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Abstract 

This paper uses the signal detection theory (SDT) to 
investigate the contribution of visual information to two 
monitoring-dependent functions, metacognitive awareness of 
errors and error corrections. Data from two experiments 
show that complete removal of visual outcome results in a 
mild decrease in error awareness and a much more significant 
decrease in correction rates. Partially restoring visual 
information by including positional information (as in masked 
password typing) causes a modest but statistically significant 
improvement in correction performance. Interestingly, 
participants treat the change to the quality of information 
differently across the tasks, with more conservative behavior 
(avoiding false alarms) in the correction task. These findings 
show the SDT’s ability to quantify, in a graded manner, the 
contribution of specific types of information to monitoring in 
complex tasks, while also providing additional information 
about how participants handle the change to the quality of 
information in a task-dependent manner.  

Keywords: language production; signal detection theory 
(SDT); monitoring; error awareness; typing. 

Introduction 

Monitoring refers to processes involved in the 

surveillance of one’s cognitive and motor operations in 

order to ensure a satisfactory outcome. Complex cognitive 

operations, such as language production, are often carried 

out fluently and with few errors because of efficient 

underlying monitoring and control processes (Nozari, 2018). 

But what is the nature of such processes? Broadly speaking, 

there are two types of processes for action monitoring: 

external monitoring mechanisms are those that rely on the 

outcome of performance (with or without additional reliance 

on internally generated representations). Internal monitoring 

mechanisms, on the other hand, refer to mechanisms that 

rely entirely on internal representations to estimate the 

likelihood of errors before they become overt. Monitoring in 

language production is a good example for showcasing this 

dichotomy: people can hear what they say, or see what they 

write or type and judge its accuracy via auditory and visual 

systems, respectively (external-channel monitoring; e.g., 

Guenther, 2016). At the same time, a large body of past 

work has shown efficient monitoring when people do not 

have access to the outcome of the process, supporting 

alternative mechanisms that monitor performance internally 

(internal-channel monitoring; e.g., Hickok, 2012; Nozari et 

al., 2011). The question remains: How is labor divided 

between these two monitoring channels? This study uses 

signal detection theory (SDT) to answer this question.  

Language production monitoring as SDT 

The challenge of answering questions about the 

contribution of external vs. internal monitoring channels to 

monitoring stems from the fact that models of external and 

internal monitoring often propose very different 

mechanisms. To quantify performance across such models, 

a common currency is needed. A suitable candidate for such 

currency is the notion of conflict (Botvinick et al., 2001). In 

some monitoring models, conflict has been defined in a 

specific way. For example, Nozari et al. (2011) proposed an 

internal monitoring mechanism in which the probability of 

an error was estimated by detecting conflict between two 

representations (e.g., lexical representations of “cat” and 

“dog”). In this model, conflict is defined as the inverse of 

the difference between the activation of two representations 

within the same layer of the language processing system.  

Other models do not resort to an explicit definition of 

conflict. Nevertheless, the concept of conflict can still be 

defined for such models. For example, Hickock (2012) 

proposed a mechanism in which a lexical item activates both 

its corresponding motor and sensory nodes. The former then 

suppresses the latter via the inhibitory connections. On error 

trials, the concept activates different motor and sensory 

nodes. Consequently, the sensory node, which could not be 

suppressed, remains active and generates an error signal. 

This account can be easily reframed in terms of conflict 

between two different layers of the language processing 

system (sensory and motor layers): during a correct 

response, the suppression of perceptual representation leads 

to low conflict between motor and perceptual 

representations. During an error trial, the high activation of 

the perceptual representation creates conflict with the motor 

representation.  

Finally, accounts such as forward (and inverse) models 

that compare the sensory consequences of a motor 

command to the actual sensory input generated by the 



outcome (hence their categorization as external-channel 

models by our definition), effectively calculate conflict 

between predicted and sensory inputs within the same layer 

of the language processing system (Guenther, 2016). In 

short, the notion of conflict can be used more broadly to 

capture something essential about monitoring: regardless of 

the specific mechanism, the predictions of all the monitoring 

models can be quantified as higher conflict (within or 

between layers of representation) on error compared to 

correct trials.  

The advantage of defining a common currency across 

different monitoring accounts is that a unified framework 

can be created to answer questions that are not specific to 

individual mechanisms, but instead encompass multiple 

monitoring mechanisms. Specifically, we are interested in 

whether —and to what extent— removing the outcome of 

production affects monitoring performance. This question, 

by definition, requires starting with a framework in which 

both external and internal monitoring mechanisms 

contribute to the process, and investigating the change to 

performance when the impact of one is reduced. Figure 1 

shows this general framework in SDT terms. Production can 

have two possible outcomes: correct and error trials. Over 

many trials, two distributions emerge based on these 

response types. Importantly, the two distributions are, on 

average, associated with different values of conflict (see 

above for a model-independent definition of conflict). 

Monitoring can thus be viewed as a decision (albeit implicit) 

based on the amount of conflict. This decision, according to 

SDT, is determined by two factors: the distance between the 

two distributions, indexed by d́', and the location of the 

criterion c (defined as the number of standard deviations 

from the position of the ideal observer, i.e., the location at 

the junction of the two distributions), above which 

responses will be labeled as errors and below which as 

correct (SDT-type 2, see Wixted, 2020, for a review). The 

value of d́' is a function of task difficulty and state of the 

production system, while the criterion depends on 

participants’ goals (Nozari & Hepner, 2019).  

In this framework, it is possible to investigate the effect of 

subtracting one kind of information (e.g., the outcome of 

performance or external input) on both d'́ and criterion. 

This, in turn, allows us to contrast different outcomes of 

monitoring. We target two such outcomes in the current 

study: error awareness (i.e., consciously reporting that an 

error has been committed), and error correction (attempting 

a repair). Since there is evidence that, at least in some tasks, 

repairs may be attempted in the absence of conscious 

awareness of errors, these two processes are potentially 

dissociable (e.g., Charles, Van Opstal, Marti, & Dehaene, 

2013).  

To investigate the effect of removing external information 

on error awareness and correction, we use a typing task, as 

an example of a language production task, for three reasons: 

a) past work has shown a strong influence of linguistic 

factors on typing, as well as a clear resemblance of typing 

errors to spoken errors, showing that typing is indeed a good 

example of a complex language production task (Pinet, 

Ziegler, & Alario, 2016; Nozari & Pinet, 2018). b) Unlike 

spoken production, in which the complete removal of the 

auditory signal via noise-masking is problematic because of 

bone conduction, the visual external input can be easily 

removed from typing. Finally, c) corrections in typing are 

clearly marked by the use of backspace, removing any 

subjectivity about whether a correction attempt has been 

made or not. In addition to these advantages, recent data 

show that monitoring shows the same general indices of 

monitoring found in action monitoring (Pinet & Nozari, 

2020), making the findings of this study informative both 

for language production and for general action monitoring 

accounts. 

 

Figure 1. Monitoring in the SDT framework. Note that d́' is 

directly dependent on the distance between the two 

distributions. Criterion, on the other hand, can be placed at 

any location. 

Figure 2. Trial structure in Exps 1 (a) and 2 (b). Exp 2 

follows the same general structure as in Exp 1, with an 

additional condition. f = feedback. 



In two experiments, we had people type the words they 

heard under a temporal deadline. In the baseline (word-

feedback) condition, they saw what they typed on the screen 

in real time. In the no-feedback condition, the word did not 

appear on the screen until the end of the trial, with the goal 

of understanding the potential detriment to monitoring 

performance as a function of removing visual information. 

Based on prior results, we expected lower correction rates in 

the no-feedback compared to the word-feedback condition 

(Pinet & Nozari, 2020). The new manipulation in Exp 1 was 

adding a question right after typing, asking participants if 

they had made an error or not (metacognitive judgment; Fig. 

2), as an independent measure of error awareness. Exp 2 

aimed to replicate the findings of Exp 1 and further probe 

the specific role of visual information in monitoring. We 

added a new condition (position-feedback), in which 

participants saw dots (instead of letters) as they typed, 

similar to masked password typing (Fig. 2; position-f). This 

condition still provided visual information about the 

position of the letters, but not their identity, and could thus 

distinguish between the role of these two sources of visual 

information for monitoring.  

The data from both experiments were coded as Hits, 

Misses, Correct Rejections, and False Alarms (see Fig. 1 for 

definitions) and were analyzed by SDT models which 

estimated d'́ and criterion parameters for each subject. 

Group analyses compared these parameters across 

conditions. A decrease in d́' indexes the loss of information 

that cleanly teases apart the distributions of correct and error 

trials, and thus tells us about the necessity of certain kind of 

information for monitoring. A change in the criterion, on the 

other hand, tells us about how participants deal with the 

reduced quality of information. A shift to the left would 

indicate participants’ desire to detect/correct as many errors 

as possible, even at the cost of erroneously marking some 

correct responses as errors, i.e., False Alarms. A shift to the 

right, on other hand, marks a tendency to avoid False 

Alarms, even if it means missing some errors. The 

comparisons, thus, paint a full picture of the contribution of 

visual information (positional vs. identity) to error 

awareness and corrections, as well as participants’ strategies 

on how to use such information.  

Experiment 1 

Methods 

 

Participants Participants were recruited via Amazon 

Mechanical Turk. Their eligibility to participate was 

determined using a short online task, in which they heard 

and typed words in two phases: in phase 1, they heard 15 

words, one at a time, to type without time pressure. In phase 

2, they heard another 15 words and had 2000 ms to finish 

typing them. A minimum criterion of 80% accuracy in 

phase 1, and 80% completed responses by the deadline with 

at least 50% accuracy in phase 2 was required for inclusion 

in the study. Forty-two native English-speaking participants 

(17 male; mean age= 35.6, SD = 8 years) who passed these 

criteria took part in the study in exchange for payment.   

 

Stimuli Stimuli were 600 7- and 8-letter words from the 

English Lexicon Project database (Balota et al., 2007). Log-

transformed word frequency ranged from 1.7 to 3. Plural 

forms, compound words, and words that had homophones, 

were not included. Words were divided into two lists of 300 

items, balanced with regard to number of phonemes, 

syllables and letters, word and bigram frequency, and 

percentage of bimanual alternations. Words in both lists 

were recorded by a native English speaker. 

 

Procedures The experiment was programmed using the 

jsPsych library (de Leeuw, 2015), embedded in an HTML 

environment, and completed online. The Python library 

psiTurk (Gureckis et al., 2016) was used to handle 

participants’ recruitment and compensation.  

The task was a typing-to-dictation task. On each trial, 

participants heard a word, followed by a beep (1000 Hz, 100 

ms). They were instructed to finish typing the word before a 

second beep, 1800 ms after the first one (but their responses 

were registered for an additional 500 ms after the second 

beep). They could use backspace and correct their responses 

if they wished to. Immediately after that, participants 

completed the metacognitive judgment task, in which they 

answered yes/no to the question “Did you make an error in 

what you first typed?”. Clear instructions were given that 

even corrected errors should be counted as errors (a “yes” 

response). Trials were separated by 500 ms intertrial 

intervals.  There were breaks every 50 trials. 

Participants completed two conditions in counterbalanced 

order, with list assignment to conditions also 

counterbalanced across participants. In the word-feedback 

(baseline) condition, participants saw, in real time, what 

they typed on the monitor. In the no-feedback condition, the 

screen remained blank as they typed. They were only shown 

the outcome of typing after answering the metacognitive 

judgment task (Fig 2a).  

 

Analyses Performance measures included errors, response 

time (RTs), interkeystroke intervals (IKIs), and two 

measures of monitoring: metacognitive judgments (as 

measuring error awareness) and backspaces (as measuring 

corrections). Data were analyzed in R, using the psycho 

package version 0.4.91 (Makowski, 2018) for fitting signal 

detection models, and the lmerTests package for computing 

statistics (Kuznetsova, Brockhoff, & Christensen, 2017). 

Multilevel models with random effects of both subjects and 

items were used for the analyses of accuracy, RT and IKI 

data. Model-derived parameters must be calculated over all 

trials per subject, thus they were analyzed using linear 

regression models with random effect of subjects only. Error 

trials were excluded from RT and IKI analyses. RTs and 

IKIs shorter or longer that 3SD from participant means were 

also excluded.  



Results & Discussion 

One participant was excluded for failure to follow task 

instructions. The error rate in the no-feedback condition was 

lower than the word-feedback condition (21.2±10.3% vs. 

22.6±10.7%; β = 0.088, z = 2.6, p = .009). Average RTs, on 

the other hand, were higher in the no-feedback compared to 

the word-feedback condition (390.2±76ms vs. 362±92ms; β 

= 29.7, t = 16.8, p <.001). The same was true for IKIs 

(168.7±24ms vs. 163.3±26ms; β = 5.86, t = 15.2, p <.001). 

Figure 3 shows the SDT measures for monitoring indices.   

The overall rate of error awareness (hit rate) in 

metacognitive judgments was 69% and 54% in the word-

feedback and no-feedback conditions, respectively. Model-

estimated d'́ was significantly lower for the no-feedback 

compared to word-feedback condition (2.1 ± 0.4 vs. 2.9 ± 

0.6; β = -.81, t = -7.0, p <.001), whereas the location of the 

criterion did not significantly differ between the two 

conditions (1.0 ± .4 vs. .9 ± .3; β = .08, t = 1.1, p = .32).  

The overall rate of correction attempts (hit rate) was 28% 

(763 attempts) in the word-feedback and 8% (221 attempts) 

in the no-feedback conditions. Model-estimated d'́ was 

significantly lower for the no-feedback compared to word-

feedback condition (1.2 ± .6 vs. 2.0 ± .8; β = -.83, t = -5.1, p 

<.001). Criterion was significantly higher in the no-

feedback compared to the word-feedback condition (2.2 ± .4 

vs. 1.7 ± .5; β = .50, t = 5.1, p < .001).  

 

Figure 3. Results of metacognitive judgments (upper panel) 

and error corrections (lower panel) in Exp 1. Left panels 

show d-prime, and right panels criterion values.  

 

To summarize, removing visual feedback slowed down 

typing, but participants were not any less accurate. There 

was a modest drop in error awareness and a much greater 

drop in correction attempts (22% vs. 71% change over 

baseline, respectively). Model-derived d' was significantly 

lower in the absence of visual information, for both error 

awareness and correction measures, showing that visual 

information contributed to cleaning up the conflict between 

error and correct responses in both tasks. Participants, 

however, treated the decreased quality of information 

differently in the two cases: while they did not shift the 

criterion position for metacognitive judgments, they 

significantly shifted it to the right for corrections, i.e., they 

sacrificed Hits in order to minimize False Alarms. This is 

most likely due to the fact that correction attempts are 

costly; participants must stop ongoing behavior, erase the 

mistake, replace the segment with a repair, and resume 

typing. This takes both time and effort. By shifting their 

criterion to the right, they minimize the chance of 

unnecessary corrections (False Alarms dropped from 3.5% 

to 1.6%). Yes/no metacognitive judgments, on the other 

hand, are not associated with similarly high cognitive costs, 

hence no rightward shift of the criterion despite lower d's in 

this task.  

The results of Exp 1 showed the importance of visual 

information for both conscious detection and correction of 

errors, with the latter taking a much bigger hit when visual 

information was absent. But which aspect of visual 

information is critical for repairs, the position of the error or 

the identity of the letters? Exp 2 answers this question.  

Experiment 2 

Methods 

 

Participants Forty-two English speaking participants who 

had not participated in Exp 1 and who passed the screening 

test described under that experiment were recruited via 

Amazon Mechanical Turk and took part in the study in 

exchange for payment.  

 

Stimuli The same materials as Exp 1 were used. The 600 

words were divided into three lists, balanced for factors 

described under Exp 1.  

 

Procedures Procedures were similar to Exp 1, except that 

each participant completed three conditions in 

counterbalanced order, with lists also counterbalanced with 

regard to condition across participants. Word-feedback and 

no-feedback conditions were identical to Exp 1. In the 

position-feedback condition instead of each letter a dot (•) 

appeared on the screen as participants typed their response, 

similar to password typing. 

 

Analysis Analyses were similar to Exp 1. Contrasts were 

treatment-coded. To compare all our conditions to each 

other, we used two different contrasts coding schemes, 

alternatively taking word-feedback and no-feedback as the 

reference level. 

Results & Discussion 

One participant was excluded because of a technical issue 

in recording their keystrokes. The error rate was not 



significantly different between the word-feedback and no-

feedback conditions (25.6 ± 13% vs. 24.9 ± 13%; β = 0.035,  

z = 0.86, p = .39), between the word-feedback and position-

feedback (25.5 ± 12%; β = -0.005, z = -0.12, p = .91), or 

between the no-feedback and position-feedback (β = -0.042, 

z = -0.98, p =.33). RTs, on the other hand, were 

significantly slower for the no-word feedback compared to 

the word-feedback (377.3 ± 87ms vs. 359.2 ± 87ms; β = 

19.6, t = 8.8, p <.001). They were also significantly slower 

for the position-feedback compared to the word-feedback 

condition (378.0 ± 84ms; β = 21.2, t = 9.6, p <.001). The 

comparison between the position-feedback and no-feedback 

revealed no significant difference (β = 1.6, t = 0.72, p = 

.48). IKIs were also significantly longer for the no-feedback 

compared to the word-feedback (178.0 ± 29ms vs. 172.1 ± 

28ms; β = 6.1, t = 11.8, p < .001). The same was true for the 

comparison between position-feedback and word-feedback 

(176.0 ± 28ms; β = 4.2, t = 8.3, p <.001). The comparison 

between position-feedback and no-feedback revealed 

significantly longer IKI in the no-feedback condition (β = -

1.8, t = -3.5, p <.001). Figure 4 shows the SDT measures for 

monitoring indices.   

 

 

Figure 4. Results of metacognitive judgments (upper panel) 

and error corrections (lower panel) in Exp 2. Left panels 

show d-prime, and right panels criterion values.  

 

The overall rate of error awareness (hit rate) in 

metacognitive judgments was 69% in the word-feedback, 

55% in the no-feedback, and 57% in the position-feedback 

conditions, respectively. As in Exp 1, the average d́' was 

significantly lower in the no-feedback compared to word-

feedback condition (1.9 ± .4 vs. 2.7 ± .6; β = -0.81, t = -7.5, 

p <.001). Similarly, average d́' in the position-feedback 

condition (2.0 ± .5) was significantly lower than word-

feedback condition (β = -0.69, t = -6.4, p <.001), but not 

significantly different from the no-feedback condition (β = 

0.12, t = 1.1, p =.27). The criterion, however, was not 

significantly different for any of the comparisons (word-

feedback, .9 ± .4, vs. no-feedback, .98 ± .5, β = 0.08, t = .76, 

p =.45; word-feedback vs. position-feedback, .95 ± .5; β = 

0.05, t = 0.47, p =.64; no-feedback vs. position-feedback, β 

= -0.03, t = 0.11, p =.78). 

The overall rate of correction attempts (hit rate) was 19% 

in the word-feedback, 4% in the no-feedback, and 9% in the 

position-feedback conditions, respectively. As in Exp 1, 

average d́' was significantly lower in the no-feedback 

compared to word-feedback condition (.43 ± .9 vs. 1.1 ± 

1.1; β = -0.82, t = -6.3, p<.001). Similarly, average d́' in the 

position-feedback condition (.69 ± .9) was significantly 

lower than word-feedback condition (β = -0.51, t = -3.9, 

p<.001). Importantly, the comparison between no-feedback 

and position-feedback also showed a significant difference 

between the two (β = 0.31, t = 2.4, p = 0.019). Moreover, in 

keeping with the results of Exp. 1, and in contrast to the 

pattern of results for metacognitive judgments, criterion 

placement changed as a function of condition. Average 

criterion value was significantly higher in the no-feedback 

compared to word-feedback condition (2.2 ± .3 vs. 1.8 ± .4; 

β = 0.39, t = 5.1, p<.001), and in the position-feedback (2.0 

± .3) compared to the word-feedback condition (β = 0.21, t 

= 2.7, p=.008). The position of the criterion was also 

significantly higher in the no-feedback compared to the 

position-feedback condition (β = -0.18, t = -2.4, p = .019). 

To summarize, the results of Exp 2 replicated the findings 

of Exp 1 by showing that the removal of visual feedback 

made production slower but did not cause a drop in 

accuracy. There was also a modest drop in error awareness 

with a similar magnitude to that found in Exp 1 (~20% 

change from the baseline) and a much steeper decrease in 

corrections (71% and 79% in Exps 1 and 2, respectively). 

Patterns of changes to d' and criterion as a function of 

removing visual feedback were identical to those reported in 

Exp 1. Providing positional information did not —and was 

not expected to— change error awareness. This information, 

however, caused a small but significant increase in the rate 

of corrections compared to when no visual information was 

present. The criterion in the position-feedback condition 

also fell in between word-feedback and no-feedback 

conditions, showing that access to positional information 

increased participants’ motivation to attempt more repairs at 

the risk of potentially making more False Alarms. In short, 

positional information, in the absence of any information 

about letter identity was enough to change participants’ 

repair behavior.  

General Discussion 

In two experiments, we applied SDT to data from a 

typing-to-dictation task, to assess the contribution of visual 

information in general (Exp 1) and positional information in 

specific (Exp 2) to error awareness and correction. 

Replicating previous reports (Pinet & Nozari, 2020), we 

found that removing visual information caused a modest 

decrease in error awareness and a much stronger decrease in 



correction rates. In both cases, this was indexed by a lower 

d́' when visual information was removed. This finding 

shows that the overall error signal can be successfully 

modeled as a combination of internal and external channels, 

and that the removal of the external channel manifests as 

increased noise (i.e., closer distributions) in SDT terms.  

Participants, however, treated the reduced quality of 

information differently when making metacognitive 

judgments about performance vs. when attempting 

corrections. They only shifted their criterion for a decision 

in the latter case to avoid False Alarms, because of the cost 

associated with attempting corrections for an already correct 

response. This finding shows that although, generally 

speaking, the same kind of information (broadly defined as 

conflict) underlies both metacognitive judgments and 

corrections, (implicit) decisions about how to use such 

information is task-dependent.  

Teasing apart the contribution of positional information 

from letter identity revealed that positional information 

alone had a small but significant effect in enhancing 

corrections;  d́' increased when participants could keep track 

of where they were in the word without seeing the letters, as 

in password typing. Inspection of the criterion also showed 

that having access to positional information increased 

participants’ confidence in aiming for higher Hits, 

potentially accepting a higher risk of False Alarms.  

To summarize, this study demonstrated the utility of SDT 

in investigating different outcomes of monitoring (error 

awareness and corrections) in a framework that combined 

information from internal and external channels, regardless 

of specific mechanisms. Despite the mechanistic differences 

postulated in models of language monitoring, our approach 

allows for drawing general conclusions about the underlying 

processes, that could then be integrated into, and further 

investigated within, a specific framework. In particular, this 

application revealed important commonalities between 

tasks, i.e., reliance on generally similar information, as well 

as differences, i.e., different strategies for dealing with the 

change in information quality. Finally, the framework was 

useful in hierarchically investigating the finer-grained 

contributions of specific kinds of information in the visual 

signal. These results serve two purposes: they shed light on 

the importance of external information for monitoring 

performance, especially for applying repairs, and at the 

same time show the promise of SDT in furthering our 

understanding of how information from various sources are 

combined, and how participants handle the partial loss of 

information in various tasks that depend on monitoring. 

Given the individual-fitting of the model, this approach is 

also particularly promising for the analysis of individual 

differences in monitoring, and monitoring-related functions.  
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