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Abstract 

We present a review of frequency effects in memory, accompanied by a theory of memory, according to 

which the storage of new information in long-term memory (LTM) depletes a limited pool of working 

memory (WM) resources as an inverse function of item strength. We support the theory by showing that 

items with stronger representations in LTM (e.g. high frequency items) are easier to store, bind to context, 

and bind to one another; that WM resources are involved in storage and retrieval from LTM; that WM 

capacity is greater for stronger, more familiar stimuli. We present a novel analysis of preceding item 

strength, in which we show from eight existing studies that memory for an item is higher if during study it 

was preceded by a stronger item (e.g. a high frequency word; HF). This effect is cumulative (the more prior 

items are HF, the better), continuous (memory proportional to word frequency of preceding item), interacts 

with current item strength (larger for weaker items) and interacts with lag (decreases as the lag between the 

current and prior study item increases). A computational model that implements the theory is presented, 

which accounts for these effects. We discuss related phenomena that the model/theory can explain. 
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I. Introduction 

When we learn new information, we have to combine or chunk multiple features of our experiences 

into a single whole. The building blocks of these experiences can be, for example, faces, names, 

concepts, individual sensations, or an experiential context. We can think of these units and the 

associations among them as traces in a memory system, and some of these traces are arguably 

stronger than others – people find it much easier to recall and use some words, concepts, or events, 

compared to others. When it comes to memory trace strength, there are a number of questions 

which any theory of memory has to answer: How should we conceptualize memory strength? What 

are the factors that make some memories stronger than others and what are the mechanisms 

through which changes in memory strength occur? How and why does the existing strength of a 

memory affect future learning?  

Much of memory research revolves around the commonsense concept of memory trace 

strength1, yet there is little agreement about how to operationalize it. Some models in the field 

consider strength to be an intrinsic property stored within memory traces themselves (e.g., 

Anderson, Matessa, & Lebiere, 1997; Reder et al., 2000), while others calculate strength at 

retrieval, a measure of evidence for the match between a cue and the contents of memory (e.g. 

Dennis & Humphreys, 2001; Hintzman, 1984; Murdock, 1982; Osth & Dennis, 2015; Shiffrin & 

Steyvers, 1997). While both classes of models can account for many key findings in the field, they 

significantly disagree on whether many of the effects reviewed in this paper occur at encoding or 

at retrieval. Relatedly, memory theorists have long debated whether memory traces are best 

described by a single strength value or whether multiple signals contribute to memory judgements 

(Anderson & Bower, 1972; Diana, Reder, Arndt, & Park, 2006; Wixted & Mickes, 2010; 

Yonelinas, 2002). Some researchers even doubt the utility of the strength concept altogether 

(Hintzman, 2011). 

In operationalizing memory strength, theorists have to deal with a number of intriguing 

behavioral patterns. As it turns out, memory strength is not a simple function of frequency of 

exposure. Rather, memory strength is influenced by many aspects of the learning procedure, such 

as the type of practice (restudy vs retrieval; Carrier & Pashler, 1992; Liu, Liang, Li, & Reder, 

2014; Roediger & Karpicke, 2006; Rowland, 2014), the spacing of repetitions (massed vs 

distributed; Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Glenberg, 1976; Pavlik & Anderson, 

2005), and the delay between study and testing (immediate vs delayed testing; Bahrick, 1979).   

Complicating matters further, the prior strength of items in memory has multifaceted and often 

opposing effects on memory encoding, binding and retrieval (for a review, see Reder, Paynter, 

Diana, Ngiam, & Dickison, 2007). Depending on the nature of the task, the procedure, the 

experimental design, the stimuli and the processes under investigation, prior item strength can 

either facilitate or impair memory performance. Normative word frequency has been a favorite 

                                                 

 
1 For example, a Google Scholar search for the query ["trace strength" AND memory] returns 2520 results 
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stimulus variable in service of our understanding of the effect of prior item strength on memory. 

A myriad of research indicates that high frequency words do worse than low frequency words in 

episodic recognition tasks (Clark, 1992; Glanzer & Adams, 1990, 1990; Hockley, 1994; MacLeod 

& Kampe, 1996; Malmberg & Murnane, 2002; Reder et al., 2000; Schulman, 1967); however, on 

the basis of multiple recent findings, it has become clear that the frequency of prior exposure can 

help encoding. Specifically, the evidence suggests that highly frequent and familiar items are easier 

to encode, to associate to one another, to bind to an episodic context and to hold in WM (WM; e.g. 

DeWitt, Knight, Hicks, & Ball, 2012; Diana & Reder, 2006; Reder et al., 2013; Reder, Liu, 

Keinath, & Popov, 2016; Reder et al., 2007).  

The interpretation of these findings is not widely accepted, however, and while many 

researchers recognize that people can retrieve stronger memory traces more quickly and more 

accurately, few acknowledge that the prior strength of a trace affects the ease with which it can be 

encoded, associated or manipulated. As a result, few memory models posit a role for prior item 

strength in episodic learning, knowledge formation, or WM capacity (for a review of WM models, 

see Oberauer, Farrell, Jarrold, & Lewandowsky, 2016). 

Our main goal in this article is to describe a theory of human memory that can account for 

many of the paradoxes raised above. In the process, we will (see the Appendix for the 

organizational structure of the paper):  

 introduce a theory of memory, and its mathematical formulation, in which a key novel 

mechanism is that the encoding, binding and manipulation of stronger items require 

less WM resources (Section ”Overview of the theory”) 

 review evidence consistent with the claim that stronger items have an encoding 

advantage in both long-term memory and WM (Section “Existing challenges for a 

theory of frequency effects”) 

 support a key prediction of the theory, according to which memory for one item is 

influenced by how many resources are spent in processing preceding items (Section 

“Analyses of preceding item strength:  novel predictions”) 

II. Overview of the theory 

The theory we present is an evolution of the Source of Activation Confusion model (Reder et al., 

2000; Reder & Schunn, 1996; Schunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997), 

which itself has roots in the ACT-R cognitive architecture (Anderson et al., 2004). SAC 

implements a dual-process spreading activation theory in which semantic and episodic memory 

traces are represented as localist nodes in a network. In SAC, memory strength is a continuous 

value stored within nodes and the links between them, and this strength increases through practice 

and decays with time. The model has been previously successful in fitting a variety of findings in 

recognition and cued-recall memory, including the key effects of mirror word frequency (Reder et 

al., 2000), list length (Cary & Reder, 2003) and list strength effects (Diana & Reder, 2005). For 

that reason, we have imported many of its assumptions.  
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Despite these successes, the original version of SAC, just like other models of memory, did 

not assume that the current memory trace strength affects the probability of encoding. The lack of 

such a mechanism prevented it from explaining why stronger items would be easier to encode, 

bind and manipulate. This core insight was initially articulated by Reder et al. (2007) and Diana 

& Reder (2006) on the basis of quasi-experiments that tested memory as a function of normative 

word frequency, and since then we have accumulated, in support of the theory, a number of critical 

experimental findings that directly manipulated exposure frequency of the stimuli (Reder et al., 

2016; Shen, Popov, Delahay & Reder, 2017). 

The essence of the current theory is that the processing of stimuli, whether for encoding, 

storage, binding, and retrieval of stimuli, consume WM resources inversely proportional to the 

strength of the stimulus representation in long-term memory. This principle can be illustrated by a 

simple analogy to muscle fatigue. During any physical activity, substrates within muscle fibers 

fuel contractions of the muscle. These substrates get depleted with every contraction and they 

recover over time if the muscle is not used. When lifting a heavier weight, the muscle fibers use a 

greater amount of their available substrates. In this analogy, weaker items in memory are like 

heavier weights – they are more difficult to manipulate, and their retrieval, binding and encoding 

require more resources. 

To be more specific, our theoretical claims are that: 

 

1. The encoding, updating, and binding of stimuli to context, to other stimuli, or to relational 

structures, depend on a limited pool of WM resources 

2. These operations deplete the WM resource pool in a continuous manner which in turn 

replenishes over time2 

3. These operations consume more WM resources when the stimuli are weaker, that is, less 

familiar3 

4. As a result of maintaining or manipulating less familiar chunks of information, there will 

be less WM resources available for performing additional operations or for processing 

additional stimuli.  

 

                                                 

 
2 This idea bears some similarity to the concept of “ego depletion” (Baumeister, Bratslavsky & Muraven, 2018), 

according to which volitional acts of self-control and self-regulation draw on a limited resource that recovers over 

time. Despite the surface similarity, there are distinct differences between our theory and the “ego depletion” concept 

– first, our conception of resources applies to the storage and maintenance of information, not to executive control, 

and, second, it is implemented in an explicit computation model (see section “Epilogue: The concept of resources as 

an explanation” for more discussion of the importance of explicit modeling of resource-based explanations). 

3 Within this theory, stimuli with stronger memory traces are perceived as more familiar; for simplicity, we will use 

the terms “stronger” and “more familiar” interchangeably throughout the manuscript (similarly for “weaker” and “less 

familiar”) 
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The first claim above is shared by a number of other researchers (Blumenfeld, Parks, 

Yonelinas, & Ranganath, 2010; Geldorp, Parra, & Kessels, 2015; Peterson & Naveh-Benjamin, 

2017); however, to our knowledge it has not been implemented before into a mechanistic (i.e., 

computer implemented) model of memory. In contrast, the remaining claims about how stimulus 

familiarity affects WM resources are unique to our proposal (also see Reder et al, 2007). We 

believe that these key new extensions of the theory hold true regardless of how they are 

implemented. Below we present a complete description of the theory and its computational 

implementation. Some of the core assumptions are inherited from the previous models of tasks 

that used SAC (Reder et al, 2000), and we will note explicitly where the new model deviates. 

A. Full description of the theory 

1. Representation  

Information in memory is represented as a set of interconnected nodes in an associative network. 

These nodes reflect semantic or perceptual concepts (e.g., the concept of a “bush” or the 

representation of a face), events (“I planted a bush yesterday” or “I studied the word “bush” in this 

experiment”), or contextual information (the internal and external context associated with an 

experience). For simplicity, we consider these nodes to be the basic representational units, but in 

principle they also include detailed information about their underlying information, such as 

semantic, phonemic or lexical features. In other words, the localist nodes are high-level 

abstractions, and the theory is potentially consistent with a number of different lower level 

representations. A basic schematic illustration of the model representations in a typical paired-

associate list learning memory experiment is presented in Figure 1. Semantic nodes represent 

existing concepts in memory, and they can be thought of as conceptual structures in the neocortex. 

Context nodes represent the encoding environment, which is specific to the time and place in which 

the experiment experience occurs. Episodic nodes represent that a concept or a combination of 

concepts/features was experienced in a specific context, and they link together the individual 

aspects of experiences. Despite the interpretation of the nodes, there is no difference between the 

properties of each node type. 

We make a clear distinction between stimuli that have existing representations in memory, and 

stimuli that do not. For example, when people see a novel Chinese character for the first time, they 

have no choice but to encode it as a configuration of simpler visual features that they already know, 

such as a small triangle, the letter X, etc. With repeated experience, the feature nodes get associated 

to a single node, which eventually, with repetition, becomes a representation of the entire character 

as a whole. The feature nodes themselves remain attached to the character node and the character 

is represented by both its independent node, and the individual feature nodes that construct it. This 

process, which we refer to as chunking, is not unique to our model, and bears similarities to many 

influential proposals in theories of visual perception (Gilbert, Boucher, & Jemel, 2014; Palmer, 

1977), statistical learning (Fiser & Aslin, 2005; Perruchet & Vinter, 1998), and has a long history 

in memory research (Chase & Simon, 1973; Gilchrist, 2015; Gobet et al., 2001; Simon, 1974).  
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Figure 1. Illustration of the SAC model structure for a paired-associate experiment. Participants have 

studied the word pairs Apple-Chair and Abyss-Potion (among others). Each concept has a pre-existing 

semantic node, which has connections to multiple episodes in which it has been experienced over time. 

High frequency words (e.g. Apple) are experienced more often, thus have a greater contextual fan of 

preexisting connections, compared to low frequency words (e.g. Abyss). The current list context also has a 

separate node, which is connected to all the episodes (i.e. different trials) experienced in the current list. 

There is a unique episode node that connects all features of an experience, i.e., the two concepts and the 

context in which they are experienced.  

We do, however, consider that the same chunking mechanism operates in most forms of 

knowledge formation, including episodic, perceptual and statistical learning. In essence, the same 

process that forms an episode node to represent experiencing a pair of words in a list learning 

experiment, is the process that forms perceptual nodes to represent complex visual stimuli such as 

novel Chinese characters, or nodes that represent co-occurring features in a statistical learning 

paradigm. For all intents and purposes, these nodes are equivalent, and we can consider semantic 

and perceptual nodes to evolve from episodic nodes through strengthening by repeated exposure. 

2. Learning, forgetting, and base-level strength 

A long standing distinction in memory research is that between learning and performance (for a 

review, see Soderstrom & Bjork, 2015) or that between “storage strength” and “retrieval strength” 

(Bjork & Bjork, 1992). We take a similar approach in that, for SAC, two important properties 

characterize the strength of nodes in memory. We distinguish between the base-level strength of a 

node and its current activation. These two values vary as a function of exposure frequency and 

recency. Base-level strength is determined by the long term history of exposure to a node, while 

the current activation reflects the availability of the node at the time of test and it depends on what 

cues are available (see section “Current activation and spreading activation”).  

We will first describe the properties that characterize base-level strength.  Every time a certain 

node is activated, for example by repeatedly studying it in an experimental setting, its base-level 
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strength increases by a discrete amount, and these increments decay as a function of time. These 

principles are illustrated in Figure 2, where we simulate the base-level strength of a node as a 

function of the repeated study of a concept. Deviating from the previous implementation of SAC, 

in the current model the increase in base-level strength depends on how strong the node is at the 

time of study. Specifically, in this version of SAC, we assume that there is a maximum strength 

that nodes can reach, 𝐵𝑚𝑎𝑥 (which we fix to 1), and that each repetition strengthens the node as a 

proportion δ (learning rate) of the maximum strength minus its current base-level strength, B: 

 

𝑠 =  Δ𝐵 = 𝛿(1 − 𝐵) (1) 

 

This equation governs both the strengthening of existing traces, and the creation of novel 

traces. Equation 1 specifies the size of the strengthening increment under the assumption that there 

are sufficient resources available – see Eq. 7a and 7b, which specify how the default strength 

increment changes if WM resources are insufficient. We initialize new nodes with a base-level 

strength of 𝛿, because they have no prior strength. As a result of Equation 1, weaker memory traces 

are strengthened more than stronger traces and the increment size is controlled by the learning rate, 

δ. For example, a node whose base-level strength is 𝐵 = 0.8 will be strengthened by s = 0.2 ∗ 𝛿, 

while a node with a base-level strength of 𝐵 = 0.1 will be strengthened by s = 0.9 ∗ 𝛿. Similar 

equations have been successful in modeling classical conditioning in the influential Rescorla-

Wagner theory (Rescorla & Wagner, 1972) and it is the first main deviation from our previous 

SAC model4.  We have found that a learning rate of δ = 0.8 works well for most simulations, and 

this is the default value (see Table 1 for a summary description of all model parameters and Table 

2 for a summary of parameter estimates for all simulations presented in this paper). 

We chose this learning function, rather than the one used previously in SAC and ACT-R, 

because it has several desirable properties. First, the amount of resources depleted from WM by 

the processing of a stimulus is inversely related to its current strength, so we needed a way to 

quantify the resource cost of this operation. Within this equation, the cost of an increment of size 

s can be set to be proportional to s. Since weaker items are strengthened more (i.e., 

𝛿(1 − 𝐵𝑤𝑒𝑎𝑘) >  𝛿(1 − 𝐵𝑠𝑡𝑟𝑜𝑛𝑔)), the resource cost of strengthening them is also larger. Second, 

the equation allows us to specify a maximum level of activation that arises naturally from the form 

of the learning function, rather than arbitrarily cutting off strength values at a certain level. In 

addition, it allows our model to exhibit crossover effects in strength as a function of spacing and 

study-test lag5. Finally, it provides an explicit implementation of Jacoby and colleagues’ 

                                                 

 
4 In previous models, each repetition strengthened memory by the same fixed amount, and the summed strength was 

then log transformed. Log transformation squashes larger values more, which accounts for the diminishing returns of 

practice. The same principle is behind ACT-R declarative memory module. 

5 Modeling the spacing effect is beyond the scope of this paper 
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perceptual fluency (Jacoby, 1983) construct.  Stronger items are easier to perceive because they 

require less WM resources.   

 

 
Figure 2. Illustration of repeated strengthening and decay of a single episode node in the model. The same 

stimulus is experienced 5 times with 60 seconds in between repetitions. Left panel shows the total base-

level strength of the episode node as a function of time. Right panel shows the strength of each individual 

increment to the node strength. Later increments are smaller, because the size of the increment is a function 

of the current base-level strength of the node (see the text for details). The simulation for this figure had a 

learning rate of δ = 0.8 and a forgetting rate d = -0.18 (default values for all simulations). 

 

In addition to a node’s base-level activation being strengthened with each repetition, it is also 

the case that the base-level strength decays with time, which is one of the main causes of forgetting 

in the model. The increment in strength from each repetition decays independently6 of other 

increments as a function of how much time has elapsed since its occurrence (as illustrated in Figure 

2). Thus, at any time, t, the base-level strength of a node is: 

 

𝐵 = 𝐵0 + ∑ 𝑠𝑖 × (1 + 𝑡 −  𝑡𝑖)−𝑑

𝑛−1

𝑖=1

, (2) 

 

where 𝑠𝑖 is the strength increment produced by the i-th repetition, 𝑡 − 𝑡𝑖 is the time since the 

i-th repetition, d is the decay rate, and 𝐵0 is the preexisting base-level strength. Researchers have 

long debated whether forgetting is better described by an exponential or a power function (Rubin 

& Wenzel, 1996). Consistent with the original SAC model as well as ACT-R, we selected a power 

                                                 

 
6 see Pavlik & Anderson, 2005, for a neural justification behind this assumption 



  10 

decay function; however, SAC has also always postulated an exponential decay for current 

activation (see section below). The initial time value was offset by 1, so that immediately after 

encoding the increment size is not infinite.  

Equations 1 and 2 are recursive and to calculate the current base-level strength of a node, we 

need to know how much each repetition increments it. In turn, in order to know how much each 

repetition increments the base-level strength, we need to know what the strength was prior to that 

repetition. Thus, to calculate the strength increment on a certain repetition n, we need to combine 

Equations 1 and 2: 

 

𝑠𝑛 = 𝛿 (1 − 𝐵0 − ∑ 𝑠𝑖 × (1 + 𝑡 −  𝑡𝑖)
−𝑑

𝑛−1

𝑖=1

) (3) 

 

The links that connect individual nodes also vary in strength, depending on how often the two 

nodes have been co-active. The increment and decay of link strength also follow Equations 2 and 

3 with the only difference being the values of the power decay parameter (and no exponential 

decay parameter). 

Finally, the prior base level of semantic nodes is a function7 of SUBTLEX word frequency 

(van Heuven, Mandera, Keuleers, & Brysbaert, 2014) that starts at 0.2 for the lowest frequency 

items, increases with word frequency and plateaus at 0.4: 

 

𝐵0 = 0.4 − 0.2 × 𝑒−0.1 𝑊𝐹𝑝𝑒𝑟𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑤𝑜𝑟𝑑𝑠 (4) 

 

Learning in the model consists of two main operations – creating novel nodes and links and 

strengthening them with repetition. For example, when a participant studies the word “dog” in an 

episodic memory experiment, they: 

 Strengthen the semantic node for “dog” according to Equation 3 

 If this is the first occurrence of “dog” in the experiment, then: 

o Create a new episode node to reflect that the concept “dog” was seen in the 

experimental context 

o Create links between the “dog” semantic node, the episode node, and the current 

context node 

 If this is a repeated occurrence of the word “dog” in the experiment, then: 

o Strengthen the episode node and its links to the semantic and context nodes 

 

 

                                                 

 
7 The shape of this function is the same as that of Eq. 1 for repeated study observations of a single item. 
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3. Strengthening and binding deplete WM resources  

 

The key novel aspect of our theory is that a shared pool of resources fuels these learning processes, 

and that these processes cost more in resources when applied to items with weaker base-level 

strength. Every strengthening operation, regardless of whether it is applied to semantic nodes, 

episode nodes, context nodes or links between nodes depletes the same WM resource pool. We 

assume that people have different amounts of WM resources (Daily, Lovett, & Reder, 2001; 

Lovett, Daily, & Reder, 2000; Lovett, Reder & Lebiere, 1998), which is denoted by a 𝑊𝑚𝑎𝑥 

parameter. Every time a person creates a node/link that is strengthened by an amount s, s2 amount 

of resources is depleted. Under most circumstances, this defaults to Equation 1, squared:  

 

𝑊𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑐𝑜𝑠𝑡 = 𝑠2 = (𝛿(1 − 𝐵))
2

(5) 

 

Since items with stronger base-level strength, such as high frequency words, are incremented 

less, their processing depletes fewer resources. We chose the cost of strengthening to be s2
 because 

the exponent slightly increased the cost difference between small and big increments relative to 

the overall cost of the operations, which lead to better fits for most models.  

We also assume that the resource pool replenishes over time (also see, Reder et al, 2007; 

Buchler, Faunce, Light, Gottfredson & Reder, 2011). There is limited data to estimate the exact 

recovery function. The simplest option is that the resource pool recovers at a fixed rate function f 

of time since the last operation, 𝑡 − 𝑡𝑖, and the remaining resources at time 𝑡𝑖, such that: 

 

𝑊𝑡 = min(𝑊𝑚𝑎𝑥,  𝑓(𝑊𝑡𝑖
, 𝑡 − 𝑡𝑖)) (6a) 

 

where 𝑊𝑡𝑖
 is the amount of resource remaining after operation i. Thus, after the last operation, 

the resource pool recovers at a fixed rate until it reaches 𝑊𝑚𝑎𝑥. If we assume that the recovery 

function is linear at rate 𝑤𝑟, then: 

 

𝑊𝑡 = min(𝑊𝑚𝑎𝑥,  𝑊𝑡𝑖
+  𝑤𝑟(𝑡 − 𝑡𝑖)) (6b) 

 

WM depletion and recovery are illustrated in Figure 3. The left panel shows the available 

resources at the beginning and end of each study trial in a single list that contains both weak and 

strong items (i.e., items whose existing representations differ in strength). These simulations used 

a learning rate of δ = 0.8, resource capacity of Wmax = 2.8, and recovery rate 𝑤𝑟 = 0.45. Weaker 

items deplete more resources and the available resources are reduced when more items in a row 

are weak. The right panel shows the available resources on average after studying strong and weak 

items in either pure lists of only weak or strong items or mixed lists of both weak and strong items. 
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Figure 3. Illustration of resource depletion and recovery in the model. Left – amount of available resources 

at the beginning and end of each trial during a single study list, as a function of item position on the list 

and its current strength. Right – the mean available resources at the end of each trial in pure and mixed 

lists of weak and strong items. 

 

An important issue is what happens when the default cost of a process is more than the 

remaining resources8. One option is that encoding fails because of insufficient resources. However, 

a simpler modeling alternative is that the system uses whatever resources remain, and the strength 

increment in Equation 1 and 3 is adjusted by the proportion  √
𝑊𝑡

𝑊𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑐𝑜𝑠𝑡
: 

 

𝑠 = min (√
𝑊𝑡

𝑊𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑐𝑜𝑠𝑡
, 1) ×  𝑠 = 

min (√
𝑊𝑡

𝑠𝑛
2

, 1)  ×  𝑠 =

min(√𝑊𝑡, 𝑠) =

min (√𝑊𝑡, 𝛿(1 − 𝐵)) (7𝑎)

 

 

Thus, if the default learning requires more resources than there are available, the strength of 

the memory trace is incremented by the square root of the remaining resources, √𝑊𝑡 (the square 

root is due to the square exponent in Eq. 5). 

A similar situation arises when multiple stimuli have to be encoded at the same time. For 

example, if you have to remember a display of several different items, then, depending on their 

                                                 

 
8 See the General Discussion section on Partial Matching for a more in-depth examination of this topic 
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number, there might not be sufficient resources to encode them all. One possibility is that the 

system allocates the default proportion of resources to as many items as possible and fails to encode 

the remaining items. Another possibility is that all k stimuli share the resources proportionally to 

their default cost, such that the strength of item i is increased by9: 

 

𝑠𝑖
′ = min (√𝑊𝑡 ×

 (1 − 𝐵𝑖)2

∑  (1 − 𝐵𝑖)
𝑘
𝑖=1

2
   

, 𝛿(1 − 𝐵𝑖)) , (7𝑏) 

 

where 𝐵𝑖 is the base-level activation of item i. If the number of items encoded at the same time 

is small enough, then each node’s increment is the default. However, if there are too many items, 

then they share the resource proportionally to their needs. Equation 7b is a generalized version of 

Equation 7a, which is a generalized version of Equation 1. When k=1, Equation 7b reduces to 

Equation 7a; when sufficient resources remain, Equation 7a reduces to Equation 1. 

These equations introduce only two new free parameters to the model – Wmax, WM capacity, 

and wr, WM recovery rate10. Yet, these equations allow us to account not only for why stronger 

items are easier to encode, bind and manipulate, but also how processing some items on a list 

affects other items on the same list. We can make a novel straightforward prediction – encoding 

weaker items, or attending more to some items on a list, should impair memory for subsequent 

items, because fewer resources will be available for their encoding. We present evidence for this 

prediction in Section “Analyses of preceding item strength: novel predictions” 

4. Interaction between WM load and item strength 

In previous studies we predicted that the difference between strong and weak items would increase 

as the WM load of the task increases (Reder et al, 2016; Shen et al, 2018). This prediction was 

based on an intuition and therefore it is important to simulate in the model how the difference in 

the strength of the episode nodes that encode an experience involving strong items (e.g. high 

frequency words) and those that encode an experience involving weak items (e.g. low frequency 

words) would change as a function of the available WM resources. Figure 4 shows the results of 

this simulation. As shown in the right panel, when there are sufficient resources (W > 1.05), there 

is no difference in the episode base-level strength for HF and LF items; however, with an increase 

in WM load, there is a concomitant decrease in available resources (from 1.05 to 0.41), driving up 

the difference between HF and LF items to a maximum. At that point there are no longer sufficient 

resources to build the episode node when encoding LF words. Decreasing the available WM 

                                                 

 
9 Whether the resource is spread amongst all items or whether a fixed amount is allocated for a limited number of 

items is currently under debate in the literature. See the General Discussion for more on this topic. 

10 k is a fixed property of the stimulus set and 𝑊𝑡  is uniquely determined by the other parameters in the model 



  14 

resources further (from 0.41 to 0.25) reduces the HF-LF difference. Note that the range over which 

the HF-LF difference increases is four times larger than the range over which it decreases, 

suggesting that in most cases we should see an increase in the word-frequency effect with higher 

WM loads, unless the load is so high that few resources remain. 

 

 
Figure 4. A simulation of how the difference in the strength changes for the episode nodes encoding HF vs. 

LF items as a function of WM resource availability (inverse of WM load). The left panel shows the episodic 

node base-level strength for HF and LF, and the right panel shows the difference between the two. 

Simulation with a learning rate of δ = 0.8. 

 

5. Current activation and spreading activation 

Nodes are also characterized by their current level of activation. Nodes become active when a 

concept is perceived, or when activation spreads from other nodes. In contrast to the base-level 

strength, which decays according to a power-law, the current activation decays exponentially, and 

it is dependent on the node base-level strength: 

 

𝐴 = 𝐵 × 𝐴𝑏𝑜𝑜𝑠𝑡  ×  𝑒−𝛾𝑡 (8) 

 

where B is the current base-level strength of the node, t is the time since activation, γ is the 

exponential decay parameter, and 𝐴𝑏𝑜𝑜𝑠𝑡 is the amount of activation received by the node.  

The multiplication of the activation boost by the node base-level strength is another deviation 

from the previous version of SAC, where the activation was added to the base-level strength. This 

formulation led to more gradual changes in current activation. For example, if the activation boost 

is added to rather than multiplied by the base-level strength, very weak nodes with strength close 

to 0 would get a big boost compared to non-existent nodes, which presented a problem for some 
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of our simulations. With the multiplication equation, the current activation gradually increases 

from 0 without discontinuities.  

Under normal conditions, directly perceived nodes become maximally active (i.e. A=1), which 

means that they receive an activation boost of 1/B. The result is that stronger items require less 

activation boost to be activated, which could potentially be responsible for perceptual fluency 

effects (Jacoby, 1983), repetition priming (Huber, Clark, Curran & Winkielman, 2008), the 

reduction in fMRI activation for repeatedly presented items (Horner & Henson, 2008), and the fact 

that HF words elicit less fMRI activation than LF words (Chee, Westphal, Goh, Graham & Song, 

2003). Nodes can also be activated by their neighbors through spreading activation. When a person 

perceives the word “dog”, this activates not only the semantic node for “dog”, but also all events 

in which it was experienced, as well as other concepts related to it. Following Reder et al. (2000) 

and Anderson, Bothell, Lebiere, & Matessa (1998), we assume that all nodes connected to a source 

of activation compete with each other – the activation each node receives depends not only on the 

strength of its connections with the source nodes, but also on the strength and number of links 

emanating from each source node: 

 

𝐴𝑏𝑜𝑜𝑠𝑡,𝑟 = ∑ (𝐴𝑠 ×
𝑆𝑠,𝑟

∑ 𝑆𝑠,𝑖
𝑘
𝑖=1

)

𝑛

𝑠=1

(9) 

 

where 𝐴𝑏𝑜𝑜𝑠𝑡,𝑟 is the boost in activation in the receiving node, 𝐴𝑠 is the activation of the source 

node, 𝑆𝑠,𝑟is the strength of the link between the source and the receiving node, and ∑ 𝑆𝑠,𝑖
𝑘
𝑖=1  is the 

summed strength of all links emanating from the source node. In summary, the more links that a 

source node has, and the stronger they are, but also the less activation is received by nodes 

connected to the source. This assumption is based on decades of research on fan effects in memory, 

which show that it is more difficult to retrieve information when the cue has a greater fan of 

associates (Anderson & Reder, 1999; Anderson, 1974; Schneider & Anderson, 2012). It has also 

succeeded in modeling many key results in the literature, such as effects of list length (Cary & 

Reder, 2003), list strength (Diana & Reder, 2005), and word frequency (Reder et al., 2000). 

Equation 9 reflects contextual competition during retrieval and is one of the key mechanisms that 

counteracts the storage benefits of word frequency, because HF words have greater contextual fan 

(see Reder et al, 2007). Contextual fan is represented by the ∑ 𝑆𝑠,𝑖
𝑘
𝑖=1  parameter in Equation 9, and 

it is a function of SUBTLEX measures of contextual diversity (CD), which correlates positively 

with word frequency (van Heuven, Mandera, Keuleers, & Brysbaert, 2014): 

 

∑ 𝑆𝑠,𝑖

𝑘

𝑖=1

=  𝑆𝑛𝑒𝑤𝑙𝑖𝑛𝑘𝑠 +  0.2 − 0.2 × 𝑒−0.1 𝐶𝐷 (10) 

Where Snewlinks is the strength of novel links created during the experiment, and CD is the 

SUBTLEX contextual diversity measure (percentage of films in which the word appears). Thus, 

the prior contextual fan varies between 0 and 0.2. 
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Figure 5. Illustration of spreading activation for four different test type (see Figure 1 for a description of 

node types). Participants study pair associates (e.g. apple-chair), and are tested in one of four ways: 1) 

item recognition (is “apple” old or new?), 2) associative recognition (is “apple-chair” old or 

recombined?), 3) cued recall (what word was associated with “apple”?) or 4) free recall (recall all words 

presented in the previous list). While the contents of memory is the same, the amount of activation reaching 

the episode nodes differs depending on which cues are presented. Underlined text represents the cues for 

each retrieval task (i.e., context1, apple and/or chair). The shade darkness of nodes represents their 

activation levels. The episode node activation is highest for associative recognition, medium for item 

recogniton and cued recall, and lowest for free recall. Remember responses and accurate recall 

probabilities are based on activation of the episode nodes. Know responses and false alarms are based on 

thesemantic node activation 

 

6. Memory retrieval 

Memory retrieval begins by activating a set of cues in memory and spreading activation to their 

associated nodes. Which cues are active depends on the nature of the retrieval task. Figure 5 

illustrates how memory retrieval occurs for four different types of memory tasks (item and 

associative recognition, free and cued recall) in which participants study pairs of words. In item 
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recognition, the current item and context nodes are activated as cues, and they spread activation to 

the episodes notes to which they are attached. In associative recognition, both of the cue words 

and the context spread activation to attached episode nodes. In free recall, only the context node 

is activated, and thus a relevant episode node receives the less activation than it would in the other 

three tasks. Cued recall is similar to item recognition in that the cue word and the context nodes 

are both activated, and successful retrieval of the target occurs if the episode node is above 

threshold. Finally, serial recall (not illustrated), is achieved via positional representations, such 

that if participants study a series of items, each item is bound to a node representing its serial 

position in the list. We presume that since binding requires memory resources, positional 

representations would be used only when the recall task requires it, as in serial but not free recall. 

Retrieval in serial recall occurs in a similar fashion to cued recall, but the cues are the positional 

nodes and the context, rather than the cue items. 

Once activation has spread, the outcome of memory retrieval depends on whether the current 

activation level of the episode node and/or the semantic node, depending on the task, passes a 

retrieval threshold. SAC is a dual-process model, in which the activation of the episode node 

represents the recollection signal, while the semantic node’s activation level represents the 

familiarity signal (Reder et al., 2000; Yonelinas, 2002). Formally, we follow the signal detection 

theory tradition and assume that there is noise in the signal and that the probability of a response 

is the area to the right of a threshold under the normal distribution curve with a mean equal to the 

node’s activation. Thus, if the corresponding node activation is equal to the retrieval threshold, the 

probability of a response is 50%. 

There are differences in retrieval dynamics between recognition and recall tasks. In recognition 

tests, a “remember” response occurs probabilistically if the episode node’s activation is above a 

threshold: 

 

𝑃(𝑟𝑒𝑚 |𝐴𝑒𝑝𝑖) =  𝑃(𝐴𝑒𝑝𝑖 ≥ 𝜃𝑒𝑝𝑖| 𝜎𝑒𝑝𝑖) (11.1) 

 

where Aepi is the activation of the episode node, θepi is the episodic retrieval threshold, and σepi 

is the standard deviation of the noise added to the episodic node’s activation. If the episode node 

is retrieved successfully, people can recollect the study episode and respond “remember”. 

However, if the episode activation is below the retrieval threshold, people can still judge an item 

as old, if it appears familiar. To determine whether an item is sufficiently familiar, the semantic 

node is evaluated instead. A “know” response occurs if the semantic activation is above a 

threshold; otherwise, the item is judged as “new”: 

 

𝑃(𝑘𝑛𝑜𝑤 |𝐴𝑠𝑒𝑚) =  𝑃(𝐴𝑠𝑒𝑚 ≥ 𝜃𝑠𝑒𝑚| 𝜎𝑠𝑒𝑚) × [1 − P(𝑟𝑒𝑚|𝐴𝑒𝑝𝑖)] (11.2) 

 

In free, cued and serial recall, the semantic node plays no role (except for spreading activation 

in cued recall), and we assume that a response can be retrieved if the episode node’s activation is 

above its retrieval threshold:  
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𝑃(𝑟𝑒𝑐𝑎𝑙𝑙 |𝐴𝑒𝑝𝑖) =  𝑃(𝐴𝑒𝑝𝑖 ≥ 𝜃𝑒𝑝𝑖| 𝜎𝑒𝑝𝑖) (11.3) 

 

Figure 6 illustrates how the activation values are transformed to proportion of hits and false 

alarms for recognition tests, and into recall probabilities for recall tests. 

 

 
 

Figure 6. Illustration of retrieval dynamics in recognition tasks (top) and recall tasks (bottom). Vertical 

lines represent recognition/retrieval thresholds. Arrows point to the proportion of the activation 

distribution to the right of the threshold. For recall tasks, the five distributions reflect the activation of five 

episodic nodes for five different items in memory; Pi(recall) reflects the probability of recalling item i (an 

arbitrary index). 

 

7. Modeling details 

The SAC model is a process model that takes a sequence of trials that is given to a participant and 

performs each operation on a trial-by-trial basis. This results in an episodic and semantic activation 

value for each test trial, which are converted into response probabilities as described in the previous 

section. The response probabilities were computed through simulations. The number of simulation 

runs depended on whether we had access to the trial-level data of the study being fit. For studies 
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for which we had access to the trial-level data, we ran one simulation for each participant – this is 

because given a specific trial sequence the model always generates the same predictions. Thus, the 

total number of simulations per study depended on the number of participants involved in the 

study. For studies for which we did not have access to the trial-level data, we generated 100 

different trial sequences respecting the procedure described in each study.  

We fit the model by generating predicted response probabilities for each trial and each 

participant, then summarizing the response probabilities over all subjects and separately for each 

condition of interest. The parameters of the model were optimized to reduce the root mean squared 

error (RMSE) between the summarized model predictions and the observed data. The optimization 

was performed using the downhill simplex algorithm as implemented in Python’s Scipy library. 

We kept most of the parameters fixed across experiments. The decay rates for the base-level 

strength and current activation of the nodes and the strength of the links were imported from the 

previous version of SAC (Reder et al. 2000).  

The default delta learning rate and the parameters that convert word frequency into prior base-

level strength were estimated anew since the learning function differs from the one implemented 

in the previous model versions. To estimate them, we fit the new SAC model to Reder et al’s 

(2000) data, that involved a continuous word by word recognition experiment, in which we 

manipulated the number of repetitions for each word and the words’ normative frequency. Figure 

7 shows the proportion of Remember and Know responses as a function of presentation number 

and frequency, as well as the SAC model fit. The prior base-level strength for the lowest frequency 

words was estimated to be 0.2, and 0.4 for the highest frequency words, with intermediate 

frequencies linearly extrapolated between those two values. The optimal learning rate was 0.8. 

These values were used as defaults in all subsequent simulations. Table 1 describes all model 

parameters and Table 2 summarizes the parameter estimates for the 14 simulations presented in 

the paper. The modeling code, data and analyses scripts are available at 

https://github.com/venpopov/prior-item-effects. 

 

Table 1 Description of SAC parameters 

Model parameter Description 

dn Power decay rate for node base-level strength 

dl Power decay rate for link strength 

y Exponential decay rate for current activation 

δ  Learning rate for base-level strength 

W Total WM resource capacity 

wr WM recovery rate 

θepi Retrieval threshold for episodic nodes 

σepi Standard deviation of the noise added to episodic activation 

θsem Retrieval threshold for semantic nodes 

σsem Standard deviation of the noise added to semantic activation 

 

 

https://github.com/venpopov/prior-item-effects
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Table 2 Parameter estimates for SAC models 

# Study dn dl y δ  W wr Θepi σepi Θsem σsem rmse 

1 Reder et al (2000), Exp. 1 -0.18 -0.12 0.2 0.8 3.000 0.750 0.398 0.369 0.506 0.139 0.034 

2 Clark (1992) -0.18 -0.12 0.2 0.8 3.000 0.663 0.412 0.210 0.391 0.180 0.027 

3 Malmberg & Nelson (2003), Exp. 2 -0.18 -0.12 0.2 0.8 3.000 0.864 0.101 0.263 - - 0.014 

4 Criss & McClelland (2006) -0.18 -0.12 0.2 0.8 3.000 0.995 0.100 0.332 - - 0.006 

5 Criss et al (2011), Exp. 1 & 2 -0.18 -0.12 0.2 0.8 3.000 0.584 0.333 0.304 - - 0.016 

6 Criss et al (2011), Exp. 3 -0.18 -0.12 0.2 0.8 3.000 0.584 0.332 0.207 - - 0.030 

7 Ward et al (2003), Exp. 3 -0.18 -0.12 0.2 0.8 2.800 0.450 0.527 0.356 - - 0.013 

8 Miller & Roodenrys (2012) -0.18 -0.12 0.2 0.8 3.614 0.437 0.648 0.443 - - 0.032 

9 Hulme et al (1997), Exp. 2 -0.18 -0.12 0.2 0.8 5.871 0.215 0.383 0.539 - - 0.031 

10 Hulme et al (2003), Exp. 1 & 2 -0.18 -0.12 0.2 0.8 3.837 0.330 0.572 0.469 - - 0.026 

11 Hulme et al (2003), Exp. 3 -0.18 -0.12 0.2 0.8 6.832 0.827 0.463 0.390 - - 0.036 

12 Malmberg & Nelson (2003), Exp. 3 -0.18 -0.12 0.2 0.8 5.000 0.966 0.270 0.054 - - 0.025 

13 Diana & Reder (2006), Exp. 1 -0.18 -0.12 0.2 0.8 3.000 1.114 0.091 0.020 - - 0.035 

14 Cox et al (2018) -0.18 -0.12 0.2 0.8 3.000 0.970 0.143 0.067 - - 0.024 

15 Buchler et al (2008), Exp. 1 -0.18 -0.12 0.2 0.8 3.000 0.850 0.134 0.358 - - 0.026 

16 Aue et al (2017), Exp. 1,2 & 4 -0.18 -0.12 0.2 0.8 3.000 0.520 0.332 0.219 - - 0.007 

Note: bold-underlined parameters were free to vary in estimating the model. The remaining parameters were fixed. Dn, dl, and y were 
imported from the prior version of SAC 

 

 

 
 

Figure 7. Proportion of Remember and Know responses in continuous recognition task in Reder et al 

(2000) for low and high frequency words as a function of repetition number for each repeated word. Open 

points represent the new fits of the updated SAC model. Error bars represent 95% CI. 
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III. Existing challenges for a theory of frequency effects 

Rather than reviewing the evidence for all of the theory assumptions, which has been done 

elsewhere (e.g., Reder et al., 2000) we have a more specific focus – we will review evidence 

consistent with the claim that weaker items deplete more WM resources during memory formation 

(see also Diana & Reder, 2006, and Reder et al., 2007). The argument goes as follows – first, 

performance on WM tasks greater for HF items, a fact demonstrated by both quasi-experimental 

and experimental studies. We argue that while potential confounds with other variables might 

explain effects in quasi-experiments, the results from Reder et al. (2016) and the additional 

analyses of those data finesse any interpretation problems from quasi-experiments (Section 

“Challenge 1: Stronger items consume less WM resources”). Second, items with stronger 

memory representations are easier to bind to other items and to an experiential context in order to 

form novel episodic traces in LTM (Section “Challenge 2: Item strength facilitates memory 

formation”). Finally, other items are also easier to store when presented close in time to stronger 

items, which suggests that LTM formation and binding might draw on a limited resource that is 

depleted with each operation and recovers over time (Section” Challenge 3: Strength of some 

items affects encoding of other items”). In addition to reviewing well established findings, we 

present a reanalysis of multiple datasets in which we demonstrate that memory performance for 

one item depends on the frequency of the items that immediately preceded it during study (Section 

“Analyses of preceding item strength:  novel predictions“). Throughout the text we will show 

and refer to simulation results and fits to existing data. The modeling code, data and analyses 

scripts are available at https://github.com/venpopov/prior-item-effects. Before we review evidence 

for each of the claims presented above, two qualifications are in order. 

Normative word frequency. One of the main variables which we use as an indication of the 

existing strength of memory traces is normative word frequency. Normative word frequency is a 

quasi-experimental variable, such that one cannot randomly assign words to be of either low or 

high frequency. As a consequence, there has been a lot of doubt whether normative word frequency 

has independent effects on memory after controlling for confounded factors such as orthographic 

and semantic distinctiveness, concreteness, word length, etc. (Cox, Criss, Aue, & Hemmer, 2017; 

Maddox & Estes, 1997). Our model assumes that high frequency words have stronger memory 

traces, because the strength of a memory trace increases with repeated experience. Nevertheless, 

alternative explanations are always possible, and we will get around this issue in two ways. First, 

we discuss at length experiments that make alternative explanations unlikely. Second, we show 

that similar results hold when frequency is experimentally manipulated by differential training in 

the lab (Reder, Angstadt, Cary, Erickson, & Ayers, 2002; Reder et al., 2016; Shen, Popov, 

Delahay, & Reder, 2017; also see Nelson & Shiffrin, 2013). 

Difference between number of chunks and chunk strength. A related concern is whether 

frequency, either natural or experimental, directly affects learning, or whether infrequent items are 

simply represented as multiple chunks. WM capacity is limited by people’s ability to chunk pieces 

of information together into a single unit, allowing them to greatly expand the amount of 

information they can temporarily hold and manipulate. Numerous studies have shown that it is not 

https://github.com/venpopov/prior-item-effects
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the absolute amount of processed information that limits WM capacity, but it is rather the number 

of chunks into which this information can be compressed and organized (Miller, 1956; Simon, 

1974; for recent reviews, see Cowan, 2001; or Gobet et al., 2001). Researchers may disagree about 

the specific number of units that constitute the limit of WM capacity (Cowan, 2001; Gobet & 

Clarkson, 2004; Luck & Vogel, 1997; Miller, 1956) or about the mechanism responsible (Cowan, 

2001; Gobet et al., 2001; Oberauer et al., 2016); however, most theories of WM treat chunks as all 

or nothing. Current verbal learning theories do not see chunks as varying in strength, and, as a 

consequence, they do not consider that variation in chunk strength would affect WM capacity11. 

Some theorists have argued that exposure frequency in differential training studies does not have 

direct effects on memory, and that what we call “weak items” might reflect items that do not have 

a chunked representation. Thus, weak items might often lead to worse memory, because they have 

to be stored as several chunks12. We will show that contrary to this proposal, weak items perform 

worse in WM tasks even when there is evidence that they have been chunked. 

A. Challenge 1: Stronger items consume less WM resources 

1. Natural word frequency and WM 

We begin our review with immediate serial recall and non-word repetition13, tasks which require 

the temporary storage of a small number of items into STM. HF words outperform LF words in 

pure lists (e.g. only HF or only LF, Caplan, Madan, & Bedwell, 2015; Hulme, 2003; Hulme et al., 

1997; Watkins, 1977) and WM capacity appears greater for more familiar naturally occurring 

stimuli (Xie & Zhang, 2016, 2017). 

Could these frequency/familiarity effects be explained by some other difference between HF 

and LF words, such as differences in 1) study strategies, 2) semantic associability, 3) speech rate 

or 4) frequency of rehearsals? The effects occur with both intentional and with incidental encoding, 

suggesting that it is not due to different study strategies (Morin, Poirier, Fortin, & Hulme, 2006). 

Immediate serial recall and non-word repetition are also better for non-word syllables that occur 

more frequently in polysyllabic words (Nimmo & Roodenrys, 2002). Since these are meaningless 

stimuli, it is unlikely that the effect of frequency is due to greater semantic associability of HF 

items. Better immediate memory for HF words is also difficult to account for by other variables, 

such as faster speech rate, because the effect remains even when suppressing articulation (e.g. 

Tehan & Humphreys, 1988) or when accounting for speech rate (e.g. Hulme et al., 1997; 

                                                 

 
11 In contrast, some visual WM models similarly presume that items can be stored with variable precision and more 

resources can be spent to store visual features with greater precision (for a review, see Ma et al, 2014). 

12 We thank K. Oberauer, E. Awh & N. Cowan for pointing out this possibility to us 

13 In a non-word repetition task participants have to repeat a multisyllabic non-word immediately after the non-word 

has been presented, which is a measure of STM (Gathercole & Baddeley, 1989). 
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Roodenrys, Hulme, & Brown, 1993). Finally, short-term recall of multi-digit numbers is higher if 

a HF pair of items is rehearsed during a delay interval between the encoding and retrieval of the 

digits (Humphreys et al., 2010). This result shows that holding a pair of LF words in WM hurts 

the subsequent recall of other items currently maintained in WM, which is incompatible with the 

alternative explanations discussed above. The fact that frequency/familiarity effects occur in all of 

those cases suggests that item strength per se might have a direct effect on the WM consumption. 

These effects are summarized in Table 3. 

2. Experimental familiarization and WM 

The studies reviewed above involve stimuli whose familiarity is naturally occurring. With such 

quasi-experimental variables, it is possible that some other stimulus property is responsible for the 

results. In two recent studies we gathered direct experimental support for the proposal that weaker 

chunks exhaust limited WM resources to a greater degree than stronger chunks (Reder et al., 2016; 

Shen et al., 2017). Both studies were based on an extensive training procedure in which we 

familiarized participants with novel Chinese characters at different exposure frequencies. The 

familiarization task had hundreds of trials of visual search training over nine to twelve sessions 

during three to four weeks, three sessions per week. For each participant, sets of visually similar 

characters were randomly selected to be seen either at high or low frequency during the visual 

search task (20:1 ratio).  

In the first study (Reder et al., 2016), we measured WM performance for high and low 

frequency characters at the end of training by using an N-back task. The N-back task required 

participants to respond whether the current stimulus was the same as the one presented N trials 

previous, where N could be 1, 2 or 3 in different trial blocks. Participants had to actively maintain 

the last n items in WM, bind each of them to a corresponding serial position, and rapidly update 

that binding on every trial (Owen, McMillan, Laird, & Bullmore, 2005). As such, this task was 

perfectly suited to explore whether the familiarity of an item affects the amount of WM resources 

necessary for encoding, binding, and manipulating the item. As predicted, the N-back performance 

was better for HF characters. 

In the second study (Shen et al.,2017), we provided evidence that differential familiarity of 

stimuli impacts performance in a different WM task. This study was modeled after an algebra 

problem-solving task that required participants to retain a digit span of varying length while 

solving an algebraic equation and then recall the digit span (Anderson, Reder, & Lebiere, 1996). 

In that experiment, maintaining longer digit spans hurt equation solution speed and accuracy and 

those effects were greater when the problems were more complex and when some of the digits had 

to be substituted into the equation to be solved. In the Shen et al. study we differentially 

familiarized Chinese characters as described above and then varied whether the math task involved 

more or less familiar characters on a given trial rather than varying the number of digits to hold in 

memory. Participants had to memorize two pairs of character-digit associations, then they had to 

solve an algebraic equation and, finally, they had to identify the characters and recall the 

corresponding digit associated with each character (e.g. 情 = 3 and 沣 = 7). The equations differed 
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on two dimensions – number of steps (one vs. two) needed to solve for x (e.g., 3x = 6 vs. 3x – 2 = 

7), and whether the solution required the substitution of constants from the digit span (e.g., 情x – 

2 = 沣). 

If LF characters indeed require more WM resources to be maintained and processed, then 

solving the equations should be more difficult when people hold pairs of LF characters associated 

with digits in WM. The effect should also increase as the equation becomes more complex, either 

by increasing the number of steps or by requiring variable substitution replicating the pattern 

shown by varying digit span in Anderson et al. (1996). This is exactly what we found. Importantly, 

it was more difficult to solve the equations even in the 2-step no-substitution condition, where 

participants did not have to use the characters they were holding in memory, making it unlikely 

that the results are due to interference or differential retrieval efficiency from LTM. Furthermore, 

we found that participants performed better in the recognition and recall task with HF characters, 

recognizing them more often and recalling the associated digits more accurately. 

3. Discounting alternative explanations 

Are low-frequency items chunks? The first potential criticism is that results such as these 

might reflect difference in performance between chunked and non-chunked stimuli, and not 

differences in chunk strength per se. Some have suggested that these effects might occur because 

LF characters were not exposed often enough for people to develop unified representations of each 

character, and that as a result, multiple features had to be stored independently in WM for LF 

characters. While this is possible, at best it is only part of the story for three reasons. First, this 

explanation cannot account for the quasi-experimental results involving real words. Second, LF 

characters were exposed as targets on 24 trials over the course of 12 sessions and 4 weeks, and 

even 3 times more often as distractors on other trials. These multiple repetitions were spaced out 

and distributed practice leads to significant improvements in memory overall (e.g. Cepeda et al., 

2006; Glenberg, 1976; Pavlik & Anderson, 2005). Given the overall frequency and spacing of 

trials with LF characters, it seems unlikely that they were not chunked by the end of training. 

More importantly, while the Reder et al (2016) short report did not include this analysis, we 

have directly tested whether HF and LF characters reached chunk-like representations. A key 

property of chunks is that the number of features contained in that chunk is irrelevant for 

performance. Sets of visually similar characters14 were randomly assigned to be in the HF or LF 

category, and the number of features present in each character naturally varied from set to set. If 

those previously unfamiliar characters did not develop unified memory representations with 

training, participants would have to store each target as a configuration of features on each visual 

search trial. In that case, we would expect to see performance in the visual search task to be 

                                                 

 
14 See the General Discussion for why visual similarity between targets and distractors in this training task is crucial 

for showing the effects of training frequency 
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negatively correlated with the number of features in a character. On the other hand, if these 

characters throughout training become chunked, we should see the effect of number of features to 

diminish with each training session. 

To perform this analysis, we calculated the number of features present in each character based 

on existing orthographic vector representations (Xing & Li, 2004; Yang, McCandliss, Shu, & 

Zevin, 2009)15. These vector representations are based on an orthographic analysis of the 

characters and prior behavioral work (Xing et al, 2004). These representations have been used 

successfully to model print-to-sound mappings in Chinese (Yang et al, 2009) with a connectionist 

model similar to those used in modeling English print-to-sound mappings (Harm & Seidenberg, 

1999). We then refit the mixed-effects regression models reported in Reder et al. (2016) by 

including the number of features and the interaction of session number with frequency as 

predictors (for more details on the analyses, see Reder et al, 2016). 

Figure 8 shows that during the first session, reaction times in the visual search task do depend 

on the number of basic features within a character (ΔAIC = -424, χ2(1) = 426, p < 0.001 for the 

main effect of number of features). Importantly, the effect gets smaller with each training session 

for both frequency classes (ΔAIC = -12, χ2(1) = 14.60, p < 0.001 for the session by number of 

features interaction) and while it disappears earlier for HF characters, by Session 9 both HF and 

LF characters show no effect of the number of features within a character (ΔAIC = -41, χ2(1) = 43, 

p < 0.001 for the interaction between session, frequency and number of features). Post-hoc 

comparisons revealed that the slope for number of features is higher for LF characters during 

sessions one, two and three (zsess1 = 4.76, zsess2 = 3.11, zsess3 = 2.33), but that there was no difference 

between the slopes for HF and LF characters in the remaining sessions (all z’s range from -2.08 to 

1.31). This is evidence that by the end of training all items were chunked successfully.  

 
Figure 8. Reaction times in the visual search task for HF (top row) and LF (bottom row) characters for 

sessions 1 through 9 (columns), depending on the Chinese character complexity, which was estimated as 

the number of features in its orthographic vector representations (Xing & Li, 2004; Yang et al., 2009). The 

data for LF characters is noisier around the slope lines because there are 20 times fewer observations per 

data point. 

                                                 

 
15 We thank Xiaonan Liu for pointing us to these representations 
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We also looked at whether the number of features within a character affected performance in 

the N-back task. Figure 9 shows that the number of features did not affect performance (ΔAIC = 

0, χ2(1) = 2, p = .158 for the main effect of number of features, and ΔAIC = 1.3, χ2(1) = 0.740, p 

= .391 for the interaction with frequency). Frequency itself contributed independently to lower 

performance for LF characters, as is evident from the lower intercept for LF characters. 

 

 
Figure 9. N-back accuracy depending on the Chinese character complexity, which was estimated as the 

number of features in its orthographic vector representations (Xing & Li, 2004; Yang et al., 2009) 

 

Is it just the ease/speed of retrieving representations? A second potential criticism is that the 

results do not reflect difference in WM consumption, but rather the ease of encoding and/or 

retrieving the character representations from LTM. The N-back task progresses quickly, and if it 

is more difficult to retrieve and store the representation of LF characters this might lead to a 

decrease in performance that is not due to different WM resource consumption16.  

To test this idea, we performed an additional analysis in which we derived a “processing 

efficiency” index for each character and each subject individually based on performance in the 

visual search task. We focused on trials where the target was absent and there were only three 

distractors, which were the trials containing only distractors from the same similarity class. On 

these trials, the participant had to do an exhaustive serial search, comparing the target against each 

distractor, and in the process retrieving the representation of each distractor in turn17. On these 

trials, the reaction time is the sum of retrieval and comparison processes for each distractor. Thus, 

                                                 

 
16 We thank K. Oberauer for suggesting this alternative explanation 

17 This assumption is based not on theories of visual search, but on theories of perceptual expertise, which presume 

that when familiar visual stimuli are encountered, the cognitive system automatically and efficiently retrieves their 

representations from LTM (Logan, 1988; Palmeri, 1997; Palmeri, Wong, & Gauthier, 2004; Palmeri & Tarr, 2007). 
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we used the average reaction time over all trials in which a distractor appeared as a proxy measure 

for the processing efficiency of that character. For example, if a distractor appeared on 3 trials in 

which the reaction times were 900, 1000, 1100 ms., then the efficiency index for that character 

was 1000 ms. This measure was calculated separately for each character and each subject. The 

measure was transformed into z-scores and reversed, such that larger values represented more 

efficient processing. 

If our index of processing efficiency reflects differences in character processing, we should 

expect it to predict performance in the N-back task. Indeed, as can be seen from Figure 10, 

performance was higher for more efficiently processed characters, and the effect was strongest in 

the 1-back task, weaker in the 2-back, and non-existent in the 3-back. The important question, 

however, is whether there remains an effect of character frequency after accounting for the effect 

of processing efficiency. We repeated the mixed-effects regression analyses reported in Reder et 

al. (2016) with N-back level, character frequency and processing efficiency as predictors of 

accuracy. The effect of character frequency remained significant even after accounting for 

processing efficiency (Figure 11).  

Interestingly, in Reder et al. (2016) we had predicted that the effect of frequency should 

increase as the demands on WM increase. The interaction term did not reach the needed level of 

significance; however, after accounting for the effect of processing efficiency of each character, 

we were able to observe that the character frequency had no effect in the 1-back task, had a small 

effect in the 2-back and had the largest effect in the 3-back, confirming our original prediction.  

Further, when regressing out encoding efficiency, the interaction of N-back level (difficulty) and 

character frequency was significant (p < .01). Thus, it seems that with low WM demands, the 

efficiency of retrieving and encoding item representations from LTM is a better predictor of 

performance; however, as the WM demands increase, the strength of the representation determines 

WM performance to a greater degree. 

We acknowledge that this analysis does not provide conclusive evidence against the encoding 

efficiency explanation given that our measure of processing efficiency may not be completely valid 

or reliable. It is possible that there remains unexplained variance in the N-back task that might still 

be due to differences in processing efficiency between high and low frequency characters. 

Nevertheless, the analysis presented above still decreases the likelihood that processing efficiency 

is a sufficient explanation. The fact that at the 1-back level the frequency effect could be entirely 

attributed to processing efficiency differences, suggests that the measure is sufficient enough to 

explain the frequency difference at low WM loads; at the same time the same measure is not 

sufficient to explain all the variance at higher WM loads, suggesting that the frequency effect at 

the 2-back and 3-back levels might indeed be due differences in node strength rather than 

processing efficiency. Finally, the processing efficiency explanation cannot account for most of 

the converging evidence for our thesis presented in the remainder of the paper (e.g., it cannot 

account for list-composition effects). 

The correction for encoding efficiency was necessary because characters differed naturally in 

complexity. We have since replicated the results of Reder et al (2016) with better controlled 
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stimuli. Rather than using Chinese characters, we used artificial animals called Fribbles, which 

are three-dimensional combinations of various features and are available online courtesy of M. 

Tarr (for a detailed introduction to Fribbles, see Barry, Griffith, De Rossi, & Hermans, 2014; Tarr, 

2018; Williams, 1998). We familiarized participants with Fribbles at low and high frequency in a 

procedure identical to the one used by Reder et al (2016). After the training, N-back performance 

was lowest for low-frequency Fribbles, middle for high-frequency Fribbles, and highest for 

pictures of familiar animals. Importantly, as shown on Figure 12, the difference between the three 

familiarity conditions increased with N-back level, supporting the hypothesis that familiarity of 

stimuli interacts with WM resources. 

To summarize, we believe that the findings presented in Reder et al (2016), Shen et al (2017), 

the Fribbles replication of Reder et al (2016),  and the additional analyses presented here provide 

converging evidence for the claim that HF items require less WM resources to be processed and 

maintained. The current analyses also demonstrated that lower performance in the N-back WM 

task was not due to failure to chunk the low frequency characters nor due to differences in the ease 

of encoding and retrieving the characters. Combined, these results demonstrate that WM 

performance is directly influenced by the strength of a chunk.  

 

 
Figure 10. Accuracy (in logit units) in the N-back task depending on N-back level and processing efficiency 

of each character. Efficiency was estimated based on performance in the visual search task. 
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Figure 11. Effect of character frequency on n-back performance after accounting for processing efficiency 

of each character. Error bars represent 95% CI. 

 

 
 

Figure 12. N-back accuracy depending on stimulus type – familiar animals or Fribbles familiarized in 

preceding visual search task at either high or low frequency. Error bars represent 95% CI  
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Table 3 Findings consistent with the claim that stronger items consume less WM 

Serial recall 

 Serial recall of HF items better than LF (Hulme et al., 2003; Morin et al., 2006; Caplan et al., 2015).  

 The effect occurs with both intentional and incidental encoding (Morin et al., 2006). 

 Immediate serial recall and nonword repetition are better for nonword syllables that occur frequently 

in polysyllabic words (Nimmo & Roodenrys, 2002). 

 The effect remains even when suppressing articulation (e.g. Tehan & Humphreys, 1988) or when 

accounting for speech rate differences (e.g. Hulme et al., 1997; Roodenrys et al., 1993). 

 Short-term recall of multi-digit numbers is higher if HF words are rehearsed during a delay interval 

between the encoding and retrieval of the digits (Humphreys et al., 2010). 

N-back task 

 N-back performance is better when the stimuli are Chinese characters experimentally familiarized at 

high frequency rather than low frequency (Reder et al, 2016). 

 N-back advantage for HF characters remains even after accounting for encoding/processing 

efficiency. 

 N-back advantage for HF characters increases with the difficulty of the task (N-back level). 

 N-back performance highest for images of familiar animals, medium for images of HF 

experimentally familiarized novel animals (Fribbles), lowest for images of LF experimentally 

familiarized Fribbles. 

 

Solving algebraic equations and memory span 

 Better performance (accuracy and RT) in solving algebraic equations in task requiring participants to 

concurrently hold character-digit bindings in WM when those characters were experimentally 

familiarized at high rather than low frequency (Shen et al, 2017). 

 The algebraic performance advantage for HF characters increases as the complexity of the equation 

increases (Shen et al, 2017). 

 Higher subsequent recognition of the characters and associated digits when the characters were HF 

rather than LF (Shen et al, 2017). 
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B. Challenge 2: Item strength facilitates memory formation 

The main claim we make in this section is that forming and storing novel memory traces is easier 

for stronger items. By memory formation, we refer to the process that binds the elements of an 

experience into a unified representation or a memory trace of a single episode. This includes both 

the items that are studied, as well as the experiential context. We believe that the evidence reviewed 

below supports our claim in three major ways – items with stronger existing memory traces 1) are 

easier to bind to an experiential context, 2) are easier to bind to one another, and 3) make it easier 

to form traces for other items experienced closely in time. These three classes of findings 

encompass the full spectrum of item strength effects at encoding (see Table 5, Table 6 and Table 

7 for summaries), and while various explanations have been offered to account for some of these 

findings, our theory provides a single mechanism to deal with all of them.  

1. Effects of word frequency on free recal 

In free recall, performance is typically better for HF words in pure lists – study lists that contain 

only one type of frequency items (Balota & Neely, 1980; Deese, 1960; DeLosh & Mcdaniel, 1996; 

Gillund & Shiffrin, 1984; Gregg, Montgomery, & Castano, 1980; Sumby, 1963; Ward, Woodward, 

Stevens, & Stinson, 2003; Watkins, LeCompte, & Kim, 2000). The higher performance of HF 

words is seen both in terms of overall recall probability, as well as a faster learning rate when 

studying to a criterion (Sumby, 1963). In pure lists, the effect is parametric – recall is a monotonic 

function of word frequency (Deese, 1960; although mixed lists might show a U-pattern, Lohnas & 

Kahana, 2013). 

Several explanations have been offered to explain these word-frequency effects. First, HF 

words are more likely to have preexisting semantic associations to one another, which can facilitate 

the formation of associations among HF words on the study list (e.g. Deese, 1960; Ozubko & 

Joordens, 2007; Sumby, 1963). Second, high-frequency words are considered to be more 

accessible and easier to generate, which facilitates their retrieval during free recall (e.g. Criss, Aue, 

& Smith, 2011; Madan, Glaholt, & Caplan, 2010). Third, because HF words are more accessible, 

participants might be rehearsing them more often during study compared to LF words, which 

strengthens their memory traces to a greater degree (Tan & Ward, 2000; Ward, Woodward, 

Stevens, & Stinson, 2003). Our model suggests another explanation – forming and storing episodic 

memory traces is easier for HF words because processing stronger (more familiar) words consumes 

less WM resources, so more words can be so stored. 

These mechanisms are not mutually exclusive and may all contribute to the observed HF 

advantage in free recall. Yet, the existing explanations listed above cannot account for the full 

pattern of word frequency effects. HF recall is higher even when accounting for the number and 

recency of rehearsals (e.g. Tan & Ward, 2000; Ward et al., 2003) or for the degree of the prior 

semantic associations among HF words. For example, Tan & Ward (2000) used an overt-rehearsal 

procedure, and showed that in pure lists HF items are rehearsed more often and later in the list. 

However, the frequency and recency of rehearsals does not account entirely for the free recall 
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advantage of HF words. A significant effect of word frequency remains even after equating for the 

number and recency of rehearsals (Ward et al, 2003). Finally, the proposal that HF words are just 

easier to retrieve cannot explain why the effects disappear in mixed lists (e.g. Ozubko & Joordens, 

2007; see Section “Pure vs mixed list paradoxes” for an in-depth discussion of pure vs mixed lists). 

Our proposal is consistent with the findings discussed above. For example, if there are more 

resources available when studying HF words, people might form stronger associations between 

words studied closely in time, which has been found (Tulving & Patkau, 1962; Ward et al., 2003). 

These results suggest that part of the HF recall advantage comes not only from encoding individual 

items, but also from forming more and stronger bindings among adjacent items or items and their 

temporal context.   

One curious free recall result that our model can also explain is that when study items are 

separated by long intervals filled with a different task, the HF free recall advantage is removed 

(Gregg, Montgomery & Castaño, 1980). Gregg et al (1980), asked participants to study lists of 12 

HF or LF words in two different conditions. In the control condition words were presented at a 

rate of 2 seconds with no pauses in between; in the continual distraction condition, participants 

had to count down by 3s from a three digit number for 10s after every study item. Thus, in the 

continual distractor condition, WM resources have 10s to recover until the next study item appears. 

The authors found not only that overall memory decreased in the continual distraction condition, 

but that there was no longer a free recall advantage for HF words. We fit our model to Gregg et 

al’s data by estimating a single WM recovery rate for all conditions. The empirical results and the 

model fits are presented on Figure 13.  

 

 
 

Figure 13. Free recall accuracy as a function of word frequency and inter-stimulus-interval. Empirical data 

from Greg, Montgomery and Castano (1980) and the corresponding SAC model fit. 
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2. Effects of word frequency on item recognition 

In contrast to serial and free recall, the most common finding in item recognition memory is that 

LF words are recognized better, showing more hits and fewer false alarms than HF words (Clark, 

1992; Glanzer & Adams, 1990, 1990; Hockley, 1994; MacLeod & Kampe, 1996; Malmberg & 

Murnane, 2002; Reder et al., 2000; Schulman, 1967). At first blush it might seem that this effect 

is inconsistent with the proposal for an encoding advantage for HF words. This finding, known as 

the mirror frequency effect, was initially quite difficult to account for by the models of the time, 

but most current memory models can explain the LF advantage in item recognition (Glanzer & 

Adams, 1990; Hintzman, 1994; Joordens & Hockley, 2000; McClelland & Chappell, 1998; Reder 

et al., 2000; Shiffrin & Steyvers, 1997). SAC offers a dual-process explanation which has been 

extensively reviewed elsewhere (Diana et al., 2006; Reder et al., 2000, 2007). In essence, HF words 

show more false alarms because they have stronger concept nodes, which leads to a greater sense 

of familiarity for unstudied items. At the same time, HF words are experienced in a greater variety 

of contexts and situations which makes them much more difficult to retrieve any specific one of 

them. This context competition leads to the lower hit rate portion of the mirror frequency effect.  

What is important for the current argument is that the contextual competition during 

recognition masks the fact that HF words are stored more easily. This masking does not occur in 

free recall, because the contextual fan of the words plays no role – in free recall the only cue is the 

encoding context. Even though the encoding advantage of HF words is often out-weighed by its 

contextual fan disadvantage in recognition tests, there are a number of cases in which the demands 

during encoding are great enough to reverse that trade-off (Reder et al., 2007).   

In item recognition, the encoding disadvantage of less familiar words is evident with extremely 

rare words (e.g. Mandler, Goodman, & Wilkes-Gibbs, 1982; Schulman, 1976; Wixted, 1992; 

Zechmeister, Curt, & Sebastian, 1978). When a wide range of frequency is considered, recognition 

hits have a U-shape, where very rare words are recognized worse than HF words (Mandler et al, 

1982; Zechmeister et al, 1978). Relatedly, recognition increases as a monotonic function of 

subjective familiarity of rare words (less than 1 in 4 million; Shulman, 1976). These findings 

appear to be in conflict with results by Lohnas & Kahana (2013) who found that recognition is a 

monotonic decreasing function of word frequency18. However, Lohnas & Kahana (2003) tested 

words with frequency of more than 2 counts per million, and their lowest bin of stimuli had an 

                                                 

 
18 In contrast to Lohnas & Kahana (2013), Hemmer & Criss (2013) found a U-shaped pattern for word frequency on 

item recognition performance. One difficulty with comparing these two studies is that participants in the Lohnas and 

Kahana (2013) experiment studied individual words, while participants in Hemmer and Criss (2013) studied word 

pairs, despite being tested on single item recognition. As we note in our discussion of associative recognition, HF 

words usually have an advantage in associative recognition because the storage demands are higher compared to a 

task in which you study individual items. This causes the storage advantage of HF words to overcome their retrieval 

contextual competition disadvantage. Similarly, even though H&C tested item recognition, not associative 

recognition, the fact that participants studied word pairs might explain the reversal of the recognition frequency effect 

at the highest frequencies. 
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average frequency of 21 counts per million. Thus, the recognition disadvantage for very rare words 

seems to be robust. 

One criticism of studies using very rare words is that their recognition might be worse not 

because they are less frequent per se, but rather because they are unknown to participants and 

might not have representations in LTM (Shiffrin & Steyvers, 1997). This potential criticism is 

similar to the one we addressed concerning WM in the section “Are low frequency items chunks?”. 

Without a preexisting representation in LTM, the task of remembering a word becomes more akin 

to associative learning. Associative learning is more difficult than item learning because it requires 

binding not only the item and the current context, but also the constituent parts of the unfamiliar 

item. Yet, similar U-shaped results have been found in training studies, in which participants were 

exposed to pseudowords (Reder et al, 2002) or to three-digit numbers (Maddox & Estes, 1997) at 

different experimental frequencies prior to a recognition memory task. In summary, when 

frequency of exposure is low enough, either quasi-experimentally or experimentally manipulated, 

its encoding disadvantage appears even in item recognition.  

Finally, our theory predicts that the hit rate advantage of LF words in recognition should be 

lower or eliminated when there is a reduced encoding and binding ability, which will overcome 

their recognition benefit. One group that consistently shows reduced WM capacity and episodic 

memory binding ability is older adults. As predicted by our account, the typical LF hit rate 

advantage gets monotonically smaller as age increases, while the recognition of HF words does 

not change (Balota, Burgess, Cortese, & Adams, 2002). While this effect might be attributed to 

increased familiarity of LF words with age, other attentional factors also eliminate or reverse the 

LF hit rate advantage – for example, reducing the study time (Criss & McClelland, 2006; 

Malmberg & Nelson, 2003) or dividing attention during study (Diana & Reder, 2006)19.  

The next modeling challenge we chose to tackle was the finding that reducing study time 

reduces the hit rate advantage for LF words (Malmberg & Nelson, 2003) or even reverses it (Criss 

& McClelland, 2006). We chose these studies because timing is critical when we consider that 

WM resources recover over time. We fit our model to Malmberg and Nelson’s (2003) findings by 

estimating a single WM recovery rate for all conditions (similarly for Criss & McClelland, 2006). 

Figure 14 shows the empirical data and the fit of the SAC model. The excellent fit of the model 

reinforces the idea that the reduction of the LF hit rate advantage could be due to insufficient 

resources available as a result of the fast presentation rate. It is noteworthy that Criss & 

McClelland’s (2006) fastest presentation rate (0.15 s) was faster than Malmber & Nelson’s (2003), 

and produced a recognition benefit for HF words in both the model and the experiment. This is 

because at very fast presentation speeds, resources recover minimally, which hurts the storage of 

                                                 

 
19 One could question whether the LF advantage disappears because of floor effects in all of these studies; however, 

when we consider the false alarm levels, recognition performance in all of those studies was well above chance levels, 

making this explanation unlikely (for example, FA rates in Malmberg & Nelson (2003) were 0.37 for HF words and 

0.21 for LF words, while hits rates were above .50 in all conditions). 
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LF words more than the storage of HF words, counteracting the LF recognition advantage due to 

contextual competition. 

 

 
Figure 14. Hit rate for item recognition of low and high frequency words depending on the trial duration 

during study. Data from Malmberg & Nelson (2003, Exp. 2; left), Criss & McClelland (2006; right) and 

SAC model fits. 

 

3. Effects of word frequency on associative recognition 

The other case in which we observe beneficial effects of higher word frequency on recognition is 

with associative recognition wherein people study pairs of words and typically have to discriminate 

between intact (old words studied in the same pair), recombined (old words studied in different 

pairs) and novel pairs (new words). Associative learning is more demanding because it requires 

the encoding of each item, as well as binding the two items together; in our view, each of these 

operations draws on the same limited resource pool. Consistent with this idea, multiple 

experiments have demonstrated that pairs (Chalmers & Humphreys, 2003; Clark, 1992, 

Experiment 1; Clark & Shiffrin, 1992) or triplets (Clark, 1992, Experiment 2) of HF words are 

easier to recognize than pairs or triplets of LF words (although see Hockley, 1994 for a null effect). 

For example, Clark (1992) tested item recognition, pair recognition and free recall for the same 

items studied in triplets. While item recognition showed the typical word frequency mirror effect 

result, free recall and associative recognition were better for triplets of HF words (replicated by 

Clark & Shiffrin, 1992, with word pairs as well). Figure 15 shows Clark’s 1992 results and the fit 

of our computational model in which encoding LF words left fewer resources for encoding the 

association between them. 
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Our account is also supported by the boundary conditions of frequency effects in associative 

recognition. First, the HF advantage in associative recognition is present only when the words in 

the pair are not strongly semantically associated (Martin, 1964). When a strong prior association 

exists, participants only have to encode the episodic trace, but they do not have to bind the items 

to one another (presumably because they are already chunked as an association). As a result, there 

are sufficient resources to encode both low and high frequency word pairs. The HF advantage also 

disappears with incidental encoding (Humphreys et al., 2010). With incidental encoding 

instructions participants do not necessarily attempt to bind the two words together, and the demand 

on WM is smaller, which results in equivalent performance between HF and LF word pairs. 

Finally, like the familiarization studies we discussed earlier (e.g. Maddox & Estes, 1997; Reder et 

al., 2002), repeated exposure to LF words prior to the experiment facilitates subsequent associative 

learning (Chalmers & Humphreys, 2003), demonstrating a direct benefit of exposure frequency 

for association formation.  

 

 
Figure 15. Proportion of old decisions in associative recognition of word pairs containing HF of LF words 

in Clark (1992), and the fit of the computation SAC model to the data. 

 

4. Effects of word frequency on cued-recall and source memory 

The storage and association formation advantage of HF items is also demonstrated in studies 

involving source memory and cued-recall. In source memory tasks, participants have to retrieve 

the context in which they experienced a certain stimulus. Research has shown that it is easier to 

store the study context for items that have preexisting representations (e.g., better recognition when 

the scene in is reinstated for famous but not non-famous faces, Reder et al., 2013) or for items 

rated as more familiar (DeWitt et al., 2012). According to our theory, the processing of an unknown 

face (Reder et al, 2013) or a less familiar item (DeWitt et al, 2012) consumes the available WM 

resources to build a long-term representation, so there are fewer resources available for forming a 

link between the item representation and the context in which they appear. Consistent with the 

position that these effects occur at encoding rather than retrieval, dividing attention during 

encoding reduces or removes the familiarity advantage; dividing attention during retrieval does 
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not (DeWitt et al., 2012). Thus, item familiarity facilitates context association formation rather 

than its retrieval. 

Two recent comprehensive studies on how word frequency affects cued-recall provide 

additional support for our position (Criss et al., 2011; Madan et al., 2010). Both studies evaluated 

separately the effect of cue and target frequency by manipulating them orthogonally. HF targets 

were better recalled than LF targets. When it comes to the cue, however, Madan et al (2010) found 

no effect of word frequency, while Criss et al (2011) found that while HF cues were more effective 

than LF cues, the effect was much smaller than that for the target. Criss et al. (2011) found those 

results surprising and argued that most memory models would predict a benefit for LF cues, similar 

to single item recognition, either because they better match their distinctive features in the memory 

trace (McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997), or because they have fewer pre-

experimental associations (Dennis & Humphreys, 2001; Reder et al., 2000). Our explanation for 

the weaker, but positive effect of cue frequency is that since LF cues take more resources to 

encode, there are fewer left for forming the cue-target association. That is, as we discussed before 

in the item recognition section (see also Reder et al., 2007), the trade-off between lower contextual 

competition for LF words and their encoding disadvantage can mask the positive effects of the 

former, and the negative effects of the latter. Consistent with these claims, Criss et al (2011) found 

in Exp. 3 that when all words have high context diversity, the effect of the cue frequency is 

removed or reversed.  

We modeled these data by fitting a single recovery rate to both experiments, and by estimating 

contextual fan from the SUBTLEX contextual diversity ratings for each word in the experiment. 

While Criss et al (2011) claimed to have equated context diversity in Experiment 3, the SUBTLEX 

context diversity rating revealed that this was not the case (see Table 4). A 2x2 ANOVA revealed 

that HF cues had more context diversity compared to LF cues in both the Low and the High context 

diversity conditions (F(1, 261) = 72.87, p < .001). The difference in context diversity between HF 

and LF cues was bigger in the high context diversity condition (F(1, 261) = 12.68, p < .001). Since 

the difference in context diversity between HF and LF cues is bigger in the High context diversity 

condition, the model would predict that the beneficial effect of HF cues would be removed or even 

reversed, which is what Criss et al (2011) found. Figure 16 shows the fits of the SAC model to the 

data from Criss et al (2011), implementing these assumptions. The model captures the reduced 

benefit of HF cues compared to HF targets, and also the fact that the cue benefit disappears with 

high contextual fan, because bigger difference in contextual fan between HF and LF cues in that 

condition. 

 

Table 4. Mean SUBTLEX measure of cue context diversity in Experiment 3 of Criss et al (2011), 

depending on the cue frequency and Criss et al’s context diversity category. CD = Context diversity 

Criss et all CD category Cue frequency Cue CD (Mean ± SE) 

Low context diversity HF 8.41 ± 1.32 

Low context diversity LF 1.25 ± 0.17 

High context diversity HF 19.5 ± 2.38 

High context diversity LF 2.61 ± 0.29 
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Figure 16. Cued recall probability as a function of word frequency of the cue and the target in Criss et al 

(2011, Exp. 1, 2 and 3), and fits of the SAC model (dots) – a) Exp. 1 and 2 combined; b) cued recall 

depending on whether the words had low or high context diversity (Exp. 3). Error bars represent 95% CI  

5. Experimental familiarization and memory formation 

Critically, as with most other studies we reviewed, both Madan et al (2010) and Criss et al. (2011) 

depended on normative word frequency. If the explanation based on the contextual fan/frequency 

trade-off seems convoluted, consider the large-scale familiarization study with Chinese characters 

that we discussed earlier (Reder et al., 2016). In that study, in which there was no difference in 

contextual diversity between HF and LF characters, we also showed that cued-recall is better with 

novel cues that were trained at high rather than low-frequency, contrary to the findings of Criss et 

al (2011) and Madan et al. (2010). The cued-recall task was performed at the beginning of each 

week starting on Week 2. During the study session of the cued-recall task, participants saw two 

Chinese characters from the same frequency class paired together with an English word. The left 

and right character were combined with another character from that frequency class with another 

English word on a given list so that participants were forced to attend to both characters to be able 

to respond with the correct English word. Each week, the study pairings were novel combinations 

of characters with a previously unpresented English word.  

Two results from this study are consistent with the idea that item frequency benefits association 

formation. First, performance in the cued recall task increased each week, even though the triplet 

combinations were novel on each list. Importantly, pairs of HF characters were better cues for 

recalling the English words. The advantage of the HF characters was present even after 2-4 weeks 

post-training and was as large at this long delay as on the last of weekly tests. These results present 

strong experimental evidence that, rather than acting through confounded factors, frequency of 

exposure directly facilitates association formation. Finally, we argued before that the cue 

frequency had a small or no effect in Criss et al (2011) and Madan et al (2011) studies due to a 

trade-off of higher contextual competition with less WM demands. The results of Reder et al 

(2016) clearly support that explanation, because when there are no differences in contextual 

competition, higher cue frequency had a large, positive effect on cued-recall. 
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Table 5 Findings consistent with the claim that stronger items are easier to encode and bind 

Free recall 

 Single item free recall of HF is better than LF in pure lists (DeLosh & McDaniel, 1996; Sumby, 

1963; Ward et al., 2003). 

 Learning rate of HF is also faster, such that with repeated trials, HF word lists reach criterion more 

quickly (Sumby, 1963). 

 Greater temporal clustering of HF words in free recall (Tulving & Patkau, 1962; Ward et al., 2003) 

 Dividing attention during encoding eliminates the HF advantage in free recall (Gregg, Montgomery 

& Castano, 1980). 

 The frequency advantage in free recall / serial recall is difficult to dilute even with repeated practice. 

People learned sequences of HF words more easily even after completing 8 trials of repeated free-

recall testing on the same words (Sumby, 1963). 

Item recognition 

 Single item recognition of very low LF is worse than HF (with both natural frequency, Schulman, 

1976, and pseudo-word familiarization, Reder et al., 2002). 

 LF recognition advantage is reduced in older adults (Balota et al. 2002). 

 LF recognition advantage eliminated with divided attention during encoding (Diana & Reder, 2006). 

 LF item recognition advantage is eliminated with short study durations (Malmberg & Nelson, 2003). 

Pair recognition 

 Pair associate recognition of HF words is better than LF words (Clark, 1992; Clark & Shiffrin, 1992; 

Chalmers & Humphreys, 2003; although, Hockley 1994 finds no effect). 

 HF pairs recognized better only when the words are not strongly associated (Martin, 1964). 

 The benefit for HF word pairs is removed with incidental encoding (Humphreys et al., 2010). 

 Preexposure to LF words improves subsequent associative learning (Chalmers & Humphreys, 2003).  

Cued recall 

 Cued recall is better for high-frequency cues and targets (Criss, Aue, & Smith, 2011; Madan et al., 

2010), but only with pure lists (Clark & Burchett, 1994). 

 Chinese characters experimentally familiarized at high frequency are easier to associate to one 

another as the compound cue and to the English language response term than those familiarized at 

low frequency (Reder et al, 2016). 

Source memory  

 Better source memory for more familiar items, but the effect disappears when attention is divided 

during item encoding (DeWitt, Knight, Hicks, & Ball, 2012). 
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C. Challenge 3: Strength of some items affects encoding of other items (list composition 

effects) 

In this section we examine evidence for another aspect of our thesis – if the encoding of items 

depends on sharing a limited resource, and the amount of resources spent is an inverse function of 

the strength of the item being processed, then the strength of some items should affect success at 

storing subsequent items by influencing how much of these resources remain. We consider mainly 

list-composition effects, both at the global level (i.e., overall performance differences for pure and 

mixed frequency study lists) and at the local level (i.e., performance for specific items depending 

on the strength of immediately preceding or concurrently studied items). See Table 6 for a 

summary of these findings. 

1. Pure vs mixed list paradoxes 

A major variable that interacts with word frequency on memory performance is list composition. 

Pure study lists are those that contain only HF or only LF items, while mixed study lists are lists 

that contain both low and high frequency items in an either random or alternating manner. 

The HF advantage in free recall holds only for pure lists, and is absent or reduced when stimuli 

of different frequency are mixed within a list, a phenomenon often referred to as the mixed list 

paradox (e.g. Gillund & Shiffrin, 1984; MacLeod & Kampe, 1996; Ozubko & Joordens, 2007; 

Ward et al., 2003; Watkins et al., 2000). The typical result is that the presence of LF items on the 

list hurts memory for HF items, and the presence of HF items on the list helps memory for LF 

items (i.e., performance for HF pure > HF mixed ~ LF mixed > LF pure; see Figure 17). These 

results cannot be entirely explained by differential rehearsal, because accounting for the number 

and recency of rehearsals (Ward et al., 2003) or suppressing rehearsal altogether (Popov et al., 

2018) does not remove list-composition effects. SAC suggests that fewer resources are depleted 

while storing HF items, which leaves more resources available for storing LF items in mixed rather 

than pure LF lists. We fit the SAC model to the mixed-vs-pure data of Ward et al (2003, Exp. 3), 

whose results can be seen in Figure 17. Estimating a single recovery rate, threshold and noise 

parameter for all four conditions provided a good fit to the data (eight data points were fit; see 

Figure 25 for the remaining four).  
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Figure 17. Free recall proportion for high and low frequency words depending on whether they were 

studied in pure or mixed frequency lists. Data from Ward et al (2003, Exp. 3) and fits of the SAC model 

(dots). Error bars represent 95% CI 

 

Can the model account for more intricate aspects of list-composition effects? For example, 

increasing the proportion of LF items on the list monotonically decreases overall performance. 

Recall accuracy is highest in lists composed of 100% HF items, medium in lists composed of 75% 

HF items, and lowest in lists composed of 25% HF items (DeLosh & McDaniel, 1996). Similar 

results hold with word recognition, where the discrimination between LF targets and foils 

improves as the proportion of HF words on the list increases (Malmberg & Murnane, 2002). In 

SAC the reduced probability of storing LF items on mixed lists is due to the fact that storing HF 

words depletes less resources, and as a result, the greater the proportion of HF words on the list, 

the more resources remain to process the LF words.  

SAC also predicts that the precise order of LF and HF items on a list will impact performance 

(Caplan et al., 2015; Hulme, 2003; Miller & Roodenrys, 2012; Watkins, 1977). Performance in 

immediate serial recall is better when the first half of each mixed list contains HF words and the 

second half contains LF words, rather than the reverse; performance on both types of mixed lists 

is intermediate between pure HF lists and pure LF lists (e.g., HH > HL > LH > LL, where the two 

letters reflect word frequency within the first and the second half of the lists; see Figure 18, Miller 

& Roodenrys, 2012; Watkins, 1977). In addition, the word frequency effect increases with serial 

position in immediate serial recall (Hulme, 2003; Hulme et al., 1997). 

Why would performance for mixed lists differ depending on the order of HF and LF items in 

the lists? After all, if the overall proportion of frequency is the same, wouldn’t the same amount 

of resources be spent regardless of the frequency order? This would be true if the resource was not 

limited from below or above; however, the resource cannot be depleted below 0 and it cannot 

recover above its maximum capacity, which results in different amounts of overall depletion 
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depending on item order. The key question is how much resources are available at the time of 

encoding – when LF words are encountered first, they deplete more resources, and thus there is 

less left for encoding the second half of the list; the reverse is true when the HF items are 

encountered first (see Figures 18 and 19 for the fit of the model to Miller & Roodendrys’s data, 

2012). Relatedly, why would frequency effects in pure lists increase with serial position? Each 

additional item compounds the effect of frequency due to spending more and more resources, 

leading to an interaction with serial position. Our simulations supported this explanation and the 

fits of the model to Hulme et al’s (1997) results is shown in Figure 20. 

 
Figure 18. WF effects in pure and mixed lists in immediate serial recall. There are two types of mixed lists 

– HL are lists in which the first three items were HF, and the last three were LF; LH are lists in which the 

first three items were LF, and the last three were HF. Data from Miller and Roodendrys (2012) and SAC 

model fit.  

 
Figure 19. WF effects in pure and mixed lists in immediate serial recall as a function of serial position. 

There are two types of mixed lists – HL are lists in which the first three items were HF, and the last three 

were LF; LH are lists in which the first three items were LF, and the last three were HF. Data from Miller 

and Roodendrys (2012) and SAC model fit. See footnote 21 concerning the recency effect for the final item 
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A more in-depth exploration of the serial position curves for pure and alternating lists in Hulme 

(2003) provides further support for the resource-depletion account (see Figure 21). If we focus on 

the first item in each sequence, we can see that recall for the HF item in lists that begin with an HF 

item (HFLF lists) is equivalent to the recall of the first item in the pure HF lists, while recall for 

the LF item in lists that begin with an LF item (LFHF lists) is equivalent to that of the first item in 

pure LF lists. This makes sense, because resources have been depleted to the same degree on the 

first trial for pure HF lists and mixed HFLF lists; similarly for pure LF lists and LFHF lists. 

However, the situation changes when we look at HF items on the second trial. For items in the 

second serial position, performance is lower in the LFHF list than in the pure HF list, even though 

both test an HF word (vice versa for LF items on HFLF lists in the second position). The results 

are similar when the lists contain words and non-words instead (Figure 22). The model 

simulations, which assume that each item is bound to a serial position cue (Anderson, Bothell, 

Lebiere & Matessa; 1998; Figures 21 and 22) show the same pattern in the alternating lists, 

supporting our explanation20. In summary, the complex interaction of frequency and serial position 

in alternating lists supports the resource-depletion account.  

 

 
 

Figure 20. Word frequency interacts with serial position during immediate serial recall. Data from Hulme 

et al (1997) and fits of the SAC model. 

 

                                                 

 
20 While the model fails to capture the one-item recency effect in serial-recall, it should be noted that the SAC model 

is primarily a model of episodic memory, and it was not developed to account for serial recall performance. In contrast 

to Anderson et al (1998), whose serial recall model we emulated, our model lacks a Short-term buffer component that 

was used in ACT-R to account for a one-item recency effects in serial recall.  
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Figure 21. WF effects in pure and alternating lists in immediate serial recall. Data from Hulme (2003; 

Averaged from Exp. 1 and Exp. 2) and SAC model fit.  

 

 
Figure 22. Word vs non-word immediate serial recall in pure and alternating lists. Data from Hulme (2003; 

Exp 3) and SAC model fit.  
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2. Frequency of concurrently studied items 

A direct test of the idea that LF items require more resources, leaving fewer resources for 

processing concurrent items, comes from experiments in which participants studied pairs of items, 

but received an item recognition test for individual items within each pair (Diana & Reder, 2006; 

Malmberg & Nelson, 2003). 

Malmberg & Nelson (2003) asked participants to study pairs of two HF words, two LF words 

or mixed pairs of one HF and one LF word, and then asked participants to make an item recognition 

decision for only one of the words from each pair. When the study time was relatively short (1.2 

sec), hit rates for both HF and LF words were lower when the other word in the pair was LF rather 

than HF. This effect is consistent with the idea that LF words require more resources, a conclusion 

also supported by the fact that LF targets were hurt more than HF targets in the presence of another 

LF word. Interestingly, the effect disappeared with longer study times (4.0 sec; see Figure 23). 

Malmberg and Nelson’s (2003) interpretation was that LF words require more resources only 

during the initial encoding stages. While their interpretation is possible, SAC postulates that 

resources recover over time; as a result, the 4 second condition may provide sufficient time for 

resources to recover so as to more easily store both items. In contrast, in the 1.2 second condition 

resources do not recover fully from one trial to the next, impacting LF words more than HF words. 

To test this explanation, we fit the SAC model to the data by estimating only one recovery rate for 

all conditions (see Figure 23). 

One might argue that it is unnecessary to invoke the idea of WM resources to explain these 

results: People recognize and name LF words more slowly than HF words, and they take more 

time to study LF words when encoding is self-paced (Rao & Proctor, 1984). It is possible then that 

in Malmberg & Nelson’s (2003) study people were merely spending more time encoding LF 

words, leaving them less time to encode the other word in the pair.  

Diana & Reder (2006) discounted this explanation. In addition to replicating Malmberg & 

Nelson’s (2003) results with word pairs, in a different experiment they asked participants to view 

pictures of objects with words superimposed on them. Participants had to name the word as quickly 

as possible but attend to both the word and the picture because their memory would be tested for 

both. Recognition memory for the pictures, which was tested independently of the words, was 

better for pictures studied with superimposed HF words. Importantly, there was no significant 

difference in naming times between LF and HF words (630 vs 607 ms.). Since people allocate the 

same amount of time to pronounce LF and HF words, and the next trial began immediately after 

naming the word, it is not likely that these results can be explained by differences in study time, 

per se. Furthermore, in the next section we provide evidence that memory for an item is also 

influenced by the strength of the items preceding it during study, an effect that cannot be attributed 

to a difference in study time for the current item. 
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Figure 23. Hit rate for low and high frequency targets, depending on the frequency of the other word in the 

study pair and the study duration. Data from Malmberg & Nelson (2003, Exp. 3) and the SAC model fits. 

 

 

Table 6 Findings consistent with the claim that strength of some items affects the encoding of other items 

Pure vs mixed list paradoxes 

 Free recall advantage for HF words only on pure lists, but not on mixed lists (MacLeod & Kampe, 

1996; Watkins, LeCompte, & Kim, 2000; Ward et al., 2003; see Ozubko & Joordnes for a meta-

analysis) 

 Free recall of HF items improves as the proportion of HF items on the list increases (DeLosh & 

Mcdaniel, 1996). 

 Single item recognition of LF improves as the proportion of HF words increases (Malmberg & 

Murnane, 2002). 

 Serial recall of high-frequency words is worse, while low-frequency words is better, when embedded 

in mixed lists rather than pure lists (Watkins, 1977; Hulme et al., 2003; Caplan et al., 2015).  

 Greater serial recall span when the first half of the list is HF and the second half LF, compared to the 

reverse (Watkins, 1977; Miller & Roodendrys, 2012)  

 the word frequency effect increases with serial position in immediate serial recall (Hulme, 2003; 

Hulme et al., 1997). 

Frequency of concurrently studied items 

 Single item recognition is better when the item was studied concurrently with HF rather than with LF 

item (Diana & Reder, 2006), but only with short study times (Malmberg & Nelson, 2003) 

Strength of immediately preceding items 

 Preceding item frequency effects on learning of current item (Section IV) 
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IV. Analyses of preceding item strength:  novel predictions 

The viability of a model should be judged not only by its ability to fit existing data, but also by its 

ability to make novel predictions. If the unified explanation for list-composition effects that we 

presented is true, then we should expect that memory should be affected not only by the frequency 

of the concurrently studied items (Diana & Reder, 2006; Malmberg & Nelson, 2003), but also by 

the frequency of the immediately preceding items during study. We have posited that LF items 

deplete more resources, and that these resources are not returned immediately to the resource pool, 

but rather gradually recover over time. If this is the case, then memory should be worse for items 

that are preceded by LF items during study. In the remainder of the paper we will present re-

analyses of multiple existing datasets from different labs that use a variety of memory paradigms, 

all of which support this prediction. 

Most memory studies use a separate study-test cycle procedure in which items are first studied 

in a list before a memory test is presented. Our theory predicts that memory for a given item will 

also be a function of the strength/frequency of the items that immediately preceded it during the 

study session. Looking at Figure 24, which represents a sequence of study items, this means that 

memory for item Xk will be a function of how much of the resource was spent in memorizing the 

immediately preceding items Xk-1, Xk-2, Xk-i etc, where k denotes the position of the current item, 

and i denotes the lag or the temporal distance to the preceding items – for example, a lag of 2 

means that the Xk-2 item appeared two items ago during study. 

 

 
Figure 24. Order of items during a study list 

 

Our theory makes several distinct predictions concerning the effect of the preceding items. As 

we explained before, memory performance for item Xk (denoted by P(Xk)) will be worse when the 

preceding item is weaker (e.g., LF vs. HF). This effect is also not discrete:  P(Xk) should be 

proportional to the strength of item Xk-1. These effects should also be cumulative such that P(Xk) 

should be monotonically worse the more of the preceding items that are weak. This is because 

more resources will have been spent over time, reducing recovery. The effect of the preceding 

items Xk-i should further increase when the current item Xk is weaker, because the current item is 

in more need of resources. Finally, the effect of Xk-1 should be stronger than the effect of Xk-2 and 

in general the effect of the preceding items would decrease as the lag increases because more time 

would have passed, allowing for the recovery and subsequent depletion by other intervening items. 

These predictions, and the studies in which we found support for them are summarized in Table 7. 

It is important to note that the strength of these effects will depend on the degree to which 

resources are depleted, which varies as a function of presentation rate, instructions and effort, 
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nature of the material, power issues, etc. It will also depend on the study strategies used by the 

participants. For example, if for some reason participants decide to study primarily the HF items 

to maximize their performance, especially if they find the LF items too hard, then the effects are 

unlikely to appear, or at least be diminished. The discrete effect of prior item strength is the 

simplest prediction and likely will occur most often, especially when the current item is weak.  

 

Table 7. Predictions about the effects of prior item strength  

# Predictions 

Studies  
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1  Discrete effect of prior item strength 

Example: P(Xk) is worse when Xk-1 is LF 
0 + + + 0 + + NA NA 

2  Continuous effect of prior item strength 

Example: P(Xk) is proportional to freq(Xk-1) 
NA NA + NA NA NA NA + + 

3  Cumulative effect of prior item strength 

Example: P(Xk) is worse when more of the preceding 

items are LF 

+ 0 + 0 + + + NA NA 

4  Interaction between prior and current item strength 

Example: The effect of freq(Xk-1) should be stronger when 

Xk is LF 

+ + + + 0 0 0 NA NA 

5  Interaction between prior item strength and lag 

Example: The effect of freq(Xk-i) should decrease as the 

lag i increases 
+ 0 + 0 0 + + + + 

Note. +: effect found in study; 0: null effect; -: effect found in opposite of predicted direction; NA: prediction could not be 

tested. Diana = Diana & Reder (2006), Ward = Ward et al (2003), Buchler = Buchler et al (2008), Aue = Aue et al (2017), 

Reder = Reder et al (2002), Marevic = Marevic et al (2017), Popov = Popov et al (2018), Cox = Cox et al (2018), PEERS 

= Penn Electrophysiology of Encoding and Retrieval Study (Healey & Kahana, 2016) 

 

 

We present evidence that supports the predictions shown in Table 7 by reanalyzing nine 

published studies and by fitting a SAC model to each21. The most straightforward variable to 

analyze is word frequency, but the effects are likely to occur with any variable that affects how 

many resources are depleted in processing the preceding study items. Of the nine studies, five 

studies used word frequency as a factor (Healey & Kahana, 2016; Cox et al, 2018; Diana & Reder, 

2006; Reder et al, 2002; Ward et al, 2003), two studies manipulated how many times a studied 

item had already been presented (Buchler et al, 2008; Aue et al, 2017) and two directed-forgetting 

studies that manipulated whether each item should be remembered or forgotten (Marevic et al, 

2017; Popov et al, 2018).  

                                                 

 
21 We are grateful to all the researchers who shared their datasets with us. 



  49 

A. Data analysis 

For all results reported below we analyzed the accuracies and RTs via logistic and linear mixed-

effects regression models (Baayen, Davidson, & Bates, 2008). We excluded incorrect responses 

from RT analyses. Random effects were determined through restricted likelihood ratio tests and 

all models included varying intercepts for subjects and individual words/word pairs (i.e., different 

subjects and items differ in their overall accuracy and RT estimates). We inferred the significance 

of each effect based on likelihood ratio tests and AIC comparisons of the regression models that 

contained the effect in question with identical models that lacked this contrast. The modeling code, 

data and analyses scripts are available at https://github.com/venpopov/prior-item-effects. 

B. Experiments 

1. Diana & Reder (2006) – worse memory for items that follow LF items during study 

As we described previously, Diana & Reder (2006) performed an item recognition test for pictures 

that were studied with a HF or a LF word superimposed on it. The authors found that pictures 

paired with HF words were recognized better. Here we examined the probability of recognizing 

the picture as a function of whether the preceding item during study contained a HF or LF word 

(see Figure 25, left). There was no main effect of preceding word frequency (Δ AIC = 2, χ2(1) = 

0.31, p = .57), but there was a significant interaction between the frequency of the current word 

and the frequency of the preceding word during study (Δ AIC = -3, χ2(1) = 5.20, p = .02). A picture 

was less likely to be recognized when, during the study list, it was preceded by a trial with a LF 

word, but only when the current word was also LF. This interaction pattern emerged in many of 

the other studies we reanalyzed as well. Furthermore, we looked at whether the effect was 

parametric – whether the number of preceding LF or HF words mattered. For each test trial, we 

calculated how many of the preceding study items were consecutively LF or HF. Picture 

recognition increased as the number of consecutive preceding LF words decreased from 4 to 1, 

and it increased as the number of consecutive preceding HF words increased from 1 to 4 (Figure 

26; Δ AIC = -2, χ2(1) = 3.62, p = .038). Finally, we looked at whether the effect of the prior item’s 

frequency would decrease as the lag between it and the current item increased. We limited the 

analyses only to current LF items, since HF items were not affected by the frequency of the item 

at the immediately preceding position. The analyses shown in Figure 25, right panel, confirmed 

this expectation: The effect was biggest at lag 1 (odds ratio = 1.90, z = 2.216, p = .027), medium 

at lag 2 (odds ratio = 1.69, z = 1.78, p = .075), and smallest at lag 3 (odds ratio = 1.58, z = 1.57, p 

= .12). We could not test Prediction 2 with this dataset, because word frequency did not vary 

continuously. Nevertheless, Predictions 3, 4 and 5 were supported in the re-analysis of this study. 

Figure 25 and Figure 26 also show the fit of the SAC model, which provides further support for 

our explanation of these preceding item effects. The model does a good job capturing all effects 

we described using just a single recovery rate parameter, an episodic retrieval threshold parameter 

and episodic noise parameter to fit all the data.  

https://github.com/venpopov/prior-item-effects
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Figure 25. Reanalyzed data from Diana & Reder (2006; bars) and new SAC model fits (dots). Left – hit 

rate for pictures studied with a superimposed high or low frequency word, depending on whether they were 

preceded by by a high or low frequency word during study; Right – hit rate for LF words depending on 

whether they were preceded by a high or low frequency word during study at lag 1, 2 or 3. Error bars 

represent 95% CI 

 

 
Figure 26. Reanalyzed data from Diana & Reder (2006) and SAC model fits. Hit rate for pictures as a 

function of how many previous pictures during the study list had low or high freqency words superimposed 

on them. 
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2. Ward et al (2003) – rehearsal borrowing cannot explain the preceding frequency effect 

Can the prior item effects we found in Diana & Reder (2006) be explained by differences in 

rehearsal between item with HF and LF words? It might be the case that because LF words are 

more difficult to remember, participants continue to rehearse them when the subsequent item 

appears, which limits their ability to process and store the subsequent item. To address this 

question, we tested whether we would find the same effects in Ward et al (2003), who performed 

mixed-list free recall experiments in which words of LF and HF were intermixed and found that 

the memory impairment for LF words disappears in the mixed-lists. They also asked participants 

to rehearse words out loud, and they recorded the number of times each word was rehearsed. This 

allows us to test whether rehearsal borrowing can explain the effect of preceding item frequency. 

The reanalyzed results for Ward’s Experiment 3 are shown in Figure 27a. Replicating our findings 

in the reanalysis of Diana & Reder (2006), the frequency of the items preceding the current item 

during the study list had a main effect on recall for the current item – words preceded by LF words 

during study were less likely to be recalled than words preceded by HF words (Δ AIC = -8, χ2(1) 

= 9.56, p = .002). As with the Diana & Reder (2006) analysis above, we also found an interaction 

between the frequency of the current item and that of the preceding item – the effect of preceding 

item frequency was present only when the current item was an LF word (Δ AIC = -3, χ2(1) = 5.07, 

p = .024). These results could not be accounted for by differential rehearsal – there were no 

differences in the number of rehearsal depending on the frequency of the prior study item (p > .3, 

Figure 27b). Thus, we found evidence for Predictions 1 and 4 with this dataset, and we established 

that rehearsal borrowing is not a likely explanation of the results. Figure 27 also shows the fit of 

the SAC model to the preceding item frequency effects (see Figure 17 for the mixed-vs-pure model 

fit of the same data).  

 
Figure 27. Reanalysis of Ward et al (2003) Dots show the fit of the SAC model. a) proportion recall of 

high or low frequency words depending on whether they were preceded by by a high or low frequency word 

during study; b) number of rehearsal of high or low frequency words, depending on whether they were 

preceded by by a high or low frequency word during study. Error bars represent 95% CI 
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3. Cox et al (2018) and PEERS – continuous frequency effect of frequency on memory for the 

following study item 

Is the effect of preceding item frequency continuous? We explored this question by reanalyzing 

data from Cox et al (2018), who asked participants to perform five different memory tasks all using 

the same stimuli: item recognition, associative recognition, cued recall, free recall and lexical 

decision. We focus on the first four tasks, because the lexical decision task did not involve study 

lists. In all lists, participants studied words pairs without knowing the nature of the subsequent 

test. After studying a given list, they were given one of the four test described above. Word 

frequency was not a factor in this experiment, but the frequency of the words still varied, allowing 

us to test prediction #2, specifically that memory for the current item Xk will be affected 

continuously by the frequency of the prior word. The study items in this experiment were word 

pairs so we calculated the average frequency for a pair by using log SUBTLEX frequency 

(Brysbaert & New, 2009). The log frequency followed a normal distribution.  

Figure 28 shows the hit rate (in recognition tasks)/recall accuracy (in recall tasks) and the RTs 

for each memory task as a function of the preceding study item’s frequency (binned in 20 

frequency groups with equal number of observations). Performance in all tasks improved when 

the preceding item during study was of higher frequency – hit rates/accuracy increased as a 

function of prior item frequency, ΔAIC = -5, χ2 (1) = 6.63, p = .01. There was no significant 

interaction between prior item frequency and task type, ΔAIC = 5, χ2 (3) = 0.99, p = .80. Finally, 

we found that the effect of prior item frequency decreased with the lag between the current item 

and the prior item during study, which was also predicted by our model (Figure 29a, b, 

respectively) – the effect was biggest at lag 1 (odds ratio for 1 log unit increase in frequency = 

1.08, z = 2.58, p = .009), medium at lag 2 (odds ratio for 1 log unit increase in frequency = 1.03, z 

= 0.86, p = .388), and smallest at lag 3 (odds ratio for 1 log unit increase in frequency = 0.99, z = 

-0.51, p = .61). Thus, we found support for predictions 1, 2 and 5 by showing that the effect of 

prior item frequency is continuous and that its impact diminishes as the study lag between the 

current and the prior item increases.  

We fit the SAC model to Cox et al’s accuracy data (we did not fit RTs, but the behavioral data 

for RTs showed the absence of a speed-accuracy trade-off). Since participants did not know the 

nature of the next test when studying the word pairs, we used a single model to fit performance in 

all tasks. This involved only a single parameter for recovery rate, retrieval threshold and retrieval 

noise for all tasks. As shown in Figure 28, the model did a good job fitting the overall hit rates 

across the four memory tasks. Given that the nature of the test was not known in advance, the 

model treated all study sessions equivalently and any differences in performance must be due to 

how much activation reaches the episode nodes during retrieval. Specifically, for free recall 

episode nodes only receive activation from the context node; for cued recall, activation spreads 

from both the context node and the activated cue (word) node; for associative recognition 

activation is sent to the episode node from the context node and the two cue nodes (See Figure 4 

for an illustration). For these three tasks the amount of activation of the episode node increases 

with the number of activation/cue sources during retrieval. The single recognition task is slightly 
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different – while the episode node receives just as much activation during single recognition as it 

does during cued recall, responses in the single recognition task can be based on either the 

activation of the episode node (resulting in Remember responses in a Remember-know paradigm) 

or based on activation of the semantic node of the cue (resulting in Know responses; see Reder et 

al, 2000 for greater detail). Since Cox et al (2018) used an old-new instead of a remember-know 

paradigm, we assume both nodes’ activations contribute the Hit rate (please cite here the Diana et 

al PBR paper on Dual Process Models of Recognition).   

Figure 29 and Figure 30 show the fits to the preceding item frequency effects. Figure 29 shows 

that the model captures well the slope of the frequency effects. The intercept for each task is not 

fit perfectly, which is due to the fact that we used a single retrieval threshold for all tasks and 

instead depended on inherent differences in activation levels between retrieval tasks to capture the 

overall hit rates. Figure 30 shows that the model also captures the fact that the effects due to 

preceding items decrease with lag between the target and the relevant preceding item, providing 

further support for the current theory. 

 

 
Figure 28. Overall results in Cox et al (2018) and the SAC model fit to the four different test types. SR – 

single item recognition; AR – associative recognition; CR – cued recall; FR – free recall. 
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Figure 29. Reanalysis of Cox et al (2018) and SAC model fits to the accuracy data – Hit rates or probability 

of recall (top panels) and RTs for correct responses (bottom panels) as a function of the mean word 

frequency of the word pair that preceded the current pair during study and task type - a) Single recognition, 

b) Associative recognition, c) Cued recall, d) Free recall. Frequencies were binned into 20 bins of equal 

size and points represent the mean in each bin. Variability in model predictions reflects the particular mix 

of trial sequences, since model predictions are derived by simulating activation values given the actual trial 

sequences. Lines show the best fitting regression line to the data and the model.  

 

Figure 30. Reanalysis of Cox et al (2018) and SAC model fit – Accuracy (hit rate for recognition tasks or 

probability of recall for recall tasks) over all tasks depending on the frequency of the items that preceded 

the current item during study and their lag (e.g., how many trials earlier they occurred). Left – empirical 

data; Right – simulated data from the SAC model. Variability in model predictions reflects the particular 

mix of trial sequences, since model predictions are derived by simulating activation values given the actual 

trial sequences. Lines show the best fitting linear regression line to the data and the model. 
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Since participants studied word pairs in Cox et al (2018), the preceding item frequency was 

calculated as the average frequency of the two words. To replicate the continuous effect that we 

found in Cox et al (2018), we also reanalyzed data from the Penn Electrophysiology of Encoding 

and Retrieval Study (PEERS), a large-scale multi-session experiment on free recall in which 

participants studied words presented one at a time (Healey & Kahana, 2016; Lohnas & Kahana, 

2013). Here we analyze data from the 230 participants who completed Experiment 122. In each of 

seven sessions, participants studied 16 lists of 16 words presented one at a time. After each list, 

participants had to immediately perform a free recall test for the preceding list (see Healey & 

Kahana, 2016 or Lohnas & Kahana, 2013 for full procedural details).  

The effects of preceding item frequency and its interaction with the lag to the preceding item 

in PEERS were remarkably similar to those we found in Cox et al (2018). Figure 31 shows free 

recall accuracy and RTs as a function of the preceding study item’s frequency (binned in 20 

frequency groups with equal number of observations). Recall accuracy improved when the 

preceding item during study was of higher frequency, ΔAIC = -41, χ2 (1) = 42.95, p < .001. 

Similarly, RTs were faster when the preceding item was of higher frequency, ΔAIC = -10, χ2 (1) 

= 12.47, p < .001, confirming that there was no speed-accuracy trade-off. We also found that the 

effect of prior item frequency decreased with the lag between the current item and the prior item 

during study (Figure 32) – the effect was biggest at lag 1 (odds ratio for 1 log unit increase in 

frequency = 1.029, z = 4.856, p < .001), medium at lag 2 (odds ratio for 1 log unit increase in 

frequency = 1.013, z = 2.149, p = .032), smallest at lag 3 (odds ratio for 1 log unit increase in 

frequency = 1.010, z = 1.728, p = .08) and absent at lag 4 (odds ratio for 1 log unit increase in 

frequency = 1.002, z = 0.481, p = .63). Thus, we found support for predictions 1, 2 and 5 by 

showing that the effect of prior item frequency is continuous and that its impact diminishes as the 

study lag between the current and the prior item increases.  

 
Figure 31. Reanalysis of PEERs and SAC model fits to the accuracy data –probability of recall (left) and 

RTs for correct responses (right) as a function of the mean word frequency of the word pair that preceded 

                                                 

 
22 The results were equivalent when including Experiment 2 and 3, but since not all participants completed all 

experiments, we focus on Experiment 1 for simplicity. 
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the current pair during study. Frequencies were binned into 20 bins of equal size and points represent the 

mean in each bin. Lines show the best fitting linear regression line to the data and the model.  

 
Figure 32. Reanalysis of PEERs and SAC model fit – Probability of recall depending on the frequency of 

the items that preceded the current item during study and their lag (e.g., how many trials earlier they 

occurred). Left – empirical data; Right – simulated data from the SAC model. Variability in model 

predictions reflects the particular mix of trial sequences, since model predictions are derived by simulating 

activation values given the actual trial sequences. Lines show the best fitting linear regression line to the 

data and the model. 

 

4. Buchler et al (2008) – number of study repetitions of an item affects subsequent items in the 

same way as their normative frequency 

The next two studies that we re-analyzed involved manipulations of item strength by varying the 

number of repetitions during study. According to SAC, when some items are repeated multiple 

times on a study list their strength will be higher with each repetition and each subsequent encoding 

should require fewer resources. That means that there should be more resources available to store 

other items that follow items were repeated multiple times.  

Buchler et al (2008) performed an associative recognition experiment, in which they 

manipulated how many times a specific word pair was repeated (either 1 or 5) and whether words 

were repeated always with same word, or with 5 different words. We focus only on those pairs 

that stayed intact, either 1 or 5 times. For this analysis, a given study a trial could be preceded by 

a word pair that had been presented 1, 2, 3, 4 or 5 times already. For simplicity, we collapsed the 

study trials into two groups – we examined whether a word pair Xk-1 appeared for the first time 

(weak pair) or whether it had been repeated multiple times (strong pair). Figure 33 shows the 

results of this analysis. Hits for studied pairs were higher and false alarms to recombined pairs 

were lower when the target had been studied right after a repeated pair, Δ AIC = -2, χ2(1) = 3.92, 

p = .047. Importantly, the effect of the prior item strength interacted with the current pair’s 
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strength: the advantage of following a strong pair was bigger when the current item was weak 

(studied only once), Δ AIC = -14, χ2(1) = 16.35, p < .001. As we found in the previous analyses, 

the effect of a prior item’s strength decreased as the lag between study positions increased – the 

effect was biggest at lag 1 (odds ratio = 1.68, z = 4.134, p < .001), medium at lag 2 (odds ratio = 

1.11, z = 2.914, p = .004), and smallest at lag 3 (odds ratio = 0.94, z = 1.465, p = .143). Performance 

was also a function of how many of the preceding items during study were weak or strong (Figure 

34, right). Finally, while for the previous analyses we dichotomized pairs into either weak (one 

repetition) or strong (multiple repetitions), we also found that the effect of the preceding item’s 

strength was continuous, such that hits were higher when the preceding trial during study contained 

a pair that was repeated more (Figure 34, left).  In summary, we found support for predictions 1, 

2, 3, 4 and 5 with manipulated frequency just as we had with normative (natural) word frequency. 

The figures also show the fit of the SAC model, which did a good job accounting for all of the 

effects. 

 

 
Figure 33. Reanalysis of Buchler et al (2008) and SAC model fits (dots). Left panel – Hits for repeated and 

non-repeated items depending on whether they were preceded during study by a repeated or a non-repeated 

pair. Right panel - hit rate for weak items depending on whether the items were preceded by a repeated or 

a non-repeated pair during study at lag 1, 2 or 3. Error bars represent 95% CI 
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Figure 34. Reanalysis of Buchler et al (2008) and SAC model fits. Left panel – hits for the current item 

depending on how many times the preceding item was repeated during study. Right panel – hits as a function 

of how many trials during the study list had weak (one repetition) or strong (multiple repetition) pairs 

preceding the test pair. Error bars represent 95% CI 

 

5. Aue et al (2017) – is repeating one word of a pair sufficient to facilitate memory for the 

following study item? 

Does the whole pair need to be repeated, in order for the following item to be better remembered? 

Our model would predict that even repeating only one word of the pair across pairs would cause 

less resource depletion, leaving more resources for the subsequent item (though the effect would 

be weaker). We explored this question by reanalyzing data from three experiments concerned with 

proactive facilitation (Aue, Criss, & Novak, 2017). In each of their cued-recall experiments, 

participants studied two lists of word pairs and some of the pairs on the second list shared a word 

with pairs in the first list. The authors found that cued recall for List 2 was better for those pairs 

that share words with List 1 compared to pairs with cues unique to list 2. The authors argued, 

similar to our position, that when a cue was repeated from List 1 to List 2, it was more familiar, 

making it easier to associate to a new target, counteracting the effects of interference.  

As in Buchler et al (2008), we looked at performance for the current pair depending on whether 

it was preceded during study by a pair that was presented for the first time (new), or whether it 

was preceded by a pair that contained a previously seen cue word from List 1. We combined the 

data from Experiments 1, 2 and 4 (Exp. 3 tested List 1 performance and was thus irrelevant). Figure 

35 shows the results and the corresponding SAC model fit. Cued recall was higher when the pair 

was preceded during study by a pair with a repeated cue (Δ AIC = -3.1, χ2(1) = 5.10, p = .024 for 

the main effect of preceding cue type), but only when the current item was new (Δ AIC = -3, χ2(1) 

= 4.74, p = .029 for the interaction between preceding and current cue type). Thus, we replicated 

the main effect we found in Buchler et al (2008). It is likely that the effects are weaker, because in 
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this study only one of the words was repeated, not the entire pair, and it was repeated only one 

time, not up to five times as in Buchler et al (2008). 

 

 
Figure 35. Reanalysis of Aue et al (2017) and SAC model fit (dots). Cued-recall probability (left) and 

confidence ratings (right) for pairs with a new or a repeated cue, depending on whether they were preceded 

during study by a pair with a new or a repeated cue. Error bars represent 95% CI 

 

6. Reder et al (2002) – extending the predictions to experimentally manipulated frequency  

Throughout this text, we discussed the benefits of drawing inferences from training studies that 

experimentally manipulate stimulus familiarity prior to the task of interest, as compared with 

studies that use normative word frequency (a quasi-experimental variable). Would the effects of 

the preceding item familiarity show up in such training studies as well? We reanalyzed data from 

Reder et al (2002) who trained participants to learn pseudowords over a period of five weeks with 

some pseudowords presented six times more often than other pseudowords.  The primary task was 

free recall of the just presented pseudowords on a list.  This training occurred three times per week. 

Once at the start of each week, before the standard free recall training, participants were given a 

list for which the task was episodic pseudoword recognition that required the participant to 

discriminate the items just studied on the list from other pseudowords being trained in the study 

but not presented.  

We performed the same analyses as described above for the other tasks, specifically comparing 

memory accuracy for items that were preceded by high vs. low frequency pseudowords. There was 

evidence of a speed-accuracy trade-off (Reed, 1973), such that the responses to the conditions we 

expected to be worse were less accurate but also faster. To finesse the resulting interpretation 

problem, we report analyses done on inverse efficiency scores (RTs divided by average accuracy, 

separately for each condition; Townsend & Ashby, 1983). The main effect of the immediately 
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preceding item was not significant (Δ AIC = 0, χ2(1) = 2.00, p = .15), and there was no interaction 

with the current item frequency (Δ AIC = 2, χ2(1) = 0.36, p = .54). However, as shown in Figure 

36, there was a cumulative effect of the number of prior LF or HF items: Pseudoword recognition 

improved as the number of consecutive preceding LF decreased from 3 to 1, and it increased as 

the number of consecutive preceding HF words increased from 1 to 3, (Δ AIC = -9, χ2(1) = 10.85, 

p < .001). The regression model included a covariate for the current item’s frequency, thus the 

effect was not due to the possibility that a long sequence of LF items is more likely to be followed 

by an HF item. Thus, even though the immediately preceding item effect was not significant, we 

found support for prediction 3 just as in Diana & Reder (2006). It is important to note that this was 

the only study analyzed here in which participants studied individual items. As we stated 

previously in the section on frequency effects on item recognition, this task has fewer resource 

demands during study since they are single items; however, these are not real words and thus are 

more demanding than real words. It is thus not surprising that this is the only study in which a 

longer sequence of LF or HF preceding items is necessary to produce the result. 

 

 
Figure 36. Reanalysis of Reder et al (2002). Memory performance in inverse efficiency (IES = 

RTs/accuracy) as a function of how many trials during the study list had low or high freqency words 

preceding the test word. Error bars represent 95% CI 

 

7. Marevic et al (2017) – better memory after instructions to forget the preceding study item. 

While our focus has been primarily on differences in strength due to word-frequency and 

experimental familiarization, SAC predicts that similar preceding item effects should occur with 

any variable that affects how much resources are depleted. To test this idea, we re-analyzed the 

results from a Directed Forgetting (DF) study (Marevic, Arnold, & Rummel, 2017). In the item-

based version of the DF paradigm (for reviews, see Benjamin, 2006; Bjork, 1972; Epstein et al., 

1972; MacLeod, 1998), participants view a sequence of items and they are tested only on items 
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followed by a “remember” cue during study (TBR items) and that they should forget the items 

followed by a “forget” cue (TBF items). SAC’s novel prediction is that memory for items 

following a “remember” cue should be worse because more WM resources will be consumed 

trying to learn the previous item compared to when the previous item was to be forgotten.   

We tested this prediction with a reanalysis of a recent published study on item-based DF 

(Marevic, Arnold, & Rummel, 2017) and a follow up dual-task study (Popov, Marevic, Rummel 

& Reder, 2018). The full analysis and results are described in Popov et al (2018), but we will 

briefly summarize those results. The analysis of preceding study items showed that cued-recall 

and free-recall paired-associate memory for items presented on study trial k was better when study 

trial k-1 was TBF, rather than TBR. There was also a cumulative effect – when more of the 

previous trials (k-3, k-2, k-1) were to-be-remembered, memory for the item on trial k was worse. 

Finally, the effect of preceding item cue type decreased as the study lag between the current item 

and the prior item increased (e.g., the item on trial k-3 had a weaker effect than that on trial k-2, 

which in turn had a weaker effect than the item on trial k-1).  

 

8. Popov et al (2018) – could the directed forgetting results be explained by rehearsal or 

attentional borrowing? 

It is possible that when people study an item, they continuously rehearse or reactivate the memory 

traces for the preceding items (Camos, Lagner, & Barrouillet, 2009; Loaiza, Duperreault, Rhodes, 

& McCabe, 2015), and that this rehearsal or attentional borrowing is greater when more previous 

items had to be remembered. Popov et al (2018) did not find support for that explanation in a dual 

task study designed to test that explanation.  Participants tried to learn paired-associates in one of 

four conditions - a control single-task condition, equivalent to Marevic et al (2017), a rehearsal 

suppression dual task condition, a divided attention dual task condition and a combined rehearsal 

suppression plus divided attention dual task condition. All of the effects described above were 

replicated regardless of whether attention was divided or rehearsal was suppressed.  In other words, 

the effects of the prior item cue type (TBR vs TBF) was as strong when there was no ability to 

rehearse. 

C. Discussion 

We presented evidence from nine studies that support a novel prediction that memory for a given 

item is affected by the strength of the preceding items during the study phase. Specifically, memory 

for item Xk studied on trial k was better when the preceding item during study, Xk-1, was stronger 

and thus required less resources to be processed. This occurred when the preceding item was a 

high rather than a low frequency word or word pair (Diana & Reder, 2006; Ward et al, 2003; Cox 

et al, 2018; PEERS – Healey & Kahana, 2016), was a pseudo-word that was experienced more 

frequently in training prior to the study list (Reder et al, 2002), was a word or word pair that was 

repeated on multiple trials (Buchler et al, 2008) or lists (Aue et al, 2017), or was a word pair that 
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was supposed to be forgotten, rather than remembered (Marevic et al, 2017; Popov et al, 2018). 

This effect was a parametric function of word frequency (Cox et al, 2018; PEERS - Healey & 

Kahana, 2016), it accumulated when more of the previous items during study were weaker (Diana 

& Reder, 2006; Buchler et al, 2008; Reder et al, 2002; Marevic et al, 2017; Popov et al, 2018), it 

decreased when the lag between the current and the prior item increased (Cox et al, 2018; Diana 

& Reder, 2006; Buchler et al, 2008; Marevic et al, 2017; PEERS - Healey & Kahana, 2016; Popov 

et al, 2018), and it was bigger when the current item was weaker itself (Buchler et al, 2008; Diana 

& Reder, 2006; Ward et al, 2003). Importantly, these results cannot be due to other mechanisms 

such as rehearsal or attentional borrowing (Popov et al, 2018). In summary, we believe that these 

results provide strong support for the claim that memory formation depletes a limited pool of 

resources as a function of the current strength of items, and that these resources are not returned 

immediately, but rather recover over time.  

V. General Discussion 

We have presented a resource-depletion theory to account for many phenomena concerned with 

the effects of pre-existing item strength on learning and WM (summarized in Tables 3, 5, 6 and 

7). We demonstrated that it is easier to form new memories for items with stronger current nodes 

in LTM, such as high frequency words or frequently exposed novel stimuli. Such items are also 

easier to maintain in WM, and we discounted multiple alternative explanations for these results. 

Furthermore, we showed that the strength of one item interacts with surrounding items; we also 

provided evidence from pure-vs-mixed list comparisons and reanalyzed 9 existing datasets that 

showed memory for one item depends on the strength of the items that immediately preceded it 

during study. The current theory accounts for these results by positing a limited resource that is 

used in processing, storage and maintenance, a resource that recovers slowly over time. This 

theory’s explanation for the encoding advantage for stronger items is that they require less 

resources for their processing and as a result more resources are left for binding them to the study 

context and to one another. Finally, a computational implementation of the theory provided good 

fits to many of the patterns discussed in the paper. In the remainder of this discussion we will 

consider some difficulties in providing evidence for the current proposal, describe a number of 

additional puzzling phenomena that the theory might explain, and we will conclude by discussing 

the concept of resources and its usefulness in explaining memory performance. 

A. Partial matching’s role in WM resource depletion 

Replication has recently become an important issue in the field of psychology (Pashler & 

Wagenmakers, 2012). That concern motivates the question of why hasn’t support for this theory 

been demonstrated previously using experimental designs? There is ample support for this theory 

from quasi-experimental studies (reviewed here and also in Reder et al, 2007; also see Xie & 

Zhang, 2016, 2017b). There have not been previous experimental studies because it is difficult to 

demonstrate this effect (see below). That difficulty is important to understand because (a) without 



  63 

explaining the necessary conditions for getting the effect, there would be failures to replicate, 

leading to invalid rejections of the theory; and (b) the explanation for the difficulty is closely tied 

to the theory. The main issue concerns Partial Matching, a natural adaptation in situations where 

WM resources are scarce. Managing to finesse partial matching during training is key to 

demonstrating the effect. These points are elaborated below, using illustrations of how we learned 

this the hard way over the past decade. 

Partial matching operates regularly in cognitive processing, especially when a person’s WM 

resources are exhausted. People can only attend to so much and they focus selectively, tending not 

to notice the rest. This phenomenon underlies the Moses Illusion (Kamas, Reder, & Ayers, 1996; 

Reder & Kusbit, 1991), change blindness (Simons & Levin, 1997), spurious Feeling of Knowing 

in arithmetic tasks (Reder & Ritter, 1992; Schunn et al. 1997 ) and trivia game-show experiments 

(Reder, 1987). Partial matching is also observed when people accept foils that overlap in content 

with studied items (Diana, Peterson & Reder, 2004; Popov, Hristova, & Anders, 2017; Zhang, 

Walsh, & Anderson, 2017). All of these phenomena have the property that there tends to be too 

much information for a person to focus on simultaneously, leading them to accept as a match 

information that only partially overlaps with the contents of memory. 

So how or why does partial matching make it difficult to demonstrate our theoretical position? 

In the training experiments we chose to differentially familiarize Chinese characters because they 

are relatively complex and were previously unknown to our participants. In the cued recall task, 

where participants had to associate a pair of Chinese characters with an English word, we failed to 

appreciate that participants could be successful when they only encoded one of the two characters 

in a pair if each character was not associated with two different English words. Given that LF 

characters were more challenging, more partial matching at the character level would occur for 

those trials and would dilute the effect. Subsequent experiments involved using each character as 

part of two pairs (with different English words) on a given study list; however, the results still 

showed some odd patterns in the zero frequency exposure conditions. While performance was 

better for HF pairs compared to LF pairs, counterintuitively, completely novel characters (i.e., a 

zero frequency exposure condition) were learned better than the LF pairs23. 

Why were the zero frequency pairs outperforming low-frequency pairs? Participants could also 

partial match at the feature level within a character as well, finding features in characters that were 

already strong chunks. When people only encode those parts of a novel stimulus that involve 

previously known chunks, rather than (in this case) the entire Chinese character, there are fewer 

demands on the WM resource. However, this short-cut means that a complete representation of 

the character is not created and defeats the goal of controlling the familiarity of the stimulus. With 

characters that were studied a few times per week, the beginnings of new chunks representing the 

                                                 

 
23 Nelson & Shiffrin (2013) reported a similar effect. They found a non-monotonic trend for single character learning, 

such that zero frequency did better than low frequency (they did not train pairs and associated them to English words; 

theirs was a recognition test). 
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entire character would be formed but would not be particularly strong. Those lists consisting of 

zero frequency characters would not have the WM demands of the LF characters, because 

participants likely partial-matched to strong, familiar chunks. Figure 37 illustrates how someone 

might encode personally strong chunks such as the symbol π, the number 4 or the letter k in those 

unfamiliar stimuli instead of the entire characters.   

 
Figure 37. Examples of three Chinese characters and potential chunks (highlighted in grey) that might be 

encoded (π, 4 and k) and used for partial matching.  

 The question then was how to get subjects to not rely on partial matching when the chunks 

were not strong. Feigenbaum and Simon (1984) argued that people only encode those features 

required for discriminating among categories, and that explains why, for example, people who 

used pennies every day of their lives for decades failed to discriminate the correct representation 

of a penny from plausible foils (Nickerson & Adam; 1979). With this insight, we first used 

ideographs so that we could create visually similar sets of distractors for the visual search task. 

The data were encouraging (Reder & Keinath, 2011) and we tried again with Chinese characters 

but took care to make the characters in the training sets visually similar.24 When fine-grained 

discrimination between characters was forced in this way, the predicted effects finally emerged.25 

In summary, experimental manipulations of frequency require discrimination training with highly 

similar foils for the benefits of exposure frequency to emerge. 

B. Accounting for additional phenomena 

The theory put forward in this article provides plausible explanations for a few other surprising 

phenomena. In the following section we discuss how this theory can account for correlations 

between expertise and memory performance, WM capacity and long-term memory, age and 

memory decline, neuroscientific data for repetition priming and primacy effects. 

 

                                                 

 
24 These were selected by Xiaonan Liu, a native Chinese speaker and Reder’s grad student at the time 

25 We know that the effect emerged due to the higher visual similarity of the distractors, because the effects were 

absent in an otherwise identical version of the experiment that contained a bug in the code causing distractors to be 

randomly assigned instead 
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1. Primacy effects 

A natural extension of the resource depletion mechanism discussed so far is to account for primacy 

effects in list learning, the phenomenon of better memory for items presented early in a list. 

Traditional accounts of the primacy effect posit that early list items are rehearsed more often 

(Rundus, 1971). We do not find this explanation satisfactory because of two findings. First, results 

have shown that the number of rehearsals does not necessarily predict long-term retention (Craik 

and Watkins, 1973; Glenberg, Smith & Green, 1972). Second, even when rehearsal is suppressed, 

a primacy effect remains, albeit smaller in size (Marshall & Werder, 1972; Howard & Kahana; 

1999). These findings motivate a new explanation consistent with the current theory – that the 

processing of each item depletes WM resources and that the primacy effect is due to less resources 

being available on each subsequent trial after the first. 

A number of findings are consistent with this explanation. High WM capacity individuals show 

a reduced primacy effect (Unsworth & Spillers; 2010), which we attribute to the fact that they have 

more resources available at their disposal to encode subsequent items. Furthermore, since in our 

model, WM recovers as a function of time, we expect that the primacy effect should increase as 

the presentation rate gets faster, because WM resources would have recovered less between items. 

Consistent with this prediction, a stronger primacy effect is found with immediate serial recall with 

a rapid serial visual presentation paradigm (RSVP; Coltheart et al., 2004; Neath & Crowder, 1996; 

Foster, 1970). For example, Coltheart et al (2004) found that the primacy effect increases with an 

RSVP presentation with 9 words per second vs 1 word per second (Coltheart et al., 2004; also see 

Neath & Crowder, 1996; Foster, 1970). The effect occurs with forward serial recall (Coltheart et 

al, 2004), backward serial recall (Neath & Crowder, 1996), serial order recognition test (Coltheart 

et al, 2004), yes-no probe recognition test (Potter et al, 2002), and is affected by whether the pace 

is increasing or decreasing with each item (Neath & Crowder, 1996).  

Our explanation of the primacy effect is similar to attentional gradient models, according to 

which during encoding less and less attention is paid to each additional item (for a review, see 

Oberauer, 2003). Two examples of such a model are the Temporal Context Model (TCM; Howard 

& Kahana, 2002; Sederberg, Howard, & Kahana, 2008) and the TODAM model (Lewandowsky 

& Murdock, 1989). For instance, in TCM, the primacy effects results from an encoding boost 

parameter that decays exponentially with each trial, reflecting attenuated rehearsal to items with 

increasing serial positions. This is a convenient way to fit the data, but is not in and of itself a 

mechanistic explanation of primacy effects (Sederberg et al, 2008). Our model goes a step further 

by proposing that the primacy gradient arises due to the same mechanism we have used to account 

so far for the various frequency and list composition effects – the encoding of items depletes a 

limited pool of resources, which recover over time.  
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2. Better WM memory in experts in their domain of expertise, even for random configurations of 

stimuli 

One classic result in the memory literature is that experts are much better at memorizing material 

within their domain of expertise, compared to non-experts (Chase & Simon, 1973; Chiesi, Spilich, 

& Voss, 1979) While initial studies showed that masters and novices do not differ in memorizing 

ability for random placement of chess pieces on a board (Chase & Simon, 1973), later analyses 

revealed that there is a robust, albeit smaller, advantage of expertise even for random chess 

positions (Gobet & Simon, 1996). A recent meta-analysis showed that this advantage for random 

configurations occurs in many other domains such as music, sports or computer programming 

(Sala & Gobet, 2017).  

One explanation for these findings is that experts likely recognize smaller subsets of chunks 

even within randomly structured materials, and that these chunks allow them to memorize more 

of the information (see Gobet, 1998, for a theoretical review; Sala & Gobet, 2017). While this is 

certainly a possibility, an additional contributor might be the experts’ greater familiarity with 

individual items from their domain of expertise, e.g., chess pieces and board positions, musical 

notes, programming commands, or climbing moves. An expert might exhaust less WM resources 

in binding these more familiar items into a random configuration compared to a novice with the 

same overall WM capacity. We demonstrated experimentally that this is the case within-

subjects when they are trained to recognize Chinese characters at low and high-frequency (Reder 

et al, 2016). The same principle could be underlying, at least partially, the memory advantage for 

experts even with random configurations of materials. 

3. Better LTM for people with more WM capacity 

Given the exposition so far, perhaps it is not surprising that people with higher WM capacity also 

perform better on long-term episodic memory tests (Anguera et al., 2012; Anguera, Reuter-Lorenz, 

Willingham, & Seidler, 2010; Marevic, Arnold, & Rummel, 2017; Unsworth, Brewer, & Spillers, 

2009; Unsworth & Spillers, 2010). Multinomial modeling has revealed that WM capacity 

correlates with encoding success, rather than with retrieval probability (Marevich et al, 2017). This 

correlation is one of the key puzzles that a theory of WM must explain, and Oberauer et al (2016) 

noted that no current resource-based account of WM can do so. The theory presented in this paper 

provides a natural account of for this observation – the creation and binding of novel episode nodes 

depletes a limited resource, and the strength or the probability of forming these nodes depends on 

the quantity of WM resources available. People with less WM capacity, either due to less total 

capacity, or due to slower recovery rate, would form fewer or weaker chunks, especially when the 

demands are greater.  

4. Binding problems in old age 

The current theory also provides an account of the correlation between WM capacity and learning 

performance evident in the effects of aging on both WM and episodic learning (Buchler & Reder, 
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2007; also see Buchler et al, 2011). There is overwhelming evidence that WM capacity decreases 

at a steady rate from about 20 years of age onwards (Brockmole & Logie, 2013; Salthouse & 

Babcock, 1991), and that this decline is greater for bindings than for item information (Cowan, 

Naveh-Benjamin, Kilb, & Saults, 2006; Peterson & Naveh-Benjamin, 2016, 2017). A large array 

of varied findings from item and associative recognition also indicates that the underlying cause 

of most age-related memory impairments is a decreased ability to form novel bindings (Ahmad, 

Fernandes, & Hockley, 2015; Buchler et al., 2011; Chalfonte & Johnson, 1996; Light, Patterson, 

Chung, & Healy, 2004). Our model suggests a causal link between the correlated decline in WM 

capacity and binding ability with age – forming new bindings requires WM resources and the 

decrease in WM capacity is responsible for the reduced ability to establish and store such bindings 

(Buchler et al, 2011). We propose that these decrements in WM and episodic learning are not 

simply comorbid; rather, the reduction in WM capacity causes episodic learning problems.  

What makes us think that WM decline is related to the binding deficit? First, neuroimaging 

evidence is consistent with this claim. Activity in prefrontal areas involved in WM is reduced in 

old adults when binding is required, e.g., during the encoding of unfamiliar faces (Grady et al., 

1995) and word pairs (Anderson et al., 2000; Cabeza et al., 1997), but not during encoding single 

items (Grady et al, 1995). Second, divided attention during encoding, which reduces the amount 

of resource available for memory operations, reduces or sometimes eliminates the age difference 

(Anderson et al., 2000; Craik & Byrd, 1982; Jennings & Jacoby, 1993), and it also leads to a 

reduction in prefrontal WM-related activity during encoding (Anderson et al., 2000; Iidaka, 

Anderson, Kapur, Cabeza, & Craik, 2000; Shallice et al., 1994). Finally, while the binding deficit 

in LTM for older adults has been studied for some time, recent studies are finding that, similar to 

LTM episodic memory, older adults’ WM impairments are greater when they have to maintain 

item-item or item-context bindings (Peterson & Naveh-Benjamin, 2016, 2017). This overall 

pattern of results is consistent with the proposed connection between WM decline and reduced 

binding ability in old age. 

5. Children and WM 

An implication of the argument that WM depends on the strength as well as the number of chunks 

that must be processed allows us to question the conventional wisdom that children have less WM 

than adults (Brockmole & Logie, 2013; Gathercole, Pickering, Ambridge & Wearing, 2004; 

Nelson Cowan, Ricker, Clark, Hinrichs, & Glass, 2015). The plausible contention that the size and 

the strength of the chunks increase from childhood to adulthood invites the speculation that WM 

resources only appear to increase from childhood to adulthood.  

There is evidence consistent with this proposal. For example, Chi (1978) demonstrated that 

children who are expert chess players have a better memory for meaningful chess positions than 

adult novices, despite a worse WM span measured with conventional stimuli. Extending these 

results, Schneider et al. (1993) found that the child chess experts’ memory advantage in immediate 

recall holds even when compared with adult chess experts. Furthermore, the memory advantage 

was even greater for random configurations of chess stimuli. Random configurations do not match 
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existing chunks in memory, so the benefit cannot be explained by retrieving information from 

LTM; rather, greater familiarity with the individual pieces, analogous to high frequency words, 

would make it easier to bind them to each other, which results in the observed advantage in 

immediate memory for children. Given that the adults should have stronger chunks for the pieces, 

the explanation of superior performance for children with random configurations likely comes 

from children having more “raw” WM resources. 

Other studies showing that young children perform less well than older children even when the 

stimuli are well learned (e.g., Cowan et al., 2015) are called into question by the results described 

above (i.e., that familiarity advantages remain even for stimuli that we assume have “ample” 

exposure – chess pieces were well known to all participants). Furthermore, it is hard to accept 

Cowan et al’s (2015) result as unambiguous evidence against the current proposal, since all age 

groups in that study were presented with WM arrays of three items for only 750 ms. Given that 

the speed of both voluntary and reflexive eye-movements increases dramatically until 25 years of 

age (Fischer, Biscaldi, & Gezeck, 1997), it is possible that younger children simply could not 

encode as many items in the same time period. Finally, research on developmental reversals has 

suggested that, rather than having less attentional resources, younger children distribute their 

attention differently – globally to all features of the stimuli, rather than focusing on task-relevant 

information only (Deng & Sloutsky, 2016; Plebanek & Sloutsky, 2017). As a result, children 

exhibit better processing and memory for task-irrelevant information in change-detection and 

visual search tasks (Plebaneck & Sloutsky, 2017) and they learn accidental category features better 

than adults (Deng & Sloutsky, 2016). As we discussed before, our model predicts that when 

resources are spread among a greater number of features, the strength or the probability of 

encoding each feature is proportional to the resources assigned to it. Given these results, it is not 

surprising that children generally perform worse than adults in most tasks that test memory for 

task-relevant stimuli. 

There also have been theoretical arguments that seem somewhat consistent with our own. For 

example, Munakata (2001) argued that graded representations can explain phenomena that have 

previously been taken as evidence for discrete developmental stages. She aptly points out that 

some tasks require stronger representations than others. Likewise, we believe that, depending on 

the WM demands of a task, a difference in familiarity of a representation may or may not matter 

to performance. Quite recently, Nassar, Helmer, and Frank (2018) have also put forward a theory 

that posits a knowledge/WM trade-off. It is important to note that the veracity of the theory 

presented here does not rest on the claim that children might have just as much (or more) WM 

resources as adults. We find this to be an interesting speculation that is suggested by the theory 

and that, as we reviewed above, is not inconsistent with current research. It also provides an 

explanation for the folk wisdom that children can more quickly learn to use new devices because 

the typical adult advantage of prior knowledge and skills does not apply in the case of novel 

devices. A weaker version of this claim suggests that the developmental increase in WM capacity 

has been overstated with current measurement methods. 
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6. Could the puzzle of second language learning be explained by the WM thesis? 

This research project was started over a decade ago and was motivated by an important puzzle in 

human cognition:  why is second language learning so much easier for children than adults? While 

we do not entirely discount prior explanations such as total time on task (Johnson & Newport, 

1989) nor a “critical period” for fluent language acquisition (Johnson & Newport, 1989; 

Lenneberg, 1967), our speculative explanation for this phenomenon is not based on either, but 

rather follows from the other axioms we have put forward. First, children tend to process novel 

languages from the bottom-up – they tend to hear the phonemes and language structure before they 

feel compelled to speak in the new language. If children indeed have more WM and they are not 

initially trying to map the sounds onto structures in their LTM, they can build up lower level 

chunks that are based on phonemes and syntactic structures that are different from their first 

language. Young children, with a lot of exposure to speech, without the burden on WM of trying 

to produce complex thoughts, can strengthen the low level phonemic and syntactic structures. In 

contrast, adults tend to hear much more complex sentences that they try to parse and map onto 

their native tongue. Given our contention that adults do not have a larger WM pool, by attempting 

to parse the new language, they are exhausting their resources and are much more prone to partial 

match the input with existing linguistic structures. Adults have larger and stronger chunks that 

make partial matching easier to do. Given the greater complexity and demands of the input they 

receive, partial matching is of greater necessity.  This could explain why adults tend to reinforce 

the wrong pronunciation and fail to encode the nuances of the new language.  They are forced to 

encode too much information in a short period of time and thus rely on partial matching to get the 

job done. 

C. Relationship to other models 

SAC bears similarity to other memory models. Most notably, it evolved from the ACT-R cognitive 

architecture (Anderson et al., 2004). With ACT-R, it shares the assumption that memory consists 

of a network of nodes that differ in strength, and that the more outgoing connections there are from 

each node, the less activation spreads along each of those to nearby nodes. It differs from ACT-R 

in multiple ways; notably, the notion of a limited resource in ACT-R is implemented as a cap on 

the total activation that can spread in the system, rather than as a resource that is depleted for each 

memory operation and recovers over time, as in SAC. Furthermore, SAC stands with other models 

in the dual-processing framework (Diana, Reder, Arndt & Park, 2006; Yonelinas, 2002), by 

assuming that recognition decisions can be based either on a recollection process derived from 

episodic nodes, or a familiarity process derived from semantic nodes 

1. Word frequency effects 

When it comes to word-frequency effects, we are not aware of models that have attempted to 

account comprehensively for the whole range of results across tasks and manipulations presented 

here; nevertheless, word-frequency effects in each paradigm have been an impetus for empirical 



  70 

research and model development (for an earlier review, see Diana, 2006, or Reder et al, 2007). For 

single word recognition, SAC’s assumption that high frequency words have been experienced in 

more diverse contexts and thus less activation spreads to any one of them during recognition 

(Reder et al, 2000) is similar to a mechanism in the BCDMEM model (Denis & Humpreys, 2001), 

where recognition depends on retrieving the correct context vector, the probability of which 

decreases when there are more context vectors stored. This is a strong divergence from models 

like REM (Shiffrin & Steyvers, 1997), according to which high frequency items have more 

features in common with each other, which makes them more confusable. 

If the LF recognition advantage is due to less contextual competition, as we suggest, then how 

would we explain Nelson and Shiffrin’s (2013) results, who found in their training study that 

recognition performance decreased with increasing exposure frequency for previously unknown 

Chinese characters? Several things make it difficult to interpret their findings. First, recognition 

for characters that were never trained was actually intermediate between recognition for the 

characters in the low and high-frequency exposure conditions. We found the same in Reder’s prior 

(unpublished) work, before the stimuli were carefully designed to avoid partial matching (see the 

section on Partial Matching). Thus, we do not know how effective Nelson & Shiffrin’s (2013) 

training was. Second, our recent work that controls for partial matching during training showed 

the opposite – recognition was higher for characters exposed more frequently during training (Shen 

et al, 2018). Finally, in training pseudowords at different frequencies, Reder et al (2002) found 

that early in training item recognition improves with exposure frequency, while this effect reverses 

later on, exhibiting the typical mirror-frequency effect. Reder et al (2002) made the argument that 

the contextual fan for frequently trained items inevitably becomes larger than the contextual fan 

for items trained at low frequency, despite Nelson & Shiffrin’s claims that contextual competition 

should not differ among items trained at different frequencies. 

2. Mixed-list paradox 

Watkins, LeCompte & Kim (2000) suggest that the mixed-list paradox is the result of participant 

controlled strategies in that participants pay more attention to LF words and ignore HF words in 

mixed lists. This cannot be the case, because it appears with incidental learning as well as in both 

free recall (Dewhurst, Brandt, and Sharp, 2004) and serial recall (Morin, Poirier, Fortin & Hulme, 

2006). Another possible explanation comes from Hulme et al (2003), who proposed that in pure 

HF lists, it is easier to form inter-item associations between HF words, due to their higher co-

occurrence in language. These inter-item associations help retrieval, but they are removed in 

mixed-lists. However; this account cannot explain why LF items benefit in mixed-lists; it also 

cannot explain why performance is better on lists where the first half contains HF items, and the 

second contains LF items, compared to lists in which the first half contains LF items, and the 

second contains HF items (Watkins, 1977). Finally, it cannot explain why the discrimination 

between LF targets and foils improves as the proportion of HF words on the list increases 

(Malmberg & Murnane, 2002).  
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SAC’s explanation of the mixed-list paradox is similar to the item-order hypothesis (Serra & 

Nairne, 1993) according to which low-frequency items require more resources for processing, 

leaving fewer resources for encoding the order of items. Serra & Nairne (1993) argued that in free 

recall tasks participants store information about the order in which items appear during (study (i.e. 

inter-item associations), and then they use that order to guide recall despite the task being free 

recall.  That is, even though they are not required to recall items in sequence, there is a strong 

tendency to do so (which results in contiguity effects, for a review, see Healey, Long & Kahana, 

2018). Thus, if there were not enough resources to encode order information, recall performance 

would be diminished in mixed-lists (Serra & Nairne, 1993). The difference between their verbal 

account and SAC is that SAC proposes a more general resource depletion mechanism – depleting 

more resources for LF items leaves fewer resources for processing subsequent items rather than 

for processing the order of items per se. This difference allows SAC to explain why the mixed-list 

paradox appears in recognition (Malmberg & Murnane, 2002) or source memory (Popov, So & 

Reder, in prep), wherein memory decisions for individual items do not benefit from remembering 

the order in which items appeared during study. 

3. Preceding item effects 

One family of models that explicitly deals with order effects are TCM (Howard & Kahana, 2002) 

and CRM (Sederberg, Howard & Kahana, 2008). In these models, it is assumed that a short-term 

memory buffer consists of a temporal context vector, which is updated with the representation of 

each studied item. This context vector is later used to cue memory for retrieval, and it produces 

various other order effects, such as the contiguity lag effect (Healey, Long & Kahana, 2018). It is 

not immediately clear what TCM/CRM would predict with respect to the findings we reported in 

the “Preceding item strength” section. These would be worth investigating in the future. 

D.  Model limitations and future directions 

We hope that we have convinced the reader that SAC captures the wide-range of frequency effects 

across most memory tasks, including item and associative recognition, free, cued, and serial recall. 

Despite its success in modeling these frequency effects, we should note that the model was 

originally developed to capture feeling of knowing’s role in strategy choice for question answering 

(e.g., Reder & Schunn, 1996) and recognition memory performance (Reder et al, 2000), and that 

our extensions to recall tasks could be considered lacking in some respects. For example, while 

our serial recall model does a good job capturing the interaction between word-frequency and 

serial position, it does not reproduce the one item recency effect, which has been attributed to 

access from a WM buffer (Anderson et al, 1998). Furthermore, we have made no attempt to model 

the full specter of contiguity effects in free recall, which have been a crucial benchmark for models 

of free recall (Sederberg, Howard, & Kahana, 2008). These could be modeled by allowing 

associations to form between items presented closely in time. 
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Looking at Table 2, one could wonder why parameters such as W and wr, which are related to 

WM capacity, are so variable across experimental models. There are a number of factors that 

contribute to this variability. First, note that W is fixed for half of the experiments – we estimated 

its optimal value for Reder et al. (2000) as 3 and we fixed this value unless the fit was not 

satisfactory. The main experiments in which we had to allow W to vary were the four serial recall 

experiments by Hulme (1997 & 2003). These were the only experiments in which we modeled the 

serial position curve in addition to the frequency effect and it was the serial position curve fit that 

was the primary driver of the change in W compared to other experiments. Second, the variability 

in W and wr is caused by the combination of two other factors – since all other learning parameters 

are fixed (learning rate, decay, etc), all of the natural variability due to differences in the 

experimental paradigms must be captured by the two free WM parameters. We could potentially 

allow all parameters to vary, as is a common practice in memory modeling, to account for these 

differences, but we prefer to fix the learning parameters given how well the model has performed 

in the past with those values. Finally, given that the experiments we have modeled are performed 

with different subject populations with relatively small sample sizes, it is also possible that overall 

individual differences among these samples might be driving some of the variability in W and wr. 

Our model makes multiple novel predictions that have not been yet tested. First, we expect that 

the novel effects of preceding item frequency presented in this paper should depend on the 

presentation rate during study. Since resources recover over time, the frequency of the preceding 

item should have a smaller impact on memory for the current item with slower presentation rates. 

Similarly, our model predicts that the primacy effect is due to resource consumption, and that the 

primacy effect will be larger with faster presentation times. Furthermore, these effects should vary 

as a function of the individual WM capacity – people with larger overall capacity and/or faster 

recovery rates should be impacted less by word frequency and would exhibit a less steep primacy 

effect. Finally, the model presented here also captures primacy effects, directed forgetting effects 

(Popov et al., 2018), various aspects of the spacing effect, and the null and the negative list-strength 

effect (Ratcliff, Clark & Shiffrin, 1990; Wilson & Criss, 2017). These extensions could be 

explored in future work. 

One novel prediction of the model that seems inconsistent with existing data is that the 

recovery of resources over time should make encoding of items that are preceded by longer 

temporal intervals better than that of items preceded by shorter intervals. Existing studies that have 

manipulated inter-trial-interval duration in serial recall have not found evidence for this prediction 

(Brown & Lewandowsky, 2005; Lewandowsky, Brown, Wright & Nimmo, 2006). However, there 

is one methodological difficulty with interpreting the result of the above mentioned studies. The 

prediction that a longer interval preceding the item would lead to better memory would only hold 

in our model if participants do not exhaust any resources during that interval (i.e. if that interval 

was “dead time” in which participants did not engage in any memory operations related to the 

preceding item). If participants continue to process the preceding item during that interval then the 

size of the interval would not affect performance for the subsequent item, because resources are 

depleted rather than recovered. One finding from the above mentioned studies is that while the 
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size of the interval preceding an item does not affect memory for it, the size of the interval 

following the item positively correlated with memory performance. This means that participants 

did in fact use the longer time intervals to continue processing the preceding item, which would 

not allow resources to recover during that time. As such the absence of an effect of the preceding 

time interval does not invalidate the theory. A new experiment that manages to vary the preceding 

interval while preventing people from depleting resources during the interval would allow one to 

test this prediction. 

Similarly, the resource depletion and recovery assumptions would predict that performance 

should gradually decline over successive trials of a memory test, and it should bounce back after 

a break. While this effect has not been observed in the studies that might have shown this (e.g. 

Hitch, Flude, & Burgess, 2009; Page, Cumming, Norris, McNeil, & Hitch, 2013), it should be 

noted that whether such an effect would be observed depends on the presentation rate and the inter-

trial-interval. The median time for full resource recovery in all simulations for this paper was 4.83 

seconds, which means that this prediction would be observed only with very short inter-trial 

intervals. That was not the case in the above mentioned studies (for example, Hitch et al, 2009, 

had a 12 second break between trials). Furthermore, if there is a full recall test in between trials, 

that would allow still more resource recovery, thereby masking these potential effects. In contrast, 

our preliminary data show that when the inter-trial interval is kept short (750 ms), and participants 

have to respond to a single probe item between trials, we observe exactly the predicted decline 

over successive trials followed by a bounce back after a break, even when there is no general 

fatigue over time (Popov, So & Reder, in preparation). 

VI. Epilogue: The concept of resources as an explanation 

At this point it might be good to ask the following question – how useful is the concept of resources 

in explaining the rich pattern of results we have reviewed? One could argue that resource-based 

explanations are circular – worse performance is attributed to having less resources, which on the 

face of it does not seem to be a satisfactory explanation. While we do agree that often resource-

based verbal theories can suffer from circularity, we believe that this is not the case here. We have 

presented a mechanistic model with a precise formulation of resources, a model which allows us 

to make quantifiable predictions that go well beyond the generic less-resources-worse-

performance claim. Global and local list-composition effects are one such example. The current 

theory posits that the resource does not recover immediately after use, but rather recovers slowly 

over time, which led to the prediction that word frequency and word repetition effects should be 

affected by the specific sequence of trials. At the global level, word frequency effects are 

attenuated when mixed in a single list, because the greater depletion of WM resources by LF words 

leaves less resources for processing the high frequency words and vice versa. At the local level, 

we predicted that the more low-frequency items are presented in a row, the worse the memory for 

the subsequent item would be.  

The precise mechanistic formulation of a resource is not trivial, and involved making decisions 

about the underlying mathematical details. As we noted when introducing the model details, we 
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had to decide what happens when you have to remember a display of several different items or 

features, and the remaining resources are not sufficient to encode them all. One possibility is that 

the system allocates the default proportion of resources to as many items as possible and fails to 

encode the remaining items. The choice we made for the model is that all k stimuli share the 

resources proportionally to their default cost. Whether the resource is spread amongst all items or 

whether a fixed amount is allocated for a limited number of items is currently under debate in the 

literature (Donkin, Nosofsky, Gold, & Shiffrin, 2013; Van den Berg, Awh, & Ma, 2014; W. Zhang 

& Luck, 2008). Slot-based theories posit that WM can actively maintain a limited number of 

distinct representations by allocating them to discrete units/slots (Donkin et al., 2013; Zhang & 

Luck, 2008). Others have argued, as we do here, and in Shen et al. (2017), that the resource can 

instead be flexibly allocated. In our view, the fact that WM performance varies as a function of 

item strength favors continuous resource theories. 

Another aspect that would require further work is specifying the form of the resource recovery 

function. In the current work we chose a linear recovery rate, which worked well for the studies 

modeled here; nevertheless, there is no particular reason to choose a linear recovery rate. Within 

most simulations used in the paper, the recovery rate parameter is of such size that WM recovers 

fully within several seconds. Yet, we all experience growing fatigue over the course of the day and 

WM and LTM performance varies as a function of time of day (for a review, see Schmidt, Collette, 

Cajochen, & Peigneux, 2007). Thus, it is possible that there is a component of resource recovery 

that operates on a longer-time scale than the one presented here, just as there are multiple fuel 

sources and corresponding recovery rates for muscle contraction, which is the analogy we used in 

the introduction to this paper. Additional work is necessary to identify such components and to 

provide more data for constraining the possible functional forms of the resource recovery rate/s. 

Finally, the current theory provides a mechanistic account for why additional learning benefits 

weaker memory traces more. As we noted in the theory description section, when items are 

restudied, stronger representations in the model are strengthened to a lesser degree than weaker 

representations, due to the delta learning function. On the surface, the specific function of the 

model is descriptive and not an explanation of why stronger items are strengthened less. The 

explanation for why this function is suitable comes from a rational perspective – every 

strengthening depletes resources proportional to the amount of strengthening. Since resources are 

limited, it is most optimal to spend less for processing stronger items, because they have a lower 

probability of being forgotten, and to reserve those resources for processes that need them more. 

We argue that, similarly to partial matching, this learning function has arisen as an adaptation to 

the challenge that there is typically much more information demanding our attention than our 

limited resources would allow us to process.  
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