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Abstract 

Producing a word from meaning requires activating the semantic features corresponding to a 

concept, retrieving the word, selecting its segments, ordering those segments into the right 

sequence, and finally articulating them with the correct timing. While excellent models of word 

production exist that each capture the details of parts of this process, to date, no single model has 

been proposed that captures the entire process in enough details for the purpose of neural 

mapping. In this chapter, I draw on both psycholinguistic and motor control traditions to 

construct a more complete picture of the neural basis of word production with regard to the 

components and processes proposed by production models in these two bodies of literature.  
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29. Neural Basis of Word Production 

 

29.1 General approaches to studying the neural basis of language processing 

Two general approaches exist to uncovering the neural basis of language processing. The 

empirical approach entails the manipulation of language processing demands in two (or more) 

conditions, and the identification of brain regions preferentially involved in the condition(s) with 

more prominent linguistic demands. While useful for getting a general sense of the network 

involved in language processing, the absence of a theoretical framework limits the interpretations 

that can be assigned to regions in this network. The theoretical approach, on the other hand, 

starts with a theoretical model, the components or parameters of which are the target of the 

neural investigation. This approach thus allows for a more meaningful interpretation of the 

findings, but the caveat is that such interpretation is dependent on the specific model. Models of 

language production vary considerably in their scope and assumptions. For example, Hickok 

(2012) assumes that “speech production is fundamentally a motor control problem.” (p. 137), 

while psycholinguistic models see the main challenge of production as mapping meaning to 

sound, which includes a great deal more than motor control of speech (e.g., Dell, 1986; Levelt, 

Roelofs, & Meyer, 1999). Even when the scope is agreed upon, models still vary substantially in 

the number and nature of the layers of representations they propose and the dynamics of 

information flow between these layers (see Chapter 28).  

In this chapter, I adopt a theoretical approach inspired by the psycholinguistic tradition. 

Language production encompasses several tasks including reading, writing, and typing. But 

given the limited space, I will focus on a hallmark production task; namely, oral production of a 

word from meaning. Often tested experimentally using picture naming, this task requires 

activating semantic knowledge, selecting the correct word, mapping it onto a sequence of 

sounds, and finally articulating it. A neural account of such a process must therefore cover the 

neural basis of semantic, phonological, and articulatory-motor processing, at a minimum. Instead 

of adopting a specific psycholinguistic model, however, I will use a schematic model of word 

production, the components of which have been derived from various models and empirical 
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findings, and will opt for the minimum number of layers necessary for mapping meaning to 

sounds.  

Figure 1 shows this structure. Because the relationship between semantics and sounds is not 

systematic (e.g., not all male entities correspond to words that have the sound /m/), it is safe to 

assume that phonology does not simply spring from semantics, and that the two have distinct 

representations. But since relevant phonological representations must be activated from 

semantics, at least one intermediate layer of representation must be assumed between the two to 

mediate this mapping. Different theories vary in their position regarding the number of these 

intermediate layers and their nature. The proposed layers of representation include lexical-

semantic nodes (representations of unified semantic information), lemmas (representations that 

link unified semantic information to syntactic information), morphemes (smallest unit that 

conveys meaning; e.g., “swim” and “er” in “swimmer”), lexemes (domain-specific 

representations that have access to segments such as phonemes in spoken and graphemes in 

written production), syllables (structured chunks of phonology), and potentially others proposed 

by linguistic theory, such as syllable parts (e.g., CV or VC) and consonant clusters.  

My decision to compress these into one layer does not imply a theoretical stance against the 

psychological reality of such representations. Some, like domain-specific lexemes, must exist, 

since knowing the phonological sequence of a word does not necessarily give you the 

information about its letter sequence that is necessary for writing the word. I did not include 

lexemes separately since this chapter’s focus is on a single production modality. Some of the 

other intermediate representations have been proposed to emerge from other representations. For 

example, Plaut and Gonnerman (2000) have argued that morphemes are not basic 

representations; rather, they emerge from learning the relationships between semantics and 

phonology. Note that the emerging nature of such representations does not mean that they have 

not formed independent representations. Studies of speech errors have shown that morphemes 

move independently as units, e.g., “He cleaned the tables” → “He cleans the tabled”. In fact, one 

could find instances of independent movements for almost all units proposed by linguistic 

theory, although the rate of movements is much higher for whole words and phonemes (and to a 

lesser extent, morphemes) than for other units (Dell 1995). 
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For the purpose of a neural mapping, however, the important question is whether certain 

representations are distinct enough to have separate neural correlates from others. For example, 

should one look for lexical semantic nodes in a different region from lemmas? Such distinctions 

are often difficult to maintain in a neural investigation. When attempts in this vein have been 

made, they have not led to clearly separate regions, especially for higher levels of language 

processing like lexical semantic processing. Such distinctions are clearer at the lower levels of 

production, like representations of learned sequences (chunked into common syllables or 

consonant clusters) vs. representations of novel sequences (as individuals segments). But even in 

those cases, as I will discuss in later sections, these two types of sequences are contained in the 

same neural regions. What is different are the neural pathways that map the abstract 

representations of these sequences onto motor commands. I will, therefore, commit to one 

independent layer of representation between semantic features and phonemes, and call it simply 

“words” (Foygel & Dell, 2000). I will also define a final layer of motor output in the schematic 

model which I will unpack when discussing the neural correlates of motor production.  

Also important for modeling language production is the concept of separation of content and 

frame (Chomsky 1975; Garrett 1975; Lashley 1951). The idea is that once a conceptual message 

has been constructed, two general kinds of frame must be built for the insertion of linguistic 

content. The syntactic frame is built under the guidance of the semantic message and syntactic 

rules, and identifies the phrasal structure—with syntactically labeled slots—for the insertion of 

Figure 1. Schematic of a word production 

model. D, determiner; N, noun; P, phrase; S, 

sentence; V, verb.  
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lexical items. The segmental frame is built under the guidance of language-specific phonotactic 

rules, and contains information about the order, syllabic structure, and perhaps other aspects of 

segmental encoding, such as the stress pattern. This view has been embraced by both 

connectionist (e.g., Dell 1988; MacKay 1987; Stemberger 1985) and symbolic models of 

segmental encoding (e.g., Meyer 1990; Shattuck-Hufnagel 1979), although alternatives such as 

parallel distributed processing approaches to content-frame separations have also been proposed 

(Dell, Juliano, & Govindjee 1993). Since the focus of this chapter is on single word production, I 

will refrain from discussing the syntactic frames, which are primarily relevant to phrase- and 

sentence-level production, although I adopt the view that such frames exist and interact with 

representations at a level higher than phonology (Figure 1). However, as will be seen in the 

section on “articulatory-phonetic encoding and motor production”, the content-frame separation 

is immediately relevant to the discussion of the neural correlates of motor speech processing.  

To summarize, my schematic model (Figure 1) consists of semantic features (i.e., all pieces of 

information, including sensory-motor representations, that make up a concept), words 

(conjunctions of semantic features, also linked to syntactic information), phonology (abstract 

representations of sounds), and motor output, which itself comprises multiple parts. These 

representations interact closely with different types of frames at different levels (e.g., syntactic 

frames at the word level, syllabic frames at the phonological layer, etc.). This entire system is 

constantly monitored and regulated by monitoring and control mechanisms. The next four 

sections discuss the neural correlates of this schematic model.  

Studies of neural correlates of language processing have employed various methodologies, 

including neuroimaging methods (e.g., PET, fMRI, tractography methods, etc.), lesion studies, 

brain stimulation (e.g., transcranial magnetic stimulation, or TMS, and transcranial indirect 

current stimulation, or tDCS), and electrophysiological recordings. We have recently written a 

comprehensive review of the electrophysiological studies of word production (Nozari & Pinet, 

under review). In light of the inferior spatial resolution of the most common method in this group 

(EEG), and the general problems we have laid out in that review regarding the interpretations 

assigned to the findings from this literature, I will not include the EEG data in the current 

chapter. Instead, I will use a combination of neuroimaging, lesion-based, and brain stimulation 

studies to discuss converging findings on the neural basis of word production.  
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29.2 Neural correlates of lexical semantic processing 

Many attempts at word production start with conceptualization, i.e., activation of semantics. 

Several chapters in the book are dedicated to the nature of semantic representations, so I will 

refrain from a long discussion here, but will point out two opposing views that have been taken 

in computational models of word production. Some models assume distributed semantic 

representations, or “semantic features” (e.g., Caramazza 1997; Foygel and Dell 2000). Others 

have insisted on non-decompositional semantics (Levelt et al., 1999; Roelofs, 1992), based on 

two arguments: a) that speakers do not name superordinates of the target (e.g., “animal” instead 

of “horse”; the hyperonym problem; Levelt 1989), and b) that words with more complex feature 

sets are not harder to access than those with simple feature sets (the complexity problem; Levelt, 

Schreuder, and Hoenkamp 1978). The evidence against the first argument comes from 

individuals with aphasia, who, not uncommonly, produce superordinates instead of target names. 

The second argument also need not be true, since under a distributed view activation of a subset 

of features is sufficient to activate the concept. In fact, activation of concepts through the 

activation of various subsets of their features is critical in light of the evidence supporting the 

flexible context-dependent view of concepts (see Yee & Thompson-Schill, 2016 for a review). 

This position also naturally accommodates embodied views on concept processing (e.g., 

Barsalou, 1999). I will, therefore, adopt the distributed view.  

According to the distributed view of semantics (e.g., classic models such as Meynert and 

Wernicke’s, Eggert 1977; embodied theories, e.g., Martin 2016; and newer theories such as the 

hub-and-spokes model of semantic representation, e.g., Lambon Ralph et al. 2017; Patterson, 

Nestor, and Rogers 2007), concepts are constructed of various pieces of information learned by 

experience and encoded in modality-specific cortices (Fischer & Zwaan, 2008; Kiefer & 

Pulvermüller, 2012; Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012). Some theories posit that 

such features converge onto unifying hubs (called amodal, cross-modal, heteromodal, 

transmodal, or supramodal representations by various research groups) that are assumed to be 

housed bilaterally in the anterior temporal lobes (ATLs; see Lambon Ralph et al. 2017 for a 

review). The claim that ATL is the main semantic hub has been argued primarily on the basis of 

semantic dementia, a neurodegenerative condition causing atrophy of bilateral anterior ventral 

and polar temporal regions, which causes consistent and pervasive semantic impairment in all 
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modalities and almost all types of concepts, except the knowledge of simple numbers (e.g., 

Bozeat et al. 2000; see also semantic variant of primary progressive aphasia, e.g., Gorno‐

Tempini et al. 2004; but see Simmons & Martin, 2009 for a different perspective). More 

recently, additional hubs have been proposed in temporal and parietal regions that are 

characteristically distant from primary sensory and motor cortices, but have rich connections to 

the modal association cortices (e.g., Binder 2016; Binder et al. 2009). 

There are good arguments for why hubs, i.e., high-level conjunctive representations that 

summarize a number of semantic features into a concept, would be useful for abstract, yet 

flexible and context-sensitive, representation of pure semantic knowledge (Binder, 2016). But 

since the focus of this chapter is mapping semantic features onto sounds, such conjunctive 

representations are naturally necessary as the mediating layer, for the reasons discussed in the 

previous section. Some attempts have been made to separate these representations into lexical 

semantic nodes and lemmas. For example, Kemmerer (2018) identifies the locus of the 

interference in cyclic blocked naming paradigms (where participants are progressively slowed 

down by naming a small set of semantically related pictures) as “lexical concepts”, but views 

pure anomia as a condition targeting “lemmas”. I do not know of any empirical evidence that 

clearly suggests that, as far as the “word” layer goes, these two cases involve different 

representations. Similarly, simulations of semantic errors using the lesioned version of the 

Foygel and Dell (2000) model have been ascribed to lemmas (in contrast to lexical concepts; 

Kemmerer, 2018), but in this, and most other versions of the 2-step interactive model by Dell 

and his colleagues, a single “word” layer serves both to combine semantic features and link them 

to syntactic information, without differentiating between lexical concepts and lemmas.  

In short, the conjunctive representation of semantic knowledge and the representations that must 

mediate the mapping of meaning to sound are similar enough, and, as suggested by the evidence 

below, spatially close enough, to be discussed in one place, although a hierarchy of such 

representations is not impossible. I will thus discuss them in one place. A similar approach was 

adopted by Binder et al. (2009). In one of the largest and most meticulously controlled meta-

analyses of neuroimaging data in semantic processing, the authors analyzed data from 120 

studies targeting semantic access from (spoken or written) words, and identified 1145 foci of 

activation representing a distributed lexical semantic network. The thresholded activation 
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likelihood estimate (ALE) map lateralized the effect largely to the left hemisphere (with some 

extensions to the right in angular gyrus and posterior cingulate cortex), and identified seven key 

regions in temporal, parietal, frontal, and paralimbic areas (Figure 2). I will briefly review the 

hypothesized roles of these main areas in light of the empirical evidence.  

29.2.1 Temporal regions. A main region implicated in the study of Binder et al. (2009) was the 

lateral part of temporal lobe, including the entire length of the middle temporal gyrus (MTG) and 

posterior parts of the inferior temporal gyrus (ITG; Figure 1, region 1). MTG (and less frequently 

posterior ITG) activation has been reliably reported during picture naming (de Zubicaray, 

Miozzo, Johnson, Schiller, & McMahon, 2012; Maess, Friederici, Damian, Meyer, & Levelt, 

2002; Moore & Price, 1999; Murtha, Chertkow, Beauregard, & Evans, 1999). Moreover, 

activation of this region is sensitive to the co-activation of words that are semantically similar 

during picture naming (e.g., de Zubicaray, Wilson, McMahon, & Muthiah, 2001; see Nozari & 

Pinet, under review for a review). Left mid-MTG is also implicated in the meta-analysis of 

Indefrey and Levelt (2004), in which the authors contrasted regions activated during picture 

naming and associative word generation (both of which require lexical retrieval) against regions 

that they argued do not necessarily require lexical retrieval, i.e., reading words and pseudowords 

(although the assumption of non-lexical reading of actual words is questionable). In the same 

vein, along with ATL, damage to MTG has been shown to correlate with semantic errors (e.g., 

saying “dog” instead of “cat”) in picture naming tasks (Henseler, Regenbrecht, & Obrig, 2014; 

Mirman et al., 2015; Schwartz et al., 2011, 2009; Walker et al., 2011). Importantly, MTG is also 

consistently implicated in tasks requiring word comprehension, and although selective damage to 

MTG is rare, it is often associated with language comprehension and semantic deficits 

(Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004; Hillis & Caramazza, 1991; Kertesz, 

Lau, & Polk, 1993). Large lesions to MTG and ITG (sometimes along with the fusiform and 

angular gyri) lead to transcortical sensory aphasia, a syndrome with impaired speech 

comprehension despite intact phonological production abilities, such as auditory repetition of 

words and sentences (Alexander, Hiltbrunner, & Fischer, 1989; Andrew Kertesz, Sheppard, & 

MacKenzie, 1982; Rapcsak and Rubens 1994). The convergence of lexical semantic deficits in 

both comprehension and production after damage to anterior and lateral aspects of the temporal 
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lobe implies that these regions most likely store conjunctive representations that are shared 

between production and comprehension (Ben Shalom & Poeppel, 2008; Friederici, 2002).  

 

 

 

 

 

 

 

 

The role of the more posterior parts of MTG (pMTG) is less clear. Some have linked this region 

to anomia (Antonucci, Beeson, & Rapcsak, 2004; Baldo, Arévalo, Patterson, & Dronkers, 2013; 

Raymer et al., 1997), although failure to find a word even in the presence of good semantic 

comprehension may have different etiologies, including a failure to activate the right word from 

the concept, failure of inhibiting competing words (e.g., Cloutman et al., 2009; Nozari, 2019), or 

failure of activating representations further downstream. Thus without a finer-grained analysis of 

error types and other accompanying deficits, association with anomia is not particularly telling 

about the function of a neural region. Others have proposed that the most posterior parts of the 

left middle and inferior lateral temporal cortex, i.e., the temporal-occipital junction, show the 

greatest concentration of activation foci for processing the meaning of artifacts (as opposed to 

living things) in neuroimaging studies (see Binder et al. 2009, for a review of these studies). 

Together with the vicinity of this region to the visual motion processing and parietal praxis-

coding regions, this finding has been taken to imply the region’s specialization for processing the 

visual attributes of actions and tools (A. Martin, Ungerleider, & Haxby, 2000). In line with this 

Figure 2. Regions involved in semantic-lexical processing. 1) Lateral temporal lobe, including 

the entire length of the middle temporal gyrus (MTG) and posterior portions of the inferior 

temporal gyrus (ITG); 2) a ventromedial region of the temporal lobe centered on mid-fusiform 

gyrus and adjacent parahippocampus; 3) angular gyrus (AG) and adjacent supramarginal gyrus 

(SMG); 4) ventromedial and orbital prefrontal cortex; 5) dorsomedial prefrontal cortex in the 

superior frontal gyrus and adjacent middle frontal gyrus; 6) posterior cingulate gyrus and 

adjacent ventral precuneus; 7) inferior frontal gyrus (IFG), especially the pars orbitalis. 

Reproduced with Permission from Binder et al. (2009).  
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claim, Hanna Damasio and her colleagues found lesions to this region to cause a particular 

difficulty in naming common manipulable objects such as a fork (as opposed to proper nouns 

and nouns of common animals; H. Damasio, Grabowski, Tranel, Hichwa, & A. Damasio, 1996). 

This position follows the view that semantic knowledge is systematically organized in the 

temporal lobe, which is agreed upon by most researchers, although substantial disagreement 

exists about the nature of this organization (Binder et al., 2009; H. Damasio et al., 1996; Lambon 

Ralph et al., 2017; A. Martin, 2016). A third account has been proposed for the role of pMTG as 

a region involved in implementing cognitive control over semantic retrieval (e.g., Lambon Ralph 

et al., 2017). For example, several studies from the same research group have shown that 

applying inhibitory TMS to this region disrupts semantic processing most strongly in conditions 

with high cognitive control demand, such as matching words with low vs. high semantic 

association (salt-grain vs. salt-pepper; Lambon Ralph et al., 2017; Whitney, Kirk, O’Sullivan, 

Lambon Ralph, & Jefferies, 2011a, 2011b). Not far from this interpretation, Binder (2017) 

interprets the more prominent involvement of this region in processing complex sentences vs. 

simple words as evidence of a work space for integrating the meaning of multiple words while 

their phonological forms are held active in phonological working memory, a task for which the 

pMTG is well suited based on its rich connectivity to the angular gyrus, anterior and inferior 

temporal lobe, and inferior and superior frontal gyri. 

In contrast, the superior temporal gyrus (STG) does not seem to be reliably implicated in studies 

involving semantic processing (Binder et al. 2009; see also e.g., Price 2000). It has sometimes 

been implicated during overt word production (de Zubicaray et al., 2001; Hocking, McMahon, & 

de Zubicaray, 2008), but this probably reflects a role in the auditory processing of self-produced 

speech, in line with the region’s confirmed role in auditory processing (see Chapter 3). I will 

return to this when discussing speech monitoring. Binder et al.’s (2009) meta-analysis also 

identified a focal region in the ventral part of the temporal cortex in fusiform and 

parahippocampal gyri (Figure 1, region 2). These regions are not often reported in studies of 

language processing, with the exception of reading and writing (e.g., Devlin, Jamison, 

Gonnerman, & Matthews, 2006). The close proximity of the mid fusiform gyrus to the object 

perception areas has led to proposals that this region is involved in retrieving knowledge of the 

visual attributes of objects (Chao & Martin, 1999; Kan, Barsalou, Solomon, Minor, & 

Thompson-Schill, 2003; Thompson-Schill, Aguirre, Desposito, & Farah, 1999; Vandenbulcke, 
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Peeters, Fannes, & Vandenberghe, 2006). The parahippocampal component has been suggested 

to link episodic memory to long-term memory by linking hippocampus to lateral cortex (Levy, 

Bayley, & Squire, 2004). 

29.2.2 Parietal regions. The angular gyrus (AG) and a part of the supramarginal gyrus (SMG) 

just anterior to it were parts of the inferior parietal lobule implicated in the meta-analysis of 

Binder et al. (2009; Figure 2, region 3). Although receiving little input from primary sensory 

areas, AG is richly connected to other association regions (Cavada & Goldman‐Rakic, 1989a, 

1989b; Hyvärinen, 1982; Seltzer & Pandya, 1994). Due to this connectivity, it has been 

implicated as one of the best candidates for high-level integration and potentially another 

semantic hub in addition to the ATL (Binder & Desai, 2011; Patterson et al., 2007). In keeping 

with this notion, damage to AG leads to a host of deficits that reflect problems in integration of 

complex knowledge such as alexia and agraphia (Dejerine, 1892), anomia (Benson 1979), and 

acalculia (Cipolotti, Butterworth, & Denes, 1991), among others. 

In neuroimaging studies of sentence comprehension, AG’s activation has been shown in late 

stages when all the bits of information are to be integrated into a coherent sentence (Humphries, 

Binder, Medler, & Liebenthal, 2007), in connected discourse vs. unrelated sentences (Fletcher et 

al., 1995; Homae, Hashimoto, Nakajima, Miyashita, & Sakai, 2002; Xu, Kemeny, Park, Frattali, 

& Braun, 2005), in response to semantically anomalous words (Friederici, Rüschemeyer, Hahne, 

& Fiebach, 2003; Ni et al., 2000), and in the processing of thematic relationships, such as the 

comparison of “lake house” to its reversed construct “house lake” (right-lateralized effect; 

(Graves, Binder, Desai, Conant, & Seidenberg, 2010). Further attempts to pinpoint the exact 

function of AG in linguistic operations have shown AG’s sensitivity to event-denoting verbs 

(Boylan, Trueswell, & Thompson-Schill, 2015), and relational compounds, e.g., “wood stove” 

(Boylan, Trueswell, & Thompson-Schill, 2017). Moreover, AG has been implicated in metaphor 

processing (Bambini, Gentili, Ricciardi, Bertinetto, & Pietrini, 2011), and in the production of 

creative metaphoric language (e.g., “The lamp is a supernova”) vs. literal expressions (“The 

lamp is bright” (Benedek et al., 2014). In studies by Lambon Ralph, Jefferies, and their 

colleagues, dorsal AG, along with pMTG, has been implicated in semantic tasks demanding 

executive control, with patterns very similar to the left ventral prefrontal cortex discussed below 

(see Lambon Ralph et al. 2017 for a review).  
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SMG is often implicated in tasks that tap into the knowledge for actions, and lesions to this 

region and pMTG lead to ideomotor apraxia (Buxbaum, Kyle, & Menon, 2005; Haaland, 

Harrington, & Knight, 2000; Jax, Buxbaum, & Moll, 2006; Tranel, Kemmerer, Adolphs, H. 

Damasio, & A. Damasio, 2003). Consistent with this region’s role in the praxis features of object 

knowledge (e.g., Buxbaum, Kyle, Tang, & Detre, 2006), repetitive TMS to left SMG in a picture 

naming task selectively impairs the naming of manipulable artifacts (Pobric, Jefferies, & 

Lambon Ralph, 2010). SMG has a more extensive role in phonological encoding which will be 

discussed in a later section.  

29.2.3 Frontal regions: The meta-analysis of Binder et al. (2009) identified three regions in the 

medial prefrontal cortex. The first is ventromedial prefrontal cortex (Figure 1, region 4), which 

has ties to emotion and reward processing, and is likely to be involved in processing the 

emotional aspects of concepts and words (A. Damasio 1994; Kuchinke et al., 2005; Phillips, 

Drevets, Rauch, & Lane, 2003). The second is the dorsomedial prefrontal cortex (Figure 1, 

region 5) anterior to the supplementary motor area (SMA). Because these two regions share a 

common blood supply isolated damage to them is rare, making functional separation difficult. 

Damage to this general region leads to transcortical motor aphasia, which is characterized by 

reduced speech output unless speech is constrained enough (e.g., counting 1-10). This profile has 

led to the proposal that this region is involved in self-guided retrieval of semantic information, 

especially to serve a communicative goal. The third region is posterior cingulate cortex (Figure 

1, region 6), for which many functions have been proposed, the most likely of which is acting as 

the interface between semantic retrieval and formation of episodic memories in hippocampal 

areas (Binder et al., 2009). 

On the lateral surface of the frontal cortex, Binder et al.’s (2009) meta-analysis revealed left 

inferior frontal gyrus (LIFG) as an important locus of lexical semantic processing (Figure 2, 

region 7). The functions attributed to this region (sometimes referred to as the ventrolateral 

prefrontal cortex) are numerous and encompass a variety of semantic, phonological, and 

syntactic operations (see Novick, Trueswell, & Thompson-Schill, 2005, and Nozari & 

Thompson-Schill, 2016 for reviews). Importantly, LIFG is one of the regions most associated 

with task difficulty. Along with other regions such as the anterior cingulate cortex (ACC), it is 

often activated when selection demands are high. This could be because the correct response is 
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weaker than a prepotent but incorrect response (e.g., naming the ink color “blue” while ignoring 

the written word “red” in incongruent Stroop trials), because several responses are all equally 

probable (e.g., generating a verb for a noun that is not strongly associated with a verb, e.g., “cat”: 

Play? Purr? Meow?; Thompson-Schill, D’Esposito, Aguirre, & Farah, 1997;  Thompson-Schill et 

al., 1998). In keeping with this, picture naming under circumstances of increased competition 

between lexical semantic alternatives consistently activate this region (Kan & Thompson-Schill, 

2004; Schnur et al., 2009). TMS studies suggest that this region’s function, which has often been 

called “conflict resolution”, is more prominent for lexical-semantic decisions in the anterior part 

of LIFG. Some have argued for additional regions with a similar function in temporoparietal 

regions (pMTG and dorsal angular gyrus; Davey et al., 2015; Hoffman, Jefferies, & Ralph, 2010; 

Whitney et al., 2011a, 2011b; see Noonan, Jefferies, Visser, & Lambon Ralph, 2013, for 

areview). Posterior LIFG, on the other hand, has often been implicated in tasks that require 

manipulation of phonological information, such as syllabification and sequencing (Devlin, 

Matthews, & Rushworth, 2003; Gough, Nobre, & Devlin, 2005; see also Clos, Amunts, Laird, 

Fox, & Eickhoff, 2013, for a meta-analytic connectivity-based parcellation of LIFG). More fine-

grained functional organizations on multiple axes have also been proposed for the lateral frontal 

cortex (e.g., Bahlmann, Blumenfeld, & D’Esposito, 2015). 

Another account of the role of LIFG is that of strengthening associations (R. Martin & Cheng, 

2006; Wagner, Paré-Blagoev, Clark, & Poldrack, 2001). In keeping with this view, a TMS study 

over this region resulted in the disruption of performance when participants had to match items 

with weak associations (e.g., salt/grain), but performance was unaffected for items with strong 

associations (e.g., salt/pepper; Whitney et al., 2011a). In a recent eye-tracking study, we showed 

that a group of individuals with anterior lesions including LIFG were more impaired in using 

both semantic and phonological cues in locating a referent during sentence comprehension, 

compared to individuals with posterior lesions (Nozari, Mirman, & Thompson-Schill, 2016). We 

have discussed the results within the framework of a drift diffusion model, in which LIFG’s role 

has been proposed as boosting the rate of evidence accumulation for establishing an association. 

In the context of selection among activated alternatives, this function is equivalent to conflict 

resolution.  
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Connectivity measures also support the idea of LIFG implementing control over semantic 

selection. For example, damage to the uncinated fasciculus, which connects the pars orbitalis of 

LIFG to ATL, has been shown to be correlated with semantic control deficits (Harvey, Wei, 

Ellmore, Hamilton, & Schnur, 2013). Harvey and Schnur (2015) also found that damage to the 

inferior fronto-occipital fasciculus, which connects LIFG with the posterior temporal lobe was 

related to semantic interference during picture naming. 

To summarize, the lexical semantic network can be roughly divided into two parts: regions that 

store long-term knowledge, and those that are involved in initiating and controlling the retrieval 

of that knowledge. By most accounts, temporal regions have the former function, with potential 

subregions for different types of knowledge and varying degrees of integration (Binder, 2017). In 

contrast, superior and medial frontal structures appear to have a role in motivation and task 

initiation, and LIFG seems to be involved in strengthening of associations and helping with 

selection among competing alternatives. The role of inferior parietal regions is less agreed upon, 

but the evidence point to an integrative function. 

29.3 Phonological encoding 

The term “phonological code” has sometimes been used to refer exclusively to long-term 

phonological representations of known words, specifically excluding pronounceable nonword 

strings like BILF (e.g., Indefrey & Levelt, 2004). Others, however, have included such strings 

when discussing neural correlates of phonological encoding (e.g., Acheson, Hamidi, Binder, & 

Postle, 2010; Yue, Martin, Hamilton, & Rose, 2019). Since similar neural regions have been 

implicated in processing of both words and pronounceable nonwords, I will not emphasize this 

distinction, and instead define a phonological code as a representation containing an ordered 

sequence of phonemes to be translated into articulatory gestures, without the representation itself 

being rich in phonetic details (Oppenheim & Dell, 2008). In the case of real words, such 

representations naturally link the word representations to sounds.  

Binder (2015) summarizes the findings of 14 neuroimaging studies that tap into phonological 

processing with controls for semantic, articulatory, and auditory processing. Manipulations 

include comparison of pseudoword vs. word reading, naming pictures with high- vs. low-

frequency names, lexical decision with phonologically related and unrelated primes, a variety of 

rhyme matching tasks with words and pseudowords, and silent rehearsal of words, pseudowords, 
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or pseudosentences (Binder, 2015; Appendix e-1). Figure 3A shows the activation loci from 

these studies. Figure 3B shows the result of a lesion-symptom mapping study in 40 individuals 

with left hemisphere stroke. The map indicates the correlation between lesioned voxels and 

scores in a silent visual rhyme judgment task (snow/blow/plow; Pillay, Stengel, Humphries, 

Book, & Binder, 2014). Finally, Figure 3C shows sites where direct cortical stimulation in 

patients undergoing brain surgery elicited phonological errors during reading without impairing 

comprehension (Anderson et al., 1999; Roux et al., 2012). Examination of these three figures 

shows a striking convergence of the results of neuroimaging, lesion, and stimulation studies of 

phonological processing in pSTG and SMG, with pMTG also implicated in the neuroimaging 

and stimulation studies but not in the lesion study, suggesting that it may support phonological 

encoding but not be necessary for it.  

The reader may have noticed that the general region implicated by these studies is often referred 

to as Wernicke’s area. It is important to note that damage to this region does not cause 

Wernicke’s aphasia, but a different syndrome, called conduction aphasia, which unlike 

Wernicke’s aphasia does not impact comprehension. Instead, phonological production abilities 

are visibly impaired (Axer, A. Keyserlingk, Berks, & D. Keyserlingk, 2001; H. Damasio & A. 

Damasio, 1980; Fridriksson et al., 2010; see Buchsbaum et al., 2011, for a review). Similar 

symptoms can be evoked in neurotypical speakers by cortical stimulation of the same region 

Figure 3. Neural correlates of phonological encoding. A) A summary of 14 functional 

neuroimaging studies examining phonological encoding. B) Lesion sites in 40 left-hemisphere 

stroke survivors with selective phonological impairment. C) Locations where cortical stimulation 

in 14 patients led to phonological errors during reading. See text for descriptions and references. 

Reproduced with permission From Binder (2015). 
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(Anderson et al., 1999; Corina et al., 2010; Hamberger et al., 2016; Quigg & Fountain, 1999). 

Moreover, cortical degeneration of this region leads to the logopenic variant of primary 

progressive aphasia, the hallmark of which is phonological paraphasias and impaired verbal 

short-term memory, anomia, and various degrees of impaired comprehension of sentences (but 

not single words; Croot Karen, Ballard Kirrie, Leyton Cristian E., & Hodges John R., 2012; 

Leyton, Ballard, Piguet, & Hodges, 2014; Rohrer et al., 2010; see Henry & Gorno-Tempini, 

2010, for a review).  

There is now wide agreement that pSTG stores phonological representations. However, 

researchers disagree on whether the same representations are activated during phonological 

working memory tasks (Acheson et al., 2010), or whether a different part of cortex acts as a 

“phonological buffer” (Baddeley & Hitch, 1974), i.e., a region that temporarily keeps 

phonological representations activated while a task is being performed. In support of the latter 

view, lesion overlap studies have localized phonological short-term memory to the left SMG 

(e.g., Paulesu et al., 2017). Also, a recent fMRI study using multivariate pattern analysis showed 

that stimuli could be decoded from SMG, but not STG, during the delay period in a memory 

task. Furthermore, a functional connectivity analysis in the same study demonstrated that the 

connection between the left temporal and parietal regions became stronger as memory load 

increased, suggesting a greater collaboration between the storage and buffer regions in temporal 

and parietal cortices, respectively (Yue et al., 2019). I must note that the inferior frontal cortex 

has also been named as a potential region involved in phonological working memory. I will 

return to the role of this region and its relevance to speech production in the next section.  

One neural region deserves a special mention in this section. Known as area Spt (Sylvian parietal 

temporal) in the dual-stream models of Hickok and Poeppel (2007), this region has been 

identified as carrying out the sensory-motor translation of speech. Others, however, disagree 

with this claim, and propose that the auditory-motor interface involves a much larger portion of 

the pSTG (Niziolek & Guenther, 2013; Tourville, Reilly, & Guenther, 2008). This debate is 

difficult to settle, because area Spt is often defined functionally, as a region that exhibits both 

auditory and motor response properties, albeit within an anatomically constrained area. It is 

known to have considerable variability across individuals (despite its relative stability within 

individuals), making it very difficult to localize it in standardized space. Nevertheless, the 
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findings of Guenther and colleagues, especially the bilateral nature of translational regions, may 

be important in expanding the anatomical constraints for the functional search for this region. 

To summarize, the regions most reliably implicated in the storage and active maintenance of 

phonological codes are pSTG and SMG, with the former’s role as a store for phonological 

representations, and the latter’s role as phonological buffer. Lesions to these areas often lead to 

phonological paraphasias and sometimes difficulty in understanding long sentences (which 

hinges on keeping phonological codes active until they could be mapped onto semantic 

representations). In contrast, impaired comprehension of words and short phrases often observed 

after damage to MTG and the angular gyrus, which were strongly implicated in lexical semantic 

processing, is prominently absent (H. Damasio, Tranel, Grabowski, Adolphs, & A. Damasio, 

2004; Dronkers et al., 2004; Kertesz et al., 1993; Kertesz et al., 1982; Thothathiri, Kimberg, & 

Schwartz, 2011). This double dissociation between semantic and phonological impairment is 

showcased in transcortical sensory vs. conduction aphasia. 

29.4 Articulatory-phonetic encoding and motor production 

Neural correlates of vocalization are better understood than the more abstract parts of language 

production, due to more extensive opportunities for single-unit recording and focal lesioning in 

nonhuman primates. These comprise both cortical and subcortical structures. Psycholinguistic 

models of word production are often sparse in details regarding motor speech processes. 

Therefore, for this part of the review, I adopt the framework of a computationally sophisticated 

and neurally explicit model of motor speech control, DIVA (directions into velocities of 

articulators; Guenther, 1994, 1995; Tourville & Guenther, 2011), and its more recent version 

GODIVA (gradient order DIVA; Bohland, Bullock, & Guenther, 2010).  

Ceberal cortex. Figure 4 shows the cortical activity on the inflated cortical surface for 116 

participants reading mono- and bi-syllabic utterances aloud, along with results of two meta-

analyses of similar data (Brown, Ingham, Ingham, Laird, & Fox, 2005; Turkeltaub, Eden, Jones, 

& Zeffiro, 2002) superimposed as dark dots. The first striking finding is that, unlike the higher 

cortical functions related to language production reviewed in previous sections, which are largely 

left-lateralized, articulatory processes (many of them shared between linguistic and non-

linguistic vocalization) are largely bilateral. The relevant cortical areas include both medial and 

lateral surfaces of the frontal and prefrontal cortex, a large portion of the superior temporal 
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gyrus, and parts of the parietal cortex including the postcentral gyrus, and to a lesser extent the 

superior parietal lobule. I will present a brief overview of the function of these regions in this and 

the next section. For a more extensive review of these regions and the neural pathways involved 

in speech motor control, I refer the reader to Guenther (2016).  

Not surprisingly, some of the most important cortical regions for speech articulation are motor 

areas, including the primary motor and premotor cortices in the precentral gyrus, supplementary 

and pre-supplementary motor areas (SMA and preSMA), and motor cingulate cortex. Meta-

analyses of somatotopic studies of speech articulators suggests the following dorsoventral 

ordering in the precentral gyrus: larynx, lips, jaws, tongue, and throat, although this ordering is 

rough, with multiple representations for each articulator and substantial overlap between the 

regions for different articulators (Takai, Brown, & Liotti, 2010; see also ECoG studies for 

additional evidence; Bouchard, Mesgarani, Johnson, & Chang, 2013; Farrell, Burbank, Lettich, 

& Ojemann, 2007). Unilateral damage to the precentral gyrus usually causes only minor 

disruptions in face and mouth movements, likely due to the largely bilateral connections in this 

region (Penfield & Roberts 1959). Bilateral damage to the precentral gyrus in humans is rare, 

and if found is often accompanied by extensive lesions beyond this area, which makes a 

neuropsychological interpretation of this region’s function difficult. Supplementary motor areas 

are also often activated during the production of even simple syllables. Unilateral damage to 

these areas is followed by near-total recovery of speech within months (Laplane, Talairach, 

Meininger, Bancaud, & Orgogozo, 1977). The hallmark of damage to these areas is transient 

mutism which is often specific to self-initiated speech, while constrained or automatic speech 

(e.g., repeating words, reciting a learned sequence such as counting 1-10) could remain intact. 

This is part of a syndrome called transcortical motor aphasia (alluded to earlier when discussing 

the simultaneous damage of SMA and the adjacent dorsomedial prefrontal cortex), which may 

also entail problems such as involuntary vocalization, and anomalies in the rate, prosody, and 

fluency of speech may also be present (Freedman, Alexander, & Naeser, 1984). 

To best understand the difference between the functions of lateral and medial motor areas, recall 

the content-frame separation discussed at the beginning of this chapter. Generally speaking, the 

evidence points to a role of the lateral frontal cortex (specifically ventral premotor cortex, vPMC, 

and ventral primary motor cortex, vMC, both in the precentral gyrus, and left posterior inferior 
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frontal sulcus, pIFS) in representing the content of speech, while the medial surface of the frontal 

cortex (SMA and preSMA) represent frames. GODIVA proposes the content-frame separation in 

the context of two related loops: a planning loop, the main job of which is to temporarily store 

(i.e., buffer) the utterance to be produced, and a motor loop, which generates the actual motor 

commands for production (Fig. 5). The planning loop consists of the preSMA, which contains 

the abstract sequential frame, and its corresponding counterpart on the lateral surface, i.e., left 

pIFS, which buffers the phonological content. The motor loop comprises the SMA, which 

generates the abstract initiation map, and its counterpart on the lateral surface, left vPMC, which 

contains the speech sound map (i.e., nodes whose activation leads to the read out of the motor 

programs). A combination of signals from SMA and vPMC is sent to the vMC, which contains 

the actual motor gestures. 

Figure 4. Hot colormap of cortical regions activated during reading aloud of mono- and bi-

syllabic utterances compared to passive viewing of letters, plotted on inflated surfaces. N = 

116. Black dots represent foci from the meta-analyses of Brown (2005) and Turkeltaub et al. 

(2002). Upper and lower panels show lateral and medial surfaces, respectively. Images on the 

left and right show left and right hemispheres, respectively. aINS, anterior insula; aSTG, 

anterior superior temporal gyrus; CMA, cingulate motor area; HG, Heschl’s gyrus; IFo, 

inferior frontal gyrus pars opercularis;  IFr, inferior frontal gyrus pars orbitalis; IFt, inferior 

frontal gyrus pars triangularis; ITO, inferior temporo-occipital junction; OC, occipital cortex; 

pMTG, posterior middle temporal gyrus; PoCG, postcentral gyrus; PrCG, precentral gyrus; 

preSMA, pre-supplementary motor area; pSTG, posterior superior temporal gyrus; SMA, 



The Oxford Handbook of The Mental Lexicon – Chapter 29 - Preprint 

The representations shown in Figure 5 are for the word “blue” when it has already been learned 

and practiced, hence the “chunked” representations such as the consonant cluster /bl/ at the 

syllable level in the pIFS, and the holistic /blu/ at the level of speech sound map in the vPMC. 

These chunked representations do not exist earlier in development when “blue” is a novel 

sequence. Instead, the individual segments /b/, /l/, and /u/ must be assembled at multiple levels of 

the system, which puts novel sequences at a disadvantage compared to well-practiced ones. In 

addition, representations of well-practiced sequences take advantage of subcortical projections 

via the basal ganglia and cerebellum, which further facilitates quick mapping of chunked 

representations. 

 

Figure 5. Schematic of the planning and motor loops in speech production. The blue and yellow 

panels show regions involved in frame and content processing, respectively. Chunked 

representations in each region are shown for a learned word (“blue”). For a novel syllable (not 

shown), representations in all boxes would consist of individual segments (e.g., three separate 

segments for /b/, /l/ and /u/). Solid arrows show cortico-cortical projections. Dotted arrows show 

connections via basal ganglia. Dashed arrows show connections via cerebellum. G, gestural 

node; I, initiation map; pIFS, posterior inferior frontal sulcus; preSMA, pre-supplementary motor 

area; S, syllabic structure node; SMA, supplementary motor area; vMC, ventral primary motor 

cortex; vPMC, ventral premotor cortex. Adopted with changes from Guenther (2016). 
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The reader may have noticed that the function attributed to the pIFS by GODIVA, i.e., 

phonological buffering, is similar to what I discussed in the previous section as having been 

attributed by some to the SMG (e.g., Yue et al., 2019). When comparing the production of 

complex syllable sequences (three unique syllables) with simple syllable sequences (same  

syllable repeated three times), Bohland and Guenther (2006) found that, in addition to vPMC and 

SMA, greater activation was observed in both IFS and SMG (as well as preSMA and anterior 

insula), regions that have also been implicated in a large meta-analysis of over 100 neuroimaging 

studies of working memory (Rottschy et al., 2012). Interestingly, in that meta-analysis the only 

locus that had been preferentially activated in verbal over non-verbal working memory tasks was 

IFS, leading Guenther (2016) to conclude that this region may be involved in articulatory 

rehearsal (see Curtis & D’Esposito, 2003, for a different perspective). Thus while both SMG and 

IFS could both be parts of Baddeley and Hitch’s (1974) phonological loop, SMG may act as the 

“phonological store”, whereas IFS could implement the “articulatory process”. Together, they 

help maintain verbal information in working memory. While such a division of labor is 

speculative, it aligns well with the greater proximity of SGM to the auditory representations and 

IFS to motor representations. 

IFG is also implicated in speech production, and unlike some of the other cortical regions, its 

activation is left-lateralized (Ghosh, Tourville, & Guenther, 2008). As discussed in the earlier 

sections, anterior LIFG has been implicated in controlled semantic retrieval, while posterior 

LIFG has been tied to lower-level processes. The pSTG (which, as discussed in the previous 

section, is presumed to contain phonological representations) is connected to LIFG via the long 

segment of the arcuate fasciculus, and damage to this tract, or intracranial stimulation of it, 

results in phonemic paraphasias during word production; (Berthier, Lambon Ralph, Pujol, & 

Green, 2012; Duffau, Moritz-Gasser, & Mandonnet, 2014; Schwartz, Faseyitan, Kim, & Coslett, 

2012). Damage to LIFG itself causes apraxia of speech, a condition that impairs motor 

programming of speech sequences without affecting the articulators themselves (Graff-Radford 

et al., 2014; Hillis et al., 2004; Richardson, Fillmore, Rorden, LaPointe, & Fridriksson, 2012). 

Speech apraxia was previously attributed to damage in the insula (Baldo, Wilkins, Ogar, 

Willock, & Dronkers, 2011; Dronkers, 1996), but as a part of the paralimbic system (a system 

that integrates the functions of the neocortex with the motivational/emotional functions of the 
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limbic system), some have suggested that the role of the insula in speech production is better 

aligned with motivational factors. In keeping with this interpretation, the insula seems to be 

involved in a large variety of non-linguistic functions with little in common in terms of cognitive 

processes. A motivational role has also been proposed for motor cingulate cortex, part of the 

ACC which also belongs to the paralimbic system. Bilateral damage to the ACC leads to akinetic 

mutism, a condition characterized by an absence of motivation to produce speech, although when 

speech is occasionally produced, it is intact in both meaning and form (Rosenbeck, 2004).  

In summary, various areas in the medial and lateral frontal and prefrontal regions contribute to 

converting abstract phonology into the sequences of motor gestures that make up speech. In 

addition to these, some temporoparietal regions have been implicated during production (Figure 

4), but these are less likely to be directly involved in the act of production. The activity in the 

STG, including primary auditory cortex located in Heschel’s gyrus, as well as higher-order 

auditory cortical areas of anterior and posterior STG (aSTG and pSTG), is mostly due to hearing 

one’s own voice. However, magnetoencephalography and fMRI studies have also found 

activation of these regions during covert speech (Okada & Hickok, 2006), which is compatible 

with their involvement in the prediction of the sensory consequences of actions. This function, 

along with the role of the postcentral gyrus in the parietal lobe, will be discussed in the section 

on monitoring.  

Subcortical structures. Several subcortical structures have also been implicated in the motor 

production of speech (see Guenther 2016 for a review). Most prominent is the combination of the 

basal ganglia and the thalamic nuclei that are involved in linking the content-frame 

representations discussed above. Empirical evidence suggests a greater involvement of the 

caudate nucleus in the planning loop. Electrical stimulation of this nucleus or the anterior 

thalamic nuclei causes speech that cannot be inhibited (see Crosson 1992 for a review). 

According to GODIVA, the basal ganglia in the cortico-basal motor loop, including putamen, in 

collaboration with the cortico-cerebellar loop, develop chunked representations of practiced 

sequences in pIFS, preSMA, and vPMC, as explained earlier in this section. In line with this 

proposal, overt production of novel compared to practiced syllables leads to greater activation in 

the pIFS, preSMA, and vPMC, as well as the anterior insula and SMG (Segawa, Tourville, Beal, 

& Guenther, 2015). As such, subcortical structures play a critical role in making production more 
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efficient as a function of learning. In addition to its role in facilitating the mapping of chunked 

speech into gestures, the cerebellum is also involved in online monitoring of speech production 

using sensory information. I will discuss this briefly in the next section.  

29.5 Monitoring of word production 

The problem of monitoring in language production closely mirrors the problem of model scope, 

alluded to at the beginning of this chapter. As a model of motor speech production, GODIVA 

also contains detailed mechanisms for the monitoring and control of speech motor operations. 

But naturally such mechanisms are restricted to the scope of the model, which addresses lower-

level production processes. As noted earlier, this is only one part of the puzzle of language 

production. Attempts have been made to extend the general framework of GODIVA to higher 

processes involved in language production, but such attempts either do not extend beyond the 

level of phonological representations (e.g., Hickok, 2012), or when they claim to extend to 

higher levels, fail to meet the basic requirements of such a framework at higher levels (e.g., 

Pickering & Garrod, 2013; see Nozari, under review, for arguments). I will start by discussing 

GODIVA, as it provides the most detailed predictions regarding the neural correlates of 

monitoring at the motor level. I will then briefly touch upon what is still missing from the 

monitoring literature.  

According to GODIVA, production starts by activating a speech sound map in the left vPMC, 

which activates a stored motor program in vMC. At the same time two more representations are 

activated through a forward model (i.e., a model that anticipates the perceptual consequences of 

an action): an auditory target and a somatosensory target. The auditory target is part of the 

auditory state map, which contains a talker-normalized representation related to the formant 

frequencies of the speech signal, and is localized to pSTG including the planum temporale. The 

projections from vPMC to pSTG serve the purpose of canceling out the auditory information, 

thus, if the incoming auditory signal falls within the auditory target region, its excitatory effects 

will be suppressed. Such auditory suppression of self-produced speech is well documented and 

contingent on intact cerebellar function (Christoffels, Formisano, & Schiller, 2007; Franken, 

Hagoort, & Acheson, 2015; Knolle, Schröger, Baess, & Kotz, 2011). If, on the other hand, the 

incoming auditory information is outside of the target region, a reduced degree of speech-
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induced suppression is observed (Heinks-Maldonado, Nagarajan, & Houde, 2006), which 

generates an error signal. 

Note that the error signal in the above model is in the auditory space. In order for it to be used to 

adjust motor movements it must be transformed into motor coordinates. As discussed earlier, 

Hickok and colleagues propose that this transformation is carried out by the area Spt, an area at 

the border between the parietal operculum and planum temporale in the left hemisphere 

(Buchsbaum, Hickok, & Humphries, 2001; Hickok, Buchsbaum, Humphries, & Muftuler, 2003), 

whereas Guenther and colleagues propose that the auditory-motor interface involves a much 

larger portion of the pSTG bilaterally. These areas accomplish the transformation by sending 

projections to right vPMC and then to vMC through both cortico-cortical projections and cortico-

cerebellar loops. Predictions of the model have been confirmed by studies in which the syllables 

produced by speakers undergo real-time perturbation of formant frequencies (e.g., Tourville et al. 

2008; Niziolek & Guenther 2013). In addition to bilateral pSTG, these studies have implicated 

right IFG as part of the auditory feedback loop. Importantly, adjustments to speech have been 

subconscious, with participants often unware of the artificial speech modification or any attempts 

at correcting it. This independence from conscious awareness is critical for a monitoring 

mechanism that must continuously assess and regulate production without interfering with its 

primary processes (Nozari, under review; Nozari, Martin, & McCloskey, 2019). 

Activation of the speech sound map also activates a somatosensory target as part of the 

somatosensory state map in the ventral postcentral gyrus and SMG. The workings of this 

feedback loop are generally similar to the auditory feedback loop. Similar to the suppression of 

auditory feedback during the self-produced speech, tactile sensation is reduced by one’s own 

movement, a function that is again attributed to the cerebellum (Blakemore, Frith, & Wolpert, 

2001; Blakemore, Wolpert, & Frith, 1998). Thus, by the logic explained for the auditory 

feedback loop, a mismatch between the predicted and actual somatosensory representations leads 

to an error signal, which is transmitted to right vPMC for transformation to corrective 

movements that are then sent to bilateral vMC.  

GODIVA thus elegantly explains both the developmental trajectory of learning to imitate the 

phonology of one’s language and the subtle adjustments made to learned speech after auditory or 

somatosensory perturbation. Note that this mechanism requires that perceptual feedback is 
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available, i.e., the action has been produced. This requirement is reasonable for the first stages of 

language learning, where production is rarely on target and must be heavily modified by overt 

feedback. Later in life, when motor production is mastered, speakers do not rely nearly as much 

on overt feedback to detect problems in their speech. Evidence for this claim comes from many 

instances of covert error detection (i.e., detecting errors before they become overt), or 

intercepting errors early in production and applying fast repairs (Hartsuiker & Kolk, 2001; 

Levelt, 1983). In this vein, Hickok (2012) proposed a mechanism similar to GODIVA, in which 

persistent activation of perceptual representations during self-produced speech generates an error 

signal. But unlike GODIVA, the anticipated activation of perceptual representations does not 

need to be compared against the actual perceptual input. Instead, it is directly suppressed trough 

the motor program, thus eliminating the need for overt feedback. Even if such direct suppression 

is possible, the model’s basic mechanism still hinges on having two sets of representations 

(motor and perceptual) corresponding to the same utterance. While this is a reasonable 

assumption for representations at or below the level of phonemes, I do not know of any evidence 

supporting such a dichotomy at the higher levels of language production, for example at the level 

of lexical semantic representations. In fact, as reviewed in earlier sections, neural evidence 

suggests that such a duplication is unlikely to exist at those levels. This problem, which I have 

called the problem of duplicate representations (Nozari, under review), makes the extension of 

monitoring mechanisms that rely on sensory-motor comparisons to higher levels of language 

production infeasible.   

Two solutions remain: either language production is only monitored at a late stage, i.e., after 

phonological encoding, or it is monitored at an earlier stage but with a different mechanism. The 

differences observed in the detection and repairs of semantic vs. phonological errors (e.g., 

(Nozari, Dell, & Schwartz, 2011; Schuchard, Middleton, & Schwartz, 2017); see Nozari, under 

review, for details) make the first possibility unlikely. This has led to proposals for alternative 

monitoring mechanisms at the higher levels of language production. One such mechanism is 

conflict-based monitoring (Botvinick, Braver, Barch, Carter, & Cohen, 2001), in which the close 

activation of multiple representations (i.e., high conflict) signals the higher likelihood of an error 

(regardless of whether an error is actually committed or not), and leads to the greater recruitment 

of control resources to resolve this conflict. This mechanism is “layer-specific”, meaning that 

conflict is computed between different representations (e.g., lexical representations of “cat” and 
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“dog”; Hanley, Cortis, Budd, & Nozari, 2016; Nozari et al., 2011) within the same layer. This is 

fundamentally different from the models discussed above, in which computations depend 

critically on activation at different levels for the same item (e.g., motor vs. perceptual 

representations of “cat”). The conflict-based account thus eliminates the problem of duplicate 

representations at the higher levels of the system. To this is added a domain-general component, 

which reads out the conflict from specific parts of the system and uses this information to 

regulate top-down control over the parts from which conflict has arisen.  

The layer-specificity of the conflict-based account predicts the engagement of the same regions 

that are involved in the primary production processes in monitoring processes. Neural correlates 

of the domain-general part of the conflict-based monitor are under debate, but medial prefrontal 

cortex (especially ACC and preSMA) and lateral prefrontal cortex (especially the LIFG) have 

been the main candidates. Due to the methodological difficulties involved in eliciting errors from 

neurotypical adult speakers, very few neuroimaging studies have to date investigated the neural 

correlates of error detection in natural production tasks. A tongue-twister study by (Gauvin, De 

Baene, Brass, & Hartsuiker, 2016) implicated pre-SMA, dorsal ACC, anterior insula, and inferior 

frontal gyrus. Interestingly, that study failed to find a reliable contribution of the auditory or 

perceptual areas to error detection. But neural correlates of the conflict-based model can be 

assessed in another way: note that the scope of conflict-based monitoring extends beyond error 

detection to the online regulation of production, potentially on every production attempt (Nozari 

& Hepner, 2018, 2019). The need for regulation increases with increased conflict. According to 

conflict-based monitoring, most errors are simply a subset of this situation. Thus one could test 

the predictions of the conflict-based monitor by looking at the neural correlates of word 

production in situations of high conflict, e.g., in the presence of a semantically related 

competitor. In keeping with the predictions of the conflict-based monitor, middle and posterior 

MTG, ACC, and LIFG are among the regions most frequently implicated in such studies (e.g., de 

Zubicaray, McMahon, Eastburn, & Pringle, 2006; de Zubicaray, McMahon, & Howard, 2015; de 

Zubicaray et al., 2001; Kan & Thompson-Schill, 2004; Schnur, Schwartz, Brecher, & Hodgson, 

2006; Schnur et al., 2009). 

To summarize, just like the primary production processes themselves, the monitoring processes 

for motor production are much better understood than those for higher-level production 
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processes, but given the very different nature of representations in the higher and lower levels of 

the production system, the most likely possibility is that more than one monitoring mechanism 

exists for the regulation of the production system (Nozari, under review).  

29.6 Summary and conclusion 

Given that no model of language production to date covers the entire process of mapping 

concepts to articulatory gestures, I used theoretical insights from models with different scopes, in 

the hope of painting as complete of a picture of the neural basis of word production as possible. 

Despite this heterogeneity, a neural model emerged within which the flow of information 

roughly tracks the information flow in cognitive models. Conceptualization begins by connecting 

distributed semantic features in conjunctive zones in the temporal lobe. The mapping of concepts 

to words and phonology is represented by the flow of information from anterior to middle and 

finally posterior parts of the MTG and STG. The adjacent SMG helps with the buffering of 

phonological information until it is time for production. Phonological codes are then mapped 

onto corresponding representations in the frontal cortex. This region has a complex hierarchy of 

planning and execution loops, and contains both abstract frames (in SMA and preSMA) and 

content (in the vPMC and IFS), with the final-stage articulatory gestures stored in the vMC. This 

architecture is very similar to that proposed by Hickok and Poeppel (2007).  

This process is supplemented by several other systems whose roles are less well understood. 

Medial frontal structures most likely serve motivational and evaluative functions. Closely related 

to these is the LIFG, which seems to play a role in resolving the conflict between competing 

alternatives and strengthening associations. Medial temporal regions may be important for 

connecting episodic memory in the hippocampus to long-term memory in cortical regions, and 

thus play a critical role in learning. The angular gyrus plays some kind of integrative function for 

events with relational or complex representations, although the exact nature of this function is 

not well understood. And last, but not least, subcortical regions such as the basal ganglia and 

cerebellum seem to play a critical role in learning, both by creating more efficient 

representations and faster mapping, and, in the case of the cerebellum, by being involved in 

generating predictions about the consequences of a motor plan.  

I end by highlighting the fact that we have come to understand a great deal about the neural basis 

of word production, but there is a long way to go. Many of the functions attributed to the regions 
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described in this chapter are speculative, or are too imprecise for us to claim that we have really 

understood the role of that region. This is particularly true for subcortical structures, which are 

hard to evaluate by many routine techniques. Moreover, certain problems such as monitoring and 

control are far from solved in language production, and relevant data are currently sparse. These 

areas provide great avenues for future research on the neural basis of word production.  
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