different paths in developing self-modifying production systems.
However, underlymg these differences are a common set of goals and
a common framework, and it is these common COnceras that we have at-
tempted to present. We believe thati the production-system approach
holds great promise for understanding the nature of human learning and
development, and we hope that future researchers will build upon the
excellent beginning described in the chapters that follow.

Notes

Preparation of this chapter was supported in part by a grant from the Spencer Foundation io
David Kiahr, and in part by Confract NO0014-85-15-0373 from the Personnel and Traimng
Research Program, Office of Naval Research, to Pat Langiey. We would ke to thank Mike
Rychener and Jelf Schiimmer for cormments on an carlier version of the chapter.

i, We usc the term ““production system™ in two distinct senses. The first refers to a theory of
the cognitive architecture, independent of particujar programs that are impiemented within
this framework. The second refers to specific sets of condition-achion rules that run within
such an architecture. In penerai, the intended meanmg should be clear from the contexl,
Within artificial intelligence the term “production system’™ sometimes inciudes backward
chasmng rule-based systems, such as that wsed in MY CIN (Shortliffe 1976). However, we will

use the term in the more limited (forward chaining) sense.

3. Since there arc len digits, some 45 binary greater-than relations exist, Rather than storing
these explicitly i working memory, one might insert a LISP function in the condition side to
{est whether this relaton s met. Although this 1s not psychoiogically piausible, 1t considerably
simplifics the implementation.

3. Thi# representation may be provided directly by the programmer, ot it may be generated
automatically by the system {rom linear mput, using another set of rujes. In any case, we will
1pnore this pre-processing-stage to keep our exampie as simple as possible.

4. Formstance, nearly ail work on heuristics learning has represented procedures in terms of
condition-action rufes or productions.

5. However, PAS aided the copnitive simulation effort indirectly because Walerman and
Newell (1972) used it to construct a sequautomatc sysiem for analyzing verbai protocols.

6. Bundy (1984) discusses the difficultics of deflining “learning”’ in some detail.

7. Typically, these are presented as sentence-meaning pass, though 1t is theoreticaliy assumed
that the child rmust infer the meanings from context.

8. Fisher and Langiey (1985) have used some of these components Lo analyze methods for
“conceptual ciustering,” while Easterlin and Langley (1985} have examined their role in
concept formation.
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9. This 15 often called the “generalization” problem, but since this word has an ambiguous
meaning, we will avoid 1ts use here.

0. Thjs 18 nat compiletely true, as we will see in chapter 3, but it has been true of the majonty
of work on fearning scarch heunstics.

i1, For this to be different from simply adding a new production, anothter constraint s
required: the conditions must be composed of stmple parts, rather than invocalions to very
powerful predicates. I such predicates were allowed, one mught change the matched sct by
redefining some predicate 1n an arbitrary manner. Although theoretically possible, thus
scheme would make the learning process Gopelessly complex.

i2. "'Ihe traditional example used to illustrate this potnt contrasts the iwe pieces of decision-
making advice: “Look before you leap™ and “He who hesitates is lost.”

i3. For an extreme cxample of this approach, see Lenat (1977).

i4. For exampie, Neches {1981b) compares a production system for learning an addition
procedure (also described in chapter 4) with another productios system that was adequate for
performing the 1ask but that did not carry the mformation needed for his fearnig mechanisms
to operate. Although the number of productions contamed i the two systems was approxi-
mately t_hc same, the “"complexity’” of the productions needed i the icarming system was
almost three tsmes greater for both of two different measures. (Complexity was measured by
the number of symbeois and the number of propositions appearing in the production.)

I.S. There 15 an impiied twelfth category: informaton about production mstantiations, e,
linkages between concepts referenced it & preduction’s condition side and to the concepis
resuiting from 1ts action side.

6. At first blush, 1t might seem that atiention focusing could also be aided by mechanisins
that did not have to exhaustively consider all production maiches. However, as we have seen
elsewhere 1 this chapter, such mechanisms greatly increase the difficulty of adding new
productions, and thus seem mappropriate lor intelligent [earning systems.
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