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Abstract 

Using word learning as an example of a complex system, we 

investigated how differences in the structure of the subcomponents in which 

learning occurs can have significant consequences for the challenge of 

integrating new information within such systems. Learning a new word 

involves integrating information into the two key stages/subcomponents of 

processing within the word production system.  In the first stage, multiple 

semantic features are mapped onto a single word. Conversely, in the second 

stage, a single word is mapped onto multiple segmental features.  We tested 

whether the unitary goal of word learning leads to different local outcomes in 

these two stages because of their reversed mapping patterns. Neurotypical 

individuals (N=17) learned names and semantic features for pictures of 

unfamiliar objects presented in semantically-related, segmentally-related and 

unrelated blocks. Both similarity types interfered with word learning. However, 

feature learning was differentially affected within the two main 
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subcomponents of word production.  Semantic similarity facilitated learning 

distinctive semantic features (i.e., features unique to each item), whereas 

segmental similarity facilitated learning shared segmental features (i.e., 

features common to several items in a block).  These results are compatible 

with a model of incremental learning in which learning not only strengthens 

certain associations but also weakens others according to the local goals of 

each subcomponent. More generally, they demonstrate that the same overall 

learning goal can lead to opposite learning outcomes in the subcomponents 

of a complex system. The general principles uncovered here can be extended 

beyond word learning to other complex systems with multiple 

subcomponents.   

 

Keywords: word learning; incremental learning; blocked cyclic naming; 

semantic similarity; segmental similarity  
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Learning in complex, multi-component cognitive systems: Different learning 

challenges within the same system 

Introduction 

 Learning within complex cognitive systems often requires changes in 

multiple subcomponents that all face the challenge of integrating new 

information with what is already known. This challenge can take different 

forms depending on the structure of the system in which learning is 

happening.  

One example of a complex cognitive operation involving multiple 

subcomponents is word production.  Theories of word production posit two 

key stages: Word Selection and Segmental Encoding (Dell, 1986; Levelt, 

Roelofs, & Meyer, 1999; Rapp & Goldrick, 2000). Based on the meaning we 

wish to communicate ([furry], [meows], [pet]), we select the word to be 

produced (CAT) and the segments that make up the word (c-a-t) (Figure 1). 

While learning new words often initially includes perception (i.e., hearing the 
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new word), ultimately the word can only be produced if it is integrated into 

the production system. This means that its relevant set of semantic features 

(accessible from sensory input or generated internally) must be connected to 

its abstract word form, and that word form must, in turn, be connected to its 

segments (i.e., phonemes or graphemes). Although the learned 

representations may be accessible from other systems (e.g., perception and 

memory), they reflect the dynamics of the production system into which they 

have been integrated.  This paper investigates the influence of these dynamics 

within the two stages of production that entail opposite mapping patterns: 

Word Selection involves many-to-one mapping (many meaning features map 

onto one word) while Segmental Encoding involves one-to-many mapping 

(one word maps onto many segments).  

We use similarity in semantic and segmental features to study the 

dynamics of learning new labels for novel objects at the first and second 

stages of production, respectively. We show that, while both types of similarity 

produce general difficulties for word learning, they have very different and 



LEARNING IN COMPLEX, MULTI-COMPONENT COGNITIVE SYSTEMS       6 

specific consequences for feature learning at the two stages of word 

production, precisely because of the unique learning problems at the two 

stages. While this research specifically involves word learning, the findings are 

relevant more broadly to learning in any complex multi-component system.  

Similarity and learning in word production 

Although word production is a complex system that requires balancing 

the competing forces of interference and facilitation due to a variety of 

factors including lexical competition, repetition priming, and strategy use (e.g., 

Belke, Shao, & Meyer, 2017), there is substantial evidence that the naming of 

multiple items that share semantic features (e.g., CAT, DOG, HORSE are all 

animals and have four legs) predominantly creates  interference in word 

production (e.g., Belke, Meyer, & Damian, 2005; Damian, Vigliocco, & Levelt, 

2001). This interference survives the insertion of several unrelated pictures 

between related items (see Schnur, 2014). For this reason, the interference is 

proposed to result from long-lasting incremental learning as opposed to 
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short-term activation-based mechanisms that are subject to rapid decay 

(Howard, Nickels, Coltheart, & Cole-Virtue, 2006; Oppenheim, Dell, & 

Schwartz, 2010).  

According to Oppenheim and colleagues’ 2010 interactive activation 

model of word production, each naming attempt is actually a learning 

experience in that the connections between the target word and its semantic 

features are strengthened. This strengthening facilitates future production of 

the same item. However, in this model, learning does not solely strengthen 

connections: it also weakens the connections between competing words and 

the features they share with the just-produced word. For example, upon 

naming a picture of a cat, the connection between CAT and [furry] is 

strengthened, but the connection between DOG and the same feature is 

weakened. If cat is to be named again, this will facilitate its selection amongst 

related competitors. However, if dog becomes the next target, it will be 

harder to access than it would have been if the previous target had been an 

unrelated word. Consequently, across a set of related items, the net effect is 
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typically interference. We recently showed that naming pictures of multiple 

items that share segmental features (e.g., CAT, COT, MAT) also creates similar 

patterns of  interference during picture naming (Breining, Nozari, & Rapp, 

2016; Nozari, Freund, Breining, Rapp, & Gordon, 2016). 

Consequences of multi-stage learning 

Integrating a new word into one’s production system requires 

connecting two sets of features, meaning (semantic) to form (segmental) 

features, via an intermediary (word) representation1. Here we consider –for the 

first time– the predictions of an incremental learning mechanism for learning 

these two types of features, as part of learning a new label for a novel object. 

A shared feature is one that is common to multiple items in the learning set 

(see Figure 1; e.g., the concept [furry] in a set containing both CAT and DOG 

or the letter a in a  set with both CAT and MAT). A distinctive feature, on the 

                                                 
1 Note that all models of word production contain an intermediate layer between semantics 

and segments, even if this layer does not explicitly consist of word units. The dynamics 

discussed in this paper depend on the existence of some intermediate layer and can, 

therefore, be expected in all models of production with feedback between segments and the 

intermediate layer.   
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other hand, is unique to a single item within the learning set (e.g., the 

concept [meows] and the letter c which only pertain to CAT).  

As a mechanism of incremental learning, we adopt the principles 

proposed by Oppenheim and colleagues (2010), because the model has been 

successful at explaining a range of findings regarding semantic interference 

(the computational simulations have been reported in detail in the original 

paper for the interested reader). An alternative model (Howard et al., 2006) 

also predicts interference during the production of semantically-related words, 

but unlike Oppenheim and colleagues (2010), this interference arises from a 

combination of strengthening the connections between the target words and 

semantic features (similar to Oppenheim et al., 2010) and lateral inhibition 

between words (different from Oppenheim et al).  Importantly, unlike 

Oppenheim and colleagues’ model it has no mechanism for weakening the 

connections between the competitor and the shared feature. We later discuss 

the difference between these two learning mechanisms in light of their 

consequences.  
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The scope of both of the above models of incremental learning, 

however, is limited to the first stage of production. To extend the learning 

principles of Oppenheim and colleagues (2010) to the second stage of 

processing, we use the framework of the two-step interactive model (e.g., 

Foygel & Dell, 2000; Rapp & Goldrick, 2000). Unlike the alternative 

feedforward models (e.g., Levelt et al., 1999; Roelofs, 1997), the interactive 

models assume feedback from segments to the word layer. We return to this 

issue in the General Discussion and compare our findings with the predictions 

of a feedforward framework.   

Figure 2 illustrates the learning of two semantically-related items, each 

with one shared and one distinctive feature. What is shown here is precisely 

what is predicted –and simulated-- by Oppenheim et al.’s (2010) model. On 

trial 1, the first item is introduced (A) and the connections between its 

semantic features and label are formed (B). When item 2 is presented on trial 

2, its semantic features are activated along with its label. However, item 1’s 

label is also partially activated via the shared semantic feature (C). At the 
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trial’s end, connections that supported target item 2’s activation are 

strengthened while those which supported competitor item 1’s activation are 

weakened (D). When item 1 is presented again on trial 3, it is at a 

disadvantage because of its weakened connection to the shared feature. 

However, similar processes of activation of new target item 1 and partial 

activation of competitor item 2 take place (E). At the end of this trial, 

connections are adjusted to support the current target (item 1) and make 

item 2’s selection less likely in the future (F). Over time, this learning process 

consistently increases the strength of the connections between each word and 

its distinctive feature. However, the connection between each word and its 

shared features is strengthened or weakened depending on its status as 

target or competitor on each trial (G). This dynamic learning process predicts 

that distinctive features of semantically-related items should be learned better 

than their shared features2. That is, semantic similarity during learning should 

facilitate the retrieval of distinctive vs. shared features. 

                                                 
2 While in this paper we describe the system as though there is no feedback between the 
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Figure 3 illustrates the learning of two segmentally-related items, each 

with one shared and one distinctive segmental feature. What is shown here is 

our extension of the incremental learning mechanism proposed by 

Oppenheim et al. (2010) to the second stage of production in an interactive 

system. After exposure to the first item (A), the connections between the word 

and its segmental features are formed (B). Presentation of item 2 on trial 2 

activates its features. However, item 1 is also partially activated by feedback 

through the shared segmental feature and in turn it activates its own 

distinctive segment (C). At the end of trial 2, connections that supported the 

activation of current target segments are strengthened, while those that 

supported the activation of the non-target segment are weakened (D). When 

                                                                                                                                                 

word and semantic levels, we note that such feedback is possible.  However, this would not 

change the effects of semantic similarity.  If there is word-semantic feedback leading to 

activation of non-target, semantically-related items, the distinctive feature of the non-target 

item will undergoes slight weakening. This weakening will always be smaller than the shared 

feature, because weight changes are proportional to the activation of the features, and the 

shared feature is always more activated than the distinctive feature of any non-target items 

that were activated through feedback only.  So the final outcome is still an advantage for the 

distinctive over the shared feature.  For simplicity (and consistency with the implemented 

model of Oppenheim et al., 2010), the architecture we describe does not include such 

feedback.     
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item 1 is presented again on trial 3, it is at a disadvantage because of its 

weakened connection to its distinctive segment.  However, again similar 

processes of activation of the new target item 1 and partial activation of 

competitor item 2 take place (E). At the trial’s end, connections are adjusted 

to support the activation of item 1’s segments and make the selection of item 

2’s segments less likely in the future (F). Over time, this learning process 

consistently increases the strength of the connections between each word and 

the shared segmental feature. On the other hand, a  word’s connection to its 

distinctive feature is strengthened and weakened depending on the word’s 

status as target or competitor on each trial (G). This learning process predicts 

that shared features of segmentally-related items should be learned better 

than their distinctive features. In other words, segmental similarity during 

learning should facilitate the retrieval of shared vs. distinctive features.  

Thus, a key prediction is thus that the demands of information 

integration within different subcomponents of the word production system 

should lead to different consequences for the learning of semantic vs. 
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segmental information about new words. In sum, the extension of incremental 

learning principles to new word learning predicts: (1) overall interference (i.e., 

reduced accuracy and/or longer response latencies) for naming words trained 

in semantically- or segmentally-related blocks compared to those trained in 

unrelated blocks;  (2) an advantage for learning distinctive vs. shared semantic 

features for words trained in semantically-related blocks; and (3) the reverse 

pattern with an advantage for the learning of shared vs. distinctive segments 

for words trained in segmentally-related blocks. To be clear, the mechanisms 

we have proposed for the integration of new words into the production 

system predict greater difficulty for naming the words learned in both 

semantically-related and segmentally-related conditions. However, the finding 

of an interference effect in naming cannot shed light on the precise nature of 

this difficulty. To investigate the stage-specific consequences of incremental 

learning discussed earlier in this paper, we propose to test the differential 

effects of shared vs. distinct features in semantically- and segmentally-related 

conditions.  



LEARNING IN COMPLEX, MULTI-COMPONENT COGNITIVE SYSTEMS       15 

We tested these predictions in a 4-session training study in which 

neurotypical participants were taught names and features for pictures of 

unfamiliar objects in semantically-related, segmentally-related, and unrelated 

training blocks. We have previously shown that semantic and segmental 

similarity have similar effects for speaking and writing words (Breining et al., 

2016; Breining & Rapp, 2017). For this study, we chose the written modality 

because it is more straightforward to conceptualize and manipulate feature 

overlap for written forms since it removes the factors of accent, co-

articulation, and intra-syllable position that complicate determining spoken 

feature overlap.  

Methods 

Participants  

Seventeen right-handed, neurotypical adult participants aged 18-25 

years (mean age 20.4 years, 13 females) were recruited from the Johns 

Hopkins community. Each participant gave informed written consent 
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according to the policies of the local institutional review board and received 

$60 upon completion of the final experimental session.  

Stimuli  

Participants were trained on a total of 24 novel items. Figure 4 shows 

an example stimulus; the complete set is included in Supplemental Material. 

For each participant, there were six blocks (i.e., lists) each consisting of four 

items (two semantically-related, two segmentally-related, and two unrelated 

blocks). Across participants, each item appeared in only one type of block and 

consisted of a pseudoword label paired with a 4 by 4 inch black and white 

line drawing of a very unusual object taken from the Ancient Farming 

Equipment stimuli (e.g., Laine & Salmelin, 2010), the NOUN database (Horst & 

Hout, 2016), clip art directories, and images freely available online. 

With regard to semantic features, for each item, two sensory features 

and two functional features were provided which were not extractable from 

the visual properties of the object. With regard to segmental properties, each 
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item name was a monosyllabic 4-letter pseudoword that was orthotactically 

and phonotactically plausible in English. All six blocks were matched on length 

in letters and phonemes of the pseudowords, and on phonological and 

orthographic neighborhood density from the ARC Nonword Database (Rastle, 

Harrington, & Coltheart, 2002).  The same picture was paired with the same 

semantic features and segments across all participants.    

Semantic blocks. In the blocks made up of semantically-related items, 

semantic feature overlap was distributed unpredictably across the four items 

such that each item had two features that were shared with at least one other 

item in the block and two features that were unique to the item (i.e., each 

item had two shared and two distinctive features). The same feature was 

never shared by all four items in a block so that participants could not infer 

the presence of a certain feature from block identity.  Within each semantic 

block, there was no segmental overlap, meaning each segment appeared only 

once in any position (i.e., within a semantic block all 16 letters were unique). 
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However, because there is a limited set of segments in English, the same 

segments were necessarily used in other blocks.   

Segmental blocks. In the blocks made up of segmentally-related items, 

distribution of segmental feature overlap was similar to the semantic blocks 

such that each item had two segments that were shared with at least one 

other item in the block in the same position in the word and two segments 

that were unique to the item (i.e., each item had two shared and two 

distinctive segments). Each segment in a segmental block appeared three 

times across the semantic and unrelated blocks. Application of these 

constraints resulted in one segment serving as a shared segment in both 

segmental blocks. To encourage lexical processing, the relationship between 

orthography and phonology was not always consistent (e.g., [ɪ] corresponded 

to y in chys but to i in lisk).  Semantic features were not repeated across 

segmental blocks.  

Unrelated blocks. Within each unrelated block, there was no repetition 

of semantic features or segments.  As in the semantic blocks, there was 
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repetition of segments across blocks due to the limited set of segments in 

English.  As in the segmental blocks, there was no repetition of semantic 

features across blocks. 

Procedure  

The experiment was run using E-Prime 2 Professional (Psychology 

Software Tools, Pittsburgh, PA) on a Dell Latitude E6500 laptop with a 13-inch 

by 8-inch screen. Participants attended four training sessions within 10 days. 

The general procedures for familiarization and training were based on 

previous research using the Ancient Farming Equipment paradigm, modified 

to compare different blocking contexts. 

First, participants were familiarized with the twenty-four pictures. For 

each item, the picture was presented along with a list of its four semantic 

features printed in Arial size 18 font to the right of the picture. The name 

appeared underneath in Arial size 24 font and was also auditorily presented. 
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Participants had a maximum of 15 seconds to process the information about 

each item. 

After the familiarization phase, participants were instructed on the use 

of the Wacom Bamboo tablet for writing responses, with pen strokes 

appearing on the computer monitor. Response time (RT) was recorded when 

the writing surface was first touched with the pen. Participants were instructed 

to write the letters they knew and draw blanks for unknown letters (e.g., for a 

4-letter name that started with c and ended in s, they could write c_ _ s). They 

were to write as legibly as possible, but were not restricted to a particular 

handwriting style (they were free to write in upper or lower case, print or 

cursive). After writing a response, participants returned the pen to the starting 

point and pressed a button with their non-dominant hand to advance to the 

next trial. When this button was pressed, a screen shot of the completed 

response was saved for scoring accuracy.  

Training followed a test-study-test format consisting of five parts 

(Figure 5), providing for multiple retrieval attempts, known to enhance 
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learning (e.g., Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). The first phase 

tested retrieval from memory of the word form and semantic features, 

followed by a study phase for strengthening this information and then 

another test phase. All five parts of training were performed sequentially for 

each item before moving on to the following item.   

Part 1 tested memory of the word form, requiring participants to 

attempt retrieval. Following a 500-millisecond fixation and a 500-millisecond 

“Prepare to Name” screen, the picture appeared along with the “Name” 

instruction, and remained there until participants started to write down their 

response. Once finished, they pressed a button continue. Part 2 tested 

memory of semantic features. After viewing “Prepare to Verify” for 500 

milliseconds, they saw the picture with one semantic feature printed 

underneath. Participants then pressed a YES or NO button to indicate whether 

or not the feature belonged to the item and move onto the next part. Part 3 

allowed study of information regarding the word form and semantic features. 

After a 500-millisecond “Study” screen, the picture, its four semantic features, 
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and its name all appeared on the screen and participants were instructed to 

copy the name underneath the printed label. Unlike the “Name” and “Verify” 

parts where participants were encouraged to respond as quickly as possible, 

there was no time pressure during this part. After that, participants again 

completed “Name” and “Verify” parts (with a different feature) to further test 

their memory. Then the trial was complete.  

 After five practice trials with familiar objects and labels during the first 

session, participants completed 72 training trials during each of the four 

separate training sessions. Each day, items were presented in segmental, 

semantic, and unrelated blocks in a new pseudorandom order, so that each 

block type was not repeated before the other two block types were 

presented. The six blocks (2 semantic, 2 segmental, and 2 unrelated) were 

separated by short breaks.  Within each block, all four items were presented 

over three cycles in random order for a total of 12 training trials per block (72 

trials total across the six blocks). For the verify portions of the trials, all 

incorrect features (50% of feature verification trials across the four sessions) 
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consisted of features from other items in the same block. Each shared feature 

appeared more times than each distinctive feature since shared features were 

correct for multiple items.  

At the end of each training session, two probe tasks were administered 

to assess the speed and accuracy of semantic and segmental feature retrieval 

for shared and distinctive features. The semantic feature probe task was 

administered first. This type of task has been used previously to investigate 

the organization of semantic knowledge (e.g., Cree, McNorgan, & McRae, 

2006). The task began with a 500-millisecond fixation cross, followed by the 

presentation of the picture along with one printed semantic feature. 

Participants had 2000 milliseconds to indicate whether the feature belonged 

to the item or not with YES or NO buttons. A 500-millisecond inter-trial 

interval separated trials. There were 192 trials total, with four YES trials for 

each item that paired the picture with a correct feature and four NO trials for 

each item that paired the picture with an incorrect feature from the same 

block.  
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 A segment probe task was also administered. This type of task has 

been used previously to evaluate the activation of orthographic 

representations (e.g., Rapp & Lipka, 2011). The set-up of the segment probe 

task was the same as the semantic probe task, except that a single upper-case 

letter was presented in Arial size 18 font in the place of the semantic feature, 

and participants were to decide whether or not the name of the item 

contained that letter. As in the semantic task, there were 192 trials, half YES 

and half NO.   

Results  

 All analyses were performed using multilevel mixed models with 

random effects in R version 3.2.4 with the lme4 and lmerTest packages. 

Accuracy data were analyzed using logistic regression since they are binary, 

while log-transformed response time data were analyzed using linear 

regression. Since the predictions consider the impact of a specific type of 

blocking (semantic or segmental) relative to an unrelated context, separate 
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models were constructed to compare items trained in semantic vs. unrelated 

blocks and in segmental vs. unrelated blocks, while items trained in semantic 

and segmental blocks were not directly compared. We first report the results 

of the naming trials obtained during training. Recall that we predict 

interference will result from both semantic and segmental similarity. Next, we 

report the results of the probe tasks, which allow us to test the stage-specific 

challenges of integration.  

Naming Results 

 Analyses considered only the accuracy and response time of the first 

naming attempt made in each training trial. Participants performed at ceiling 

on the other naming portions of the trials, with 99.8% whole response 

accuracy on written copy and 99.6% accuracy on second naming attempt. 

Overall, across all training sessions, participants correctly produced the whole 

response on 77.5% of first naming attempts. The majority of errors (66.8%) 

were omissions in which no segments were produced. There were a few 
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within-block substitutions (5.1%) and across-block substitutions (3.7%) 

whereby another name from the experiment was produced instead of the 

target. Remaining errors consisted of additions, deletions, and substitutions of 

segments (24.3%). Accuracy analyses examined whole response accuracy, not 

segment accuracy. 

Naming accuracy models included the following fixed effects: block 

type (semantic vs. unrelated in the semantic model and segmental vs. 

unrelated in the segmental model), training attempt within session (1-3), 

training session (1-4), two- and three-way interactions between those, and the 

control variables of days since last training session and number of training 

trials since the target was last trained. Continuous variables were centered and 

scaled. A full random structure was implemented in each model, with random 

intercepts for subjects and items, a full random slope structure matching the 

fixed effect structure over subjects, and the same random slope structure over 

items with the exception that block type and its interactions were excluded 

since each item was trained in only one context.  
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Response times (RTs) entered into analyses were log-transformed and 

excluded incorrect responses and outliers more extreme than 2.5 standard 

deviations from each participant’s raw mean RT regardless of accuracy (23.0% 

of total trials). The model architecture was the same as in the accuracy 

analysis. Figure 6 shows the results of the naming responses from the training 

task, and Tables 1 and 2 show the results of the models of naming accuracy 

and response time data for semantic and segmental blocks, respectively, 

compared to unrelated blocks.  

Both models revealed robust evidence of learning: Participants’ 

accuracy increased over sessions (z=7.43, p<.001 for the semantic model; 

z=8.00, p<.001 for the segmental model) and their RTs decreased as they 

completed more sessions (t=-16.24, p<.001 for the semantic model; t=-15.94, 

p<.001 for the segmental model). Furthermore, there were also consistent 

main effects of training attempt within session such that accuracy increased 

(z=6.11, p<.001 for the semantic model; z=5.10, p<.001 for the segmental 

model) and RT decreased (t=-6.53, p<.001 for the semantic model; t=-5.91, 
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p<.001 for the segmental model) as participants practiced naming the same 

item multiple times within a session, again demonstrating learning.  

Critically, several pieces of evidence also indicated interference 

generated by similarity during training. In the semantic model, participants 

were significantly less accurate in the semantic vs. unrelated blocks (z=-2.08, 

p=.038). They also had smaller increases in accuracy for items trained in 

semantic vs. unrelated blocks across training attempts within session (z=-2.21, 

p=.027) and across sessions (z=-1.96, p=.050). Although the RT effects for 

semantic vs. unrelated blocks did not reach significance, their pattern was 

generally consistent with the interference observed in the accuracy data. In 

the segmental model, participants had increasingly longer RTs across training 

attempts within session in the segmental vs. unrelated blocks (t=3.20, p=.003). 

In addition, they were marginally less accurate in the segmental vs. unrelated 

blocks overall (z=-1.81, p=.070). See Tables 1 and 2 for the complete list of 

effects. 
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In summary, similarity contexts had negative effects during learning. 

While participants did learn the names of the items over the course of the 

experiment, naming was less accurate and improvement was slower within 

sessions in both semantically- and segmentally-related contexts. 

Probe Task Results 

On the semantic probe task, over all administrations, participants 

correctly accepted features on 84.1% of trials (low of 77.0% on session 1 to 

high of 88.5% on session 4) and correctly rejected features on 83.6% of trials 

(low of 81.4% on session 1 to high of 86.7% on session 4). On the segmental 

letter probe task, they correctly accepted segments on 71.5% of trials (low of 

55.6% on session 1 to high of 84.7% on session 4) and correctly rejected 

segments on 84.8% of trials (low of 71.3% on session 1 to high of 92.5% on 

session 4).  

Since the probe tasks evoked a binary (yes/no) response, the first step 

was to ensure good discriminability at the participant level. To this end we 
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calculated d’s for all participants separately for the semantic and segmental 

probe tasks. All but one participant had d’>0.9 (mean d’=1.48, standard 

deviation=0.56) in the semantic probe and d’>1.0 (mean d’=1.97, standard 

deviation=0.81) in the segmental probe tasks, which indicate good 

discriminability. The participant with d’ = 0.45 in the semantic probe condition 

was excluded from further analyses. 

Semantic probe and segment probe data were considered separately. 

For each probe task, responses to shared features were compared to 

responses to distinctive features within the same context.  Only responses to 

correct features were considered (i.e., YES and NO responses to probes in 

which the correct response was YES) because there were clear predictions 

about the effects of context on the shared and distinctive features. It is less 

clear if responses to incorrect features should follow the same pattern, 

especially because some rejections could be made on the basis of general 

knowledge before any training even occurred (e.g., a type of tree is not going 

to swim).    As in the analysis of the naming data, accuracy and response time 
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data were analyzed separately. Each model included feature type (shared or 

distinctive), session (1-4), and the two-way interaction between them as well 

as days since the last session as fixed effects. Following the recommendations 

of Barr and colleagues (2013) to “keep it maximal”, we attempted to 

implement a full random effects structure, but due to failures of convergence, 

random slopes over items were not included. The resulting random effects 

structure included random intercepts for subjects and items as well as random 

slopes over subjects for feature type, training session, their interaction, and 

days since the last session. Response times entered into analyses were log-

transformed and excluded incorrect responses and outliers more extreme than 

2.5 standard deviations from each participant’s mean (17.4% of semantic 

probe trials; 28.3% of segment probe trials). 

Figure 7 shows the results of the semantic and segment probe tasks 

over sessions. Tables 3 and 4 summarize the outputs of the semantic and 

segment probe models, respectively.  
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Across the four sessions, participants became increasingly faster (t=-

4.92, p<.001 in the semantic model; t=-2.45, p=.014 in the segmental model) 

and more accurate (a marginal effect z=1.71, p=.088 in the semantic model; a 

significant effect z=6.63, p<.001 in the segmental model) in verifying features, 

showing that they indeed learned both semantic and segmental features.  

Importantly, in the model comparing shared and distinctive semantic 

features trained in semantic blocks, participants were faster to verify 

distinctive features than shared features (t=-3.72, p=.001). There was also a 

marginally significant negative interaction between feature type and session 

for response time (t=-1.83, p=.072), suggesting that participants tended to 

have greater increases in speed for the verification of distinctive features vs. 

shared features.  

In contrast, in the models comparing shared and distinctive segments 

trained in segmental blocks participants were significantly faster (t=2.14, 

p=.033) and marginally more accurate (z=-1.90, p=.057) to verify shared 

segments relative to distinctive ones.  
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To summarize, semantic and segmental similarity led to opposite 

results in the feature probe tasks: there was an advantage for verification of 

distinctive as opposed to shared features in the semantic probe task, while 

there was an advantage for verification of shared as opposed to distinctive 

features in the segment probe task3. 

General Discussion  

We examined specific learning challenges within different 

subcomponents of the word production system, focusing on the 

consequences of semantic and segmental similarity on word learning. As 

predicted, analysis of the naming data indicate that both types of similarity 

                                                 
3 Note that we also found consistent results when comparing shared features trained 

in the critical contexts to distinctive features trained in other contexts (Breining, 2016).  That 

is, the advantage for distinctive semantic features was present not only when directly 

comparing shared and distinctive semantic features trained in semantic blocks, but also when 

comparing shared semantic features trained in semantic blocks to the by-definition distinctive 

semantic features trained in segmental and unrelated blocks. Likewise, the advantage for 

shared segments was present not only when directly comparing shared and distinctive 

segments trained in segmental blocks, but also when comparing shared segments trained in 

segmental blocks to the by-definition distinctive segments trained in semantic and unrelated 

blocks.  These analyses show that the effects discussed are not limited to relative differences 

between shared and distinctive features trained within the same context, but that these 

effects are also observed for other contexts as well. 
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led to overall interference during learning. These findings align well with the 

findings of Oppenheim (2018) who reported immediate semantic interference 

when new words were integrated into the lexicon, and extend these findings 

to segmental overlap. Importantly, we found that semantic and segmental 

similarity had contrasting effects on the learning of features at the two stages 

of word production. Semantic feature similarity during Word Selection, which 

requires the mapping of multiple semantic features to one word, facilitated 

learning of distinctive features. On the other hand, segmental feature 

similarity during Segmental Encoding, which requires the mapping of one 

word to multiple segments, facilitated learning of shared segments. These 

results support the central premise of this study: although there is a common 

challenge of integrating new and known information during learning, the 

specific form of the challenge is shaped by the structure of the 

subcomponents. This could mean opposite effects in local learning dynamics 

within the subcomponents in order to satisfy a single learning goal for the 

whole system. We expect that this principle is not confined to novel word 
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learning in the healthy adult language system: Similar dynamics are likely to 

exist throughout development (e.g., as children acquire representations for 

homonymous and synonymous words); in rehabilitation contexts (e.g., as 

individuals with aphasia undergo treatment for anomia); and beyond language 

in other complex multi-component cognitive systems as well (e.g., episodic 

memory, visual object recognition, etc.).  

The findings have implications for both the type of learning 

mechanism, and the underlying production architecture on which such a 

mechanism operates. With respect to the learning mechanism, the asymmetry 

in learning shared vs. distinctive features stems directly from the differential 

weakening of the connections between word representations and semantic vs. 

segmental features during the integration of a new word into the production 

system. This finding favors models with both positive and negative changes to 

connection weights (e.g., Oppenheim et al., 2010) over those with only 

positive weight changes (e.g., Howard et al., 2006) which would not predict 

differential learning of shared vs. distinctive features or a reversed pattern of 
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feature learning as a function of similarity type. With regard to the underlying 

production architecture, the findings are only compatible with models that 

allow for feedback between segments and words. In the absence of such 

feedback, segmentally-similar competitors would not even be activated during 

production. There would thus be no activation of competing segments, and 

none of the dynamics explained in Figure 3 would be expected. We have 

previously argued that the interference induced by segmental similarity during 

production is evidence for feedback between segments and words (Breining 

et al., 2016; Nozari et al, 2016). The current findings further support this claim.  

One might be concerned that the probe tasks involve perceptual and 

memory processes, but not word production processes. One important 

implication of these findings is that representations that are learned with a 

certain goal (e.g., production) reflect the influence of learning dynamics within 

that system even when accessed via other cognitive systems. Naming a 

picture repeatedly in order to solidify learning of a new label causes lasting 

changes to the connections between semantic features, segmental features, 
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that learned word form, and the word forms for similar words, and these 

changes are reflected in any task that taps into these connections.  

A more serious concern might be that the observed differences in the 

effects of semantic and segmental similarity have nothing to do with the 

dynamics of learning but may simply reflect differences in representational 

sparsity: the set of segments in English is limited, whereas the set of semantic 

features is virtually unlimited. However, it is unclear why these differences in 

sparsity would result in the observed pattern, and not any other pattern. Thus, 

while we cannot refute this possibility with certainty, we can claim that the 

account we propose provides a parsimonious theoretical framework that 

predicts precisely the observed effects. 

Finally, these findings may have implications for education and 

rehabilitation contexts. The finding that different subcomponents face 

different challenges may be helpful in structuring and interpreting learning.  

Furthermore, while the interference effects we report might suggest that 

similarity should be avoided, there is solid evidence that at least some kinds 
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of difficulty during learning have long term positive effects, a concept known 

as desirable difficulty (e.g., Bjork, 1994). If the interference observed here is 

indeed a desirable difficulty, one might expect benefits from training items in 

related sets (see also contextual priming in anomia studies, e.g. Martin & 

Laine, 2000).  

Overall, the word production system must be optimally tuned to 

manage the common situation of producing similar words in quick succession. 

The work reported here shows that this may be achieved through a complex 

process of incremental strengthening and weakening of connections in the 

different subcomponents of the word production system.  
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Tables 

Table 1. Results of the analysis of the semantic model of the training data, including both accuracy and response 

time. 

 Accuracy    RT    

Fixed effects Coefficient SE z p Coefficient SE t p 

Intercept 3.35 0.49 6.88 <.001 7.02 0.04 198.07 <.001 

block type (semantic vs. unrelated) -0.69 0.33 -2.08 .038 0.02 0.02 0.93 .365 

training attempt within session 1.94 0.32 6.11 <.001 -0.09 0.01 -6.53 <.001 

session 2.26 0.30 7.43 <.001 -0.23 0.01 -16.24 <.001 
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days since last session  -0.03 0.17 -0.17 .862 0.02 0.01 1.25 .226 

training trials since last trained -0.13 0.13 -1.01 .311 -0.02 0.01 -2.12 .045 

block type (semantic vs. unrelated) * 

training attempt within session 

-0.57 0.26 -2.21 .027 0.01 0.01 1.22 .234 

block type (semantic vs. unrelated) * 

session 

-0.44 0.23 -1.96 .050 -0.01 0.01 -1.41 .182 

training attempt within session * session -0.21 0.25 -0.85 .398 0.02 0.01 2.63 .015 

block type (semantic vs. unrelated) * 

training attempt within session * 

session 

-0.38 0.22 -1.74 .081 -0.02 0.01 -1.97 .060 
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Random effects Variance    Variance    

subject intercept 2.1779    0.0120    

block type (semantic vs. unrelated)|subject 

slope 

0.2059    0.0005    

training attempt within session|subject 

slope 

0.2392    0.0013    

session|subject slope 0.6689    0.0025    

days since last session|subject slope 0.1202    0.0011    

training trials since last trained|subject 0.0692    0.0004    
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slope 

block type (semantic vs. unrelated) * 

training attempt within session|subject 

slope 

0.2369    0.0003    

block type (semantic vs. unrelated) * 

session|subject slope 

0.0662    0.0009    

training attempt within session * 

session|subject slope 

0.1289    0.0002    

block type (semantic vs. unrelated) * 

training attempt within session * 

0.1154    0.0002    
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session|subject slope 

item intercept 0.6547    0.0082    

training attempt within session|item slope 0.0684    0.0004    

session|item slope 0.1061    0.0003    

days since last session |item slope 0.0182    0.0009    

training trials since last trained|item slope 0.0279    0.0001    

training attempt within session * 

session|item slope 

0.0808    0.0001    

Residual     0.0869    
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Table 2. Results of the analysis of the segmental model of the training data, including both accuracy and response 

time. 

 Accuracy    RT    

Fixed effects Coefficient SE z p Coefficient SE t p 

Intercept 3.66 0.53 6.92 <.001 6.99 0.04 191.36 <.001 

block type (segmental vs. unrelated) -0.60 0.33 -1.81 .070 -0.01 0.03 -0.36 .721 

training attempt within session 2.13 0.42 5.10 <.001 -0.07 0.01 -5.91 <.001 

session 2.48 0.31 8.00 <.001 -0.21 0.01 -15.94 <.001 

days since last session  -0.13 0.14 -0.88 .378 0.02 0.01 1.03 .319 

training trials since last trained 0.07 0.12 0.61 .545 -0.02 0.02 -1.24 .232 
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block type (segmental vs. unrelated) * 

training attempt within session 

-0.42 0.28 -1.54 .125 0.02 0.01 3.20 .003 

block type (segmental vs. unrelated) * 

session 

-0.30 0.23 -1.31 .190 0.01 0.01 0.91 .373 

training attempt within session * session -0.03 0.33 -0.10 .919 0.01 0.01 1.30 .211 

block type (segmental vs. unrelated) * 

training attempt within session * session 

-0.23 0.24 -0.99 .321 -0.02 0.01 -2.57 .016 

         

Random effects Variance    Variance    

subject intercept 2.6845    0.0102    
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block type (segmental vs. unrelated)|subject 

slope 

0.0796    0.0004    

training attempt within session|subject 

slope 

0.9401    0.0010    

session|subject slope 0.5335    0.0011    

days since last session|subject slope 0.0041    0.0011    

training trials since last trained|subject slope 0.0143    0.0010    

block type (segmental vs. unrelated) * 

training attempt within session|subject 

slope 

0.0338    0.0001    
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block type (segmental vs. unrelated) * 

session|subject slope 

0.0343    0.0006    

training attempt within session * 

session|subject slope 

0.5874    0.0007    

block type (segmental vs. unrelated) * 

training attempt within session * 

session|subject slope 

0.0089    0.0001    

item intercept 0.4328    0.0111    

training attempt within session|item slope 0.1303    0.0002    

session|item slope 0.0486    0.0009    
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days since last session |item slope 0.0057    0.0006    

training trials since last trained|item slope 0.0142    0.0008    

training attempt within session * 

session|item slope 

0.1853    0.0004    

Residual     0.0969    
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Table 3. Results of the analysis of the model of the semantic probe data comparing shared and distinctive features 

trained in semantic blocks, including both accuracy and response time. 

 Accuracy    RT    

Fixed effects Coefficient SE z p Coefficient SE t p 

Intercept 1.41 0.14 10.21 <.001 6.83 0.03 245.43 <.001 

feature type (distinctive vs. shared) 0.09 0.07 1.37 .171 -0.02 0.01 -3.72 .001 

Session 0.14 0.08 1.71 .088 -0.04 0.01 -4.92 <.001 

days since last session 0.06 0.07 0.82 .411 0.01 0.01 0.99 .360 

feature type (distinctive vs. shared) * 

session 0.06 0.07 0.88 .380 -0.01 0.01 -1.83 .072 
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Random effects Variance    Variance    

subject intercept 0.1339    0.0114    

feature type (distinctive vs. shared)|subject 

slope 0.0206    0.0002 

   

session|subject slope 0.0343    0.0007    

days since last session|subject slope 0.0109    0.0003    

feature type (distinctive vs. shared) * 

session|subject slope 0.0293    <0.0001 

   

item intercept 0.0575    0.0003    
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Residual     0.0445    
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Table 4. Results of the analysis of the model of the segment probe data comparing shared and distinctive segments 

trained in segmental blocks, including both accuracy and response time. 

 Accuracy    RT    

Fixed effects Coefficient SE z p Coefficient SE t pa 

Intercept 1.41 0.26 5.52 <.001 6.77 0.03 207.71 <.001 

feature type (distinctive vs. shared) -0.14 0.07 -1.90 .057 0.01 0.01 2.14 .033 

Session 0.77 0.12 6.63 <.001 -0.05 0.02 -2.45 .014 

days since last session 0.06 0.08 0.71 .480 <0.01 0.01 -0.13 .897 

feature type (distinctive vs. shared) * 

session -0.13 0.07 -1.91 .056 -0.01 0.01 -1.87 .062 
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Random effects Variance    Variance    

subject intercept 0.5156    0.0127    

feature type (distinctive vs. shared)|subject 

slope 0.0147    <0.0001 

   

session|subject slope 0.0903    0.0053    

days since last session|subject slope 0.0003    0.0012    

feature type (distinctive vs. shared) * 

session|subject slope 0.0083    0.0001 

   

item intercept 0.2236    0.0018    
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Residual     0.0533    

 

a The p-values reported for this model were calculated using the approximation of the normal distribution instead of 

the Satterthwaite approximation implemented in lmerTest.  This is because the model used here gave a warning 

about convergence failure that prevented application of lmerTest.  Following the recommendations of Bates et al. 

(2018) in the lme4 documentation, we tried all available optimizers, which converged to practically equivalent values, 

meaning it is reasonable to treat the convergence warning as a false positive and report the results of the model.
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Figure Captions 

Figure 1.  A schematic of the word production system.   

 

Figure 2.  Learning of two semantically-related items, focusing on the Word 

Selection stage of production prior to Segmental Encoding. w=word 

representation; sem=semantic feature. Orange (lighter gray) represents 

activation. Thicker lines represent increased connection strength and/or 

increased activation. 

 

Figure 3.  Learning of two segmentally-related items, focusing on the 

Segmental Encoding stage of production after Word Selection. w=word 

representation; seg=segment. Orange (lighter gray) represents activation.  

Thicker lines represent increased connection strength and/or increased 

activation. 

 

Figure 4. Example of an item in the training set.  
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Figure 5.  Structure of trial during training. 

 

Figure 6.  Results of the training task. Panel a shows accuracy across the three 

training attempts within each session, collapsed across all four training session 

for the three training contexts. Panel b shows accuracy across the three 

training attempts within each session for each of the four training sessions for 

the three training contexts.  Panel c shows response time across the three 

training attempts within each session, collapsed across all four training session 

for the three training contexts. Panel d shows response time across the three 

training attempts within each session for each of the four training sessions for 

the three training contexts.  All panels depict the mean of subject means. 

Error bars represent one standard error of the mean, corrected for repeated 

measures. 
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Figure 7.  Results of the semantic and segment probe tasks over sessions. 

Panel a shows accuracy for verification of semantic features across sessions, 

comparing shared and distinctive features trained in semantic blocks. Panel b 

shows response time for verification of semantic features across sessions, 

comparing shared and distinctive features trained in semantic blocks. Panel c 

shows accuracy for verification of segments across sessions, comparing shared 

and distinctive segments trained in segmental blocks. Panel d shows response 

time for verification of segments across sessions, comparing shared and 

distinctive segments trained in segmental blocks. All panels depict the mean 

of subject means. Error bars represent one standard error of the mean, 

corrected for repeated measures. 
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