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Abstract Do the processing and online manipulation of stim-
uli that are less familiar require more working memory (WM)
resources? Is it more difficult to solve demanding problems
when the symbols involved are less rather than more familiar?
We explored these questions with a dual-task paradigm in
which subjects had to solve algebra problems of different
complexities while simultaneously holding novel symbol–
digit associations in WM. The symbols were previously un-
known Chinese characters, whose familiarity was manipulat-
ed by differential training frequency with a visual search task
for nine hour-long sessions over 3 weeks. Subsequently, sub-
jects solved equations that required one or two transforma-
tions. Before each trial, two different integers were assigned
to two different Chinese characters of the same training fre-
quency. Half of the time, those characters were present as
variables in the equation and had to be substituted for the
corresponding digits. After attempting to solve the equation,
subjects had to recognize which two characters were shown
immediately before that trial and to recall the integer associ-
ated with each. Solution accuracy and response times were
better when the problems required one transformation only;
variable substitution was not required; or the Chinese charac-
ters were high frequency. The effects of stimulus familiarity

increased as the WM demands of the equation increased.
Character–digit associations were also recalled less well with
low-frequency characters. These results provide strong sup-
port that WM capacity depends not only on the number of
chunks of information one is attempting to process but also
on their strength or familiarity.
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Working memory (WM) plays a central role in cognition by
allowing people to temporarily maintain and process task-
relevant information (Baddeley, 1992, 2012). The role of
WM is especially evident in high-level cognitive tasks such
as mathematical problem-solving, reading comprehension,
and analogical reasoning. In tasks like these, people must
continuously maintain relevant information, behavioral goals,
and intermediate results, while at the same time manipulating
this information through complex cognitive skills and proce-
dures. As a result, WM capacity may be exceeded. These
abilities, therefore, are limited by how much WM capacity is
available. For example, individual differences inWMcapacity
and experimental manipulations of WM demands correlate
strongly with laboratory measures of problem-solving
(Beilock, Kulp, Holt, & Carr, 2004; Daily, Lovett & Reder,
2001; Hitch, 1978; Hitch & McAuley, 1991; Lovett, Reder &
Lebiere, 1999; Passolunghi & Siegel, 2001; for a review, see
Wiley & Jarosz, 2012) and intelligence (Au et al., 2015;
Giofrè, Mammarella, & Cornoldi, 2013; Hicks, Harrison, &
Engle, 2015; Unsworth, Fukuda, Awh, & Vogel, 2014), as
well as with real-life outcomes such as academic and profes-
sional performance (Alloway, 2009; Alloway & Alloway,
2010; Bull, Espy, & Wiebe, 2008; Hambrick, Oswald,
Darowski, Rench, & Brou, 2010). Given this tight link
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betweenWM capacity and performance in complex cognitive
tasks, it is crucial to understand the factors that influence WM
limitations.

One factor that affects WM capacity is the ability to chunk
pieces of information together into a single unit, which allows
people to greatly expand the amount of information they can
temporarily hold and manipulate. This chunking ability has
been demonstrated by numerous studies which have revealed
that WM capacity is limited not by the absolute amount of
information that needs to be processed but rather by the num-
ber of chunks into which this information can be compressed
and organized (Miller, 1956; Simon, 1974; for recent reviews,
see Cowan, 2001; Gobet et al., 2001). While there is some
disagreement in the literature as to the specific number of units
that constitute the limit of WM capacity (Cowan, 2001; Gobet
& Clarkson, 2004; Luck & Vogel, 1997; Miller, 1956), and as
to the nature of the mechanism behind this limitation (Cowan,
2001; Gobet et al., 2001; Oberauer, Farrell, Jarrold, &
Lewandowsky, 2016), most theories of WM share one thing
in common—they treat chunks as all or nothing. They consid-
er neither that chunks vary in strength nor that such variation
in chunk strength would affect WM limitations. For example,
the concept of chunk strength does not appear among the
factors that limit WM discussed in a recent comprehensive
review by Oberauer et al. (2016).

In this article, we test the hypothesis that the capacity of
working memory depends not only on the number of chunks
people are required to maintain and manipulate but also on the
strength of these chunks in long-term memory (Reder,
Paynter, Diana, Ngiam, & Dickison, 2007).

Background

Episodic memory theorists have long suggested that the repre-
sentations of items in long-term memory differ in strength as a
function of prior experience. One computational implementa-
tion of this idea, the Source of Activation Confusion (SAC)
model of memory (Reder et al., 2000), operationalizes item
strength as a continuous value stored alongside memory traces.
This strength value can be thought of as a chunk’s resting level
of activation, which in SAC increases with repeated exposures
and decays over time. It is important to note that, just as more
exposures make a chunk stronger, they also make it appear
more familiar. Although chunk strength and item familiarity
are both affected by the frequency and recency of previous
exposures, they are conceptually distinct concepts. The strength
or resting level of activation is a property of representations in
memory, and familiarity is a judgment (tacit or explicit) that is
influenced by the strength of a concept.

There are good reasons to believe that items that differ in
strength also differ in terms of how much WM resources are
required to process and manipulate them (for a review, see

Reder et al., 2007). As an extension of the SAC model,
Reder et al. (2007) proposed that a number of puzzling find-
ings in studies of episodic memory could be easily explained
if we posit that the encoding of items and the creation of novel
associations between them depletes WM resources as an in-
verse function of their strength. The addition of a WM re-
source to the theory was motivated by the desire to explain
why long-termmemory performance is not only influenced by
the strength of the item being tested but also by the strength of
other items that were studied alongside it. For example, rec-
ognition memory for a single stimulus (a picture or a word) is
worse when it had been studied simultaneously with another
low-frequency word compared to being studied alongside a
high-frequency word (Diana & Reder, 2006). Relatedly, the
presence of low-frequency items on a list hurts recall for high-
frequency items on the same list (Dewhurst, Hitch, & Barry,
1998) and vice versa (high-frequency words help low-
frequency words on the same list) in serial recall (Hulme,
Stuart, Brown, & Morin, 2003). Similarly, recognition of
low-frequency items improves as the proportion of high-
frequency items on the list increases (Malmberg & Murnane,
2002). In addition, while single-item recognition is generally
worse for high-frequency words compared to low-frequency
words (Reder et al., 2000), the reverse is true for associative
recognition of pairs of high-frequency or low-frequency
words (Clark, 1992).

Reder et al. (2007) demonstrated with a simple computa-
tional model that all of these results likely stem from the fact
that low-frequency items require more WM resources to be
encoded and to be bound to other items. According to the
model, depleting more WM resources during the encoding
of low-frequency words leaves fewer resources for processing
the paired item (Diana & Reder, 2006), for binding the items
to one another (Clark, 1992), or for encoding the remaining
items on the list (Dewhurst et al., 1998; Malmberg &
Murnane, 2002). In more general terms, the theoretical claims
of the model are as follows:

1. Memory operations such as the encoding, updating, and
binding of stimulus to context, to other stimuli, or to rela-
tional structures, deplete a limited pool of WM resources.

2. The WM resource pool recovers over time.
3. Memory operations deplete more WM resources for less

familiar stimuli.
4. As a result of maintaining or manipulating less familiar

chunks of information, there are lessWM resources avail-
able for performing additional operations or for process-
ing additional stimuli.

The first claim is shared by a number of other researchers
(e.g., Blumenfeld, Parks, Yonelinas, & Ranganath, 2010;
Blumenfeld & Ranganath, 2006, 2007; van Geldorp, Parra,
& Kessels, 2015; Peterson & Naveh-Benjamin, 2017;
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Wagner, 1999); in contrast, the claims about how stimulus
familiarity affects WM resources are unique to our proposal.

While the Reder et al. (2007) model was able to provide a
consistent, formal account for all the studies reviewed above,
there are two limitations on the conclusions we can draw.
These studies had quasi-experimental designs and depended
on naturally occurring differences in word frequency. It is
known that differences in normative word frequency closely
track differences in many semantic and orthographic proper-
ties of words, and, as such, it is not clear whether frequency
per se is the cause of the effects reviewed above. Another
concern is that these studies on their own do not provide direct
evidence for the WM component of our proposal, because
they did not measure WM capacity but rather long-term epi-
sodic memory performance.

Recently, we provided direct experimental support for the
hypothesis that weaker chunks would exhaust limited WM
resources to a greater degree than stronger chunks (Reder,
Liu, Keinath, & Popov, 2016).Wemeasured associative mem-
ory as well as working memory capacity for Chinese charac-
ters that were previously unfamiliar to subjects. Before we
tested memory performance, we differentially familiarized
these characters using a visual search task in which characters
were randomly assigned to be seen at either low or high fre-
quency. This differential exposure involved hundreds of trials
of visual search training over nine hour-long separate sessions
in the course of a month. Characters randomly selected to be
high frequency were seen 20 times as often as those selected to
be low frequency. Thus, we manipulated item familiarity ex-
perimentally, rather than depending on preexisting familiarity.

At the end of each week of training, we tested the ability of
subjects to associate high-frequency or low-frequency charac-
ters. Novel combinations of two high-frequency characters
were learned better as a combined cue to recall an English
word, and this effect increased over the course of training.
Note that the pairs of characters were equally unfamiliar
whether the characters were high frequency or low frequency
because each week the pairs were novel combinations associ-
atedwith new Englishwords. Thus, high-frequency characters
were easier to bind to one another and to the English word.

We also measured WM capacity for high-frequency and
low-frequency characters at the end of training with anN-back
task. TheN-back task requires subjects to respond whether the
currently presented stimulus is the same as the one presented
N trials ago, where N can be 1, 2, or 3 in different trial blocks.
In the N-back task subjects must actively maintain the last n
items in short-term (or working)memory, bind each of them to
a corresponding serial position, and rapidly update that bind-
ing on each new trial (Owen, McMillan, Laird, & Bullmore,
2005). As such, this task is perfectly suited to explore whether
the familiarity of an item affects the amount of WM resources
necessary for encoding, binding, and manipulating the item.
As predicted, the N-back performance was better in blocks

involving the high-frequency characters, and this difference
in performance grew with greater working memory demands.
It is important to note that the results were not due to failure to
chunk the low-frequency characters or due to differences in
the ease of encoding the characters. Combined, these results
demonstrated that both learning and WM performance are
directly influenced by the strength of a chunk.

In summary, both the computational modeling fits to the
quasi-experimental findings from recognition and recall mem-
ory (Reder et al., 2007), as well as the strong experimental
cued-recall and N-back results (Reder et al., 2016), provide
converging support for the idea that WM limitations depend
not only on the number of chunks but also on their strength.

Current experiment

Despite the results discussed so far, the idea that WM capacity
differs as a function of the strength of chunks is controversial.
No other existing computational model ofWM, aside from the
SAC model, has a mechanism in place to account for direct
effects of item strength on WM capacity. As a result, some
researchers believe that the direct frequency effects shown by
Reder et al. (2016) are not caused by item strength per se but
rather by other effects that exposure frequency might have on
long-term representations, such as making them more distinc-
tive (K. Oberauer & E. Ahn, personal communication,
July 19, 2017). Providing further evidence with a different
working memory task than the task used in Reder et al.
(2016) is thus crucial for constraining the possible explana-
tions of the effects.

Based on our framework, we can make the following novel
prediction: Familiarity of the stimuli should affect not only
recognition/recall and direct measures of WM capacity but
also performance in any cognitive task that relies heavily on
WM processing. Specifically, if our theory is correct, then
given that high-level cognition is crucially dependent on
WM capacity, we should be able to observe better perfor-
mance in problem-solving and reasoning tasks when the ele-
ments involved in the task are more rather than less familiar.

To explore this prediction, we experimentally manipulated
the familiarity of symbols in an algebraic task and explored
how differences in symbol familiarity, task complexity, work-
ing memory load, and their interaction affect solution perfor-
mance. We adapted a mathematical problem-solving task that
we have used previously (Anderson, Reder & Lebiere, 1996)
in which increasing the task complexity increased the de-
mands on WM. In Anderson et al., we asked subjects to hold
a span of two, four, or six digits in memory while solving
simple algebraic equations. The equations varied across trials
on two dimensions—number of transformations required for
solution and whether or not the equation required substitution
of constants from the digit span. The equations required either
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one (e.g., 3x = 6) or two steps (e.g., 3x – 2 = 7) to be solved,
and on half of the trials, subjects had to substitute the first two
digits from the digit span for variables (a and b) in the equa-
tion (e.g., ax – 2 = b). After solving the equation, subjects had
to recall the current digit span. Anderson et al. (1996) found
that performance in both the math task and the digit-span task
was worse when the equations were more complicated, when
elements of the memory span had to be used to solve the
problems, and when the concurrent digit span was longer.
Importantly, the impact of increasing concurrent working
memory load on the solution performance was not additive
with the other factors. Rather, detriments due to digit span
length increased as the complexity of the equation increased
and when substitution was required. The fact that digit span,
number of steps, and substitution all interacted suggested that
each variable adversely affected working memory resources,
and we modeled those effects as such.

In the current study, we combined our math dual-task para-
digm (Anderson et al., 1996) with our visual search training
paradigm (Reder et al., 2016). Instead of giving subjects a set of
digits to hold in memory while solving an equation, we pre-
sented subjects with two Chinese characters that were each
paired with a single digit before the equation was presented.
On half of the trials, the equations used those two Chinese
characters as constants in the equation, and subjects had to
substitute the corresponding digit to solve the problem.
Whether substitution was involved or not, subjects had to iden-
tify the characters and recall the digit associated with those two
characters, after they had attempted to solve the equation.

The key difference from Anderson et al. (1996) is in how
we manipulated concurrent working memory load—rather
than varying the number of digits that had to be remembered,
we varied the strength of the two characters on a given trial.
As in our previous study (Reder et al., 2016), we operational-
ized item strength as high or low (20:1 ratio) frequency of
exposure during hundreds of trials of visual search training
over several weeks. At the beginning of each week of visual
search training, starting with Week 2, subjects performed the
math task described above and completed a final one after
Week 3 for a total of three math sessions.

The critical question was whether differential familiarity of
the characters would affect performance in solving algebraic
equations in the same manner that the size of the concurrent
digit span affected performance in our previous study
(Anderson et al., 1996). According to our theory, the process-
ing of low-frequency characters consumes more WM re-
sources compared to high-frequency characters, and thus we
should observe impairments on solution performance and sub-
sequent character recall when subjects maintain low-
frequency characters in WM. Importantly, we also expected
that, as the complexity of the equation increases (from one to
two steps, and from the no substitution to the substitution
condition), the effect of symbol familiarity on performance

should increase. If the demands on WM are low, such as in
the no-substitution condition at Step 1, there should be suffi-
cient WM capacity to process either low-frequency or high-
frequency characters. However, as the equation solution de-
mands on WM increase, there will be fewer resources avail-
able for processing the characters and maintaining intermedi-
ate results, and the impairment should be commensurate to
how much of the resources are depleted.

Method

Subjects

Nineteen college students (ages ranging from 18 to 28) from
CarnegieMellon University participated in this study. No sub-
ject had prior knowledge of Chinese. In exchange for partic-
ipation, they received a payment of $135 to $150, depending
on performance. Performance was determined by the number
of points earned as described below.

Materials, design, and procedure

Visual search task We used the same training procedure de-
scribed in Reder et al. (2016), with a few modifications that
will be noted below. There were 120 unique Chinese charac-
ters that were grouped into 30 sets of four. Characters in each
set were more visually similar to each other than they were to
characters from the remaining sets, and characters within a set
had no unique individual features that would distinguish them
from the other three characters in the set. The grouping in sets
was done by a native Chinese speaker, and we subsequently
confirmed the difference in within-set and between-set simi-
larity using an independent orthographic analysis that was
developed by Yang, McCandliss, Shu, and Zevin (2009).
Each subject was exposed to a randomly drawn sample of
16 sets of characters (64 characters) from the total pool of
items. Eight of the 16 sets for each subject were randomly
selected to be in the high-frequency condition.

Subjects performed a visual search task for nine sessions1

on different days across 3 weeks, and each session consisted
of 672 trials. Trials began with a fixation presented in the
center of the screen, and subjects had to press a button to
continue (see Fig. 1, top panel). On each trial, subjects saw a
randomly selected target character in the middle of the screen
for 1 second, which was followed by an array of three to five
characters. Subjects had to respond whether the target charac-
ter was present or absent in the visual search array. There was

1 Reder et al. (2016) used 12 training sessions, but the effects of frequency on
learning were evident even after nine sessions, and by Session 9 there was
sufficient evidence that the low-frequency characters were successfully
chunked.
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no time limit for responses, and after subjects pressed a button,
they received auditory feedback that indicated whether their
response was correct or not. The size of each character on the
screen (1,280 × 800 pixels) was 130 × 130 pixels. The view-
ing distance was approximately 50 cm.

We used a 2 × 2 within-subjects design, with independent
variables of character frequency (high vs. low) and whether
the target was present in the search array or not (present vs.
absent). High-frequency characters were presented 20 times
more often than low-frequency characters in each session. The
target character was present in the search array on half of the
trials. The search array always contained three distractors from
the same set as the target character. An additional one or two
distractors from different sets of the same frequency class
appeared on some trials. The trial order, the set size, and
whether the target was present or not in each trial were ran-
domly determined for each subject and session. The depen-
dent variables were accuracy and response times in reporting
whether the target was present or not on each trial.

Math problem-solving task As described in the introduc-
tion, the math task was adapted from Anderson et al.
(1996). The task involved solving simple linear equations
with one unknown (i.e., solve for x) using addition, sub-
traction, multiplication, or division. We randomly gener-
ated 360 unique equations with the following constraints:
(1) constants were single digits (1–9); (2) intermediate
results were single digits (1–9); (3) the final answer was
an integer ranging from −9 to 9.

Subjects performed three sessions of the math task after
the third, sixth, and ninth visual search training session.

Each math session consisted of 120 different equations,
with each condition equally represented in a random order
among the trials. Trials began with a fixation presented in
the center of the screen, and subjects had to press a button
to continue (see Fig. 1, bottom panel). Following the fix-
ation, two characters from the same frequency class were
presented on the screen simultaneously for 3 seconds, and
each character was associated with a different digit. After
viewing the symbol–number associations, a subject was
shown an equation to solve and given unlimited time to
solve it in their heads (i.e., no pen and paper or calcula-
tor). Once the solution was found, the subject pressed a
button to continue and then typed in the answer. After
entering the answer, the subject had to identify which
two characters were shown at the beginning of the trial,
selecting each from two arrays of four characters. Each
array was composed of characters from the same similar-
ity set as the character that had to be identified. After
identifying a character, the digit that had been associated
with it also had to be entered. Auditory feedback was
provided immediately after subjects entered the equation
solution, after character recognition, and after digit recall.

The math task involved a 2 × 2 × 2 within-subjects
design, with the following independent factors: the fre-
quency of the Chinese characters presented on each trial
(high vs. low), whether the equation contained Chinese
characters as constants that had to be substituted for the
corresponding digits (substitution vs. no substitution), and
whether the equation required one step or two steps. Only
the substitution variable and the number of steps variable
affected what the subject did during the trial (see Fig. 2).

Fig. 1 Trial sequence for (a) the visual search task and (b) the math task
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The Chinese characters used in each equation that re-
quired a substitution were the same as the ones used in
the visual search task. On all trials, whether or not there
was substitution, subjects first studied the assignment of a
different digit to each of two characters, and on a given
trial, both characters were either from the high-frequency
or the low-frequency treatment condition. Half of the
equations contained high-frequency characters, and the
other half contained low-frequency characters. In each
equation, the two characters were randomly selected from
two different character sets from the same frequency con-
dition, that is, either both were low-frequency or both
were high-frequency. When the equation required a sub-
stitution, the position of the two characters during the
assignment of numeric value was uncorrelated with their
position order in the equation. Three different equation
sets were used in the three separate testing sessions, and
each set was presented in random order for each subject.
We measured accuracy and speed in solving the equation,
accuracy in recognizing the trial-specific characters, and
accuracy in recalling the associated digit with each char-
acter. We instructed subjects to try to be as accurate as
possible in solving the equations while trying to also re-
member the characters–digit bindings as best as they
could. Subjects earned 10 points for correctly solving
the equation, and 1.5 points for each correctly recalled
character–digit binding.

Results

We analyzed the accuracy data via logistic mixed-effects re-
gressions and reaction times via linear mixed-effects regres-
sions (Baayen, Davidson, & Bates, 2008; Jaeger, 2008). For
the RT analyses, we considered only correct trials (6.9% error
for the visual search task; 10.3% for the math task). Then we
excluded from the analyses cases with RTs more than 3 me-
dian absolute deviations (Leys, Ley, Klein, Bernard, & Licata,
2013) above or below the median RT, calculated separately for
each subject, session, and condition (2.7 % for the visual
search task; 5.9% for themath task). RTs were log transformed
because the residual plots revealed a lack of homoscedasticity.

Visual search task

We replicated the main results of Reder et al. (2016), namely
that both accuracy and response times improved with training
and with frequency of exposure (see Fig. 3). Specifically, over
the 3 weeks of training, subjects becamemore accurate,ΔAIC
= −942, LLR χ2(1) = 944.177, p < .001, and faster, ΔAIC =
−2236, LLR χ2(1) = 2237.098, p < .001, in identifying wheth-
er the target character was present or absent from the search
set. Importantly, subjects identified high frequency characters
in the displays more quickly, ΔAIC = −51, LLR χ2(1) =
53.632, p < .001, and more accurately, ΔAIC = −108, LLR
χ2(1) = 109.869, p < .001. There were no significant

Fig. 2 Example trials for levels of the two variables (2 × 2 factorial)
related to equation complexity: substitution versus no substitution and
one versus two transformations. The third factor, character frequency

(high or low), did not alter the procedure so is not shown here. The
characters on each trial varied although they are repeated in this
illustration
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interactions between training sessions and frequency on accu-
racy, ΔAIC = 2, LLR χ2(1) = 0.113, p = .737, or response
times, ΔAIC = 0, LLR χ2(1) = 2.263, p =.133.2 Thus, our
experimental manipulation of frequency was successful.

Algebraic problem-solving task

Figure 4 shows the performance on the math task, averaged
across weeks.3 As predicted, performance decreased as the
complexity of the equation increased, when it required a sub-
stitution, and when the Chinese characters were less familiar.
Specifically, subjects performed significantly better in the no-
substitution condition, being more accurate, ΔAIC = −120,
LLR χ2(1) = 122.134, p < .001, and faster in solving the
problems, ΔAIC = −1,574, LLR χ2(1) = 1,576.28, p < .001.
Performance declined as the number of steps increased (from
one step to two steps)—subjects became less accurate,ΔAIC
= −43, LLR χ2(1) = 44.985, p < .001, and solved the equations
more slowly,ΔAIC = −1150, LLR χ2(1) = 1,152.67, p < .001.
Finally, when the Chinese characters they had to remember
were more familiar, subjects solved the equations more accu-
rately,ΔAIC = −34, LLR χ2(1) = 35.971, p < .001, and more
quickly, ΔAIC = −14, LLR χ2(1) = 15.68, p < .001.

In addition to the main effects described above, there were
a number of significant interactions. Most importantly, the
detrimental effect of low familiarity of symbols increased as
the equations became more demanding (see Fig. 4).
Specifically, the effect of symbol frequency on accuracy was

larger in the two-step compared to the one-step condition,
ΔAIC = −3, LLR χ2(1) = 5.002, p = .025, and it was larger
in the substitution than in the no substitution condition,ΔAIC
= −2.9, LLR χ2(1) = 4.913, p = .027. Post hoc z tests revealed
that the difference in accuracy between high-frequency and
low-frequency characters was not significant in the one-step
no-substitution condition (z = −0.231, p = .817), but that it was
significant in the other three conditions (z = −1.969, p = .025; z
= −2.333, p = .01; z = −5.891, p < .001, respectively for the
two-step no-substitution, one-step substitution, and the two-
step substitution conditions).

For response times, as can be seen from Fig. 4, frequency
had a detrimental effect only in the most demanding two-step

2 In Reder et al. (2016), we did find an interaction between training sessions
and frequency, but there we used 12 rather than nine sessions. The longer
training time allowed performance to approach ceiling and could be responsi-
ble for the previously found interaction. Here, too, to the extent that the accu-
racy lines are not parallel for accuracy may also be the result of high-frequency
characters approaching the ceiling.

Fig. 3 Mean performance on visual search task trials for high and low frequency over 3 weeks of training. Left panel shows accuracy and right panel
shows response times. Error bars indicate +/− 1 standard errors

Fig. 4 Mean performance onmath task trials for high and low frequency.
Top panel shows accuracy and bottom panel shows response times. Error
bars indicate +/− 1 standard errors

3 None of the effects of number of steps, substitution, or symbol familiarity
changed over weeks (all ps > .10), so we report only the overall data.

210 Mem Cogn (2018) 46:204–215



substitution condition. This effect was marked by significant
two-way interactions between number of steps and frequency,
ΔAIC = −1, LLR χ2(1) = 9.41, p = .002, and substitution and
frequency,ΔAIC = −10, LLR χ2(1) = 11.57, p < .001, as well
as a three-way interaction between all factors, ΔAIC = −8,
LLR χ2(1) = 9.94, p = .002. The three-way interaction can
also be interpreted as that the slowdown due to the number of
steps is strongest for low-frequency characters in the substitu-
tion condition (also supported by a two-way interaction of
number of steps and substitution), ΔAIC = −22, LLR χ2(1)
= 23.78, p < .001. In summary, as we predicted, symbol fa-
miliarity interacted with WM demands and its effects on ac-
curacy and response times were greater when the equation
required more WM resources.

Character recognition and digit recall

After solving the equations, subjects had to recognize each of
the two characters they had seen prior to solving the equation
and then recall the number associated with each character.
Figure 5 shows the proportion of correct trials, specifically,
those for which both characters were identified correctly and
both of their associated digits were also correctly recalled. All
analyses are reported for the combined recognition and recall
data because the pattern was the same when they are consid-
ered independently (for interested readers, we report the
recognition and recall data separately in Tables 1 and 2 for
all trials, and in Tables 3 and 4 for trials on which the equation
was solved correctly). As expected, subjects recalled the digit
associated with each character more accurately after they
solved one-step equations, ΔAIC = −8, LLR χ2(1) =
10.669, p = .001, and when the associated character was more
familiar (more previous exposures), ΔAIC = −15, LLR χ2(1)
= 17.171, p < .001. In contrast, recall accuracy was signifi-
cantly higher in the substitution condition,ΔAIC = −86, LLR
χ2(1) = 88.798, p < .001. This is likely because subjects had to
use the associated digit to solve the equation, which strength-
ened the association between the character and the digit,

facilitating the recall of the character–digit binding.
Alternatively, it could be due to reactivating the character
representation, which facilitated the character recognition.

There were no significant interactions between the inde-
pendent variables (all ps > .10).4 Specifically, no significant
interaction between frequency and steps, ΔAIC = 0, LLR
χ2(1) = 2.06, p = .151, no significant interaction between
frequency and substitution condition, ΔAIC = 0, LLR χ2(1)
= 1.7, p = .192, and no significant interaction between steps
and substitution condition,ΔAIC = 2, LLR χ2(1) = 0.021, p =
.886. Finally, the potential three-way interaction between
steps, substitution condition, and frequency was also not reli-
able, ΔAIC = 2, LLR χ2(1) = 0.35, p = .554.

Discussion

Do the processing and online manipulation of stimuli that are
less familiar require more working memory resources? Is it
more difficult to solve demanding problemswhen the symbols
involved are less rather than more familiar? The current study
suggests that the answer to both of these questions is yes.
Here, we showed for the first time that processing more famil-
iar symbols requires less WM resources during complex tasks
such as mathematical problem-solving. Specifically, subjects
solved algebraic equations faster and more accurately when
the symbols they simultaneous held in WMwere familiarized
to a greater degree before the math task. The beneficial effect
of symbol familiarity increased as the equations became more
complex, either when the number of transformations required
for solution was greater or when subjects had to substitute the
symbols in the equation with the associated digits held in
WM. In addition, it was easier to maintain a character–digit
association inWMwhen the characters themselves were more
familiar (rather than the character–digit association, which
was novel on each trial) and when the concurrent problem-

Fig. 5 Mean performance on the Chinese character recognition and
recall of corresponding digits for high and low frequency. Error bars
indicate +/− 1 standard errors

Table 1 Mean accuracy of character identification by condition

Frequency No substitution Substitution

1 step 2 steps 1 step 2 steps

High .78 .77 .85 .83

Low .73 .73 .79 .80

4 Indeed, in the original Anderson et al. (1996) experiment that varied the
number of elements to hold in the digit span, performance on recalling the
digits was only better in the substitution conditionwhen therewere exactly two
digits. The explanation is the same as the one here, but in that study the other
levels of digit span rule out alternative explanations. Also see Hitch (1978) for
a similar result.
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solving task was less attentionally demanding. Because both
tasks require the concurrent use of WM in order to maintain
and manipulate the symbols, these results provide further sup-
port for the proposal that WM capacity depends not only on
the number of chunks of information one is attempting to
process but also on the strength or familiarity of those chunks
in memory (Reder et al., 2016, 2007).

The results presented here extend our understanding of
how familiarity affects memory and cognition in several ways.
It has been well established that item strength (e.g., word
frequency, object familiarity) influences the availability of
items in long-term memory as measured by recognition mem-
ory, free and cued recall performance, lexical decisions, and
naming times (e.g., Appelman & Mayzner, 1981; Carroll &
White, 1973; Clark, 1992; Grainger, 1990; MacLeod &
Kampe, 1996; Ratcliff, Clark, & Shiffrin, 1990; Reder et al.,
2016, 2007); however, to our knowledge, it has not been dem-
onstrated previously that item familiarity also affects higher
level cognition. This extension of item familiarity effects is
theoretically significant because it suggests that the strength of
items influences not only their availability or their ease of
retrieval from long-termmemory (LTM) but also the ease with
which they are subsequentlymanipulated inWM. By showing
a benefit of stimulus familiarity in a high-level cognition task
that requires WM itself, rather than in a task designed to mea-
sure WM capacity directly (Reder et al., 2016), we can be
more confident about the construct and ecological validity of
our measures, as well as about the theoretical and real-life
implications of these findings.

Finally, the few extant studies on the effect of familiarity on
WM capacity have mostly involved quasi-experimental de-
signs that relied on preexisting differences in familiarity of
the stimuli (Blalock, 2015; Cowan, Ricker, Clark, Hinrichs,

& Glass, 2015; Jackson & Raymond, 2008; Siedenburg &
McAdams, 2017; Xie & Zhang, 2017a, b; but see Reder
et al., 2016). In these cases, it would be difficult to rule out
potentially confounding inequalities in the stimuli. For exam-
ple, in cases where performance for trained or already familiar
stimuli was compared to performance for entirely novel stim-
uli (Blalock, 2015; Chen, Eng, & Jiang, 2006; Jackson &
Raymond, 2008; Siedenburg & McAdams, 2017), it is possi-
ble that WM was worse for novel stimuli because they lacked
stable unitized representations in the first place. In contrast, we
differentially pretrained subjects with previously unknown vi-
sually complex symbols (i.e., Chinese characters) in a separate
visual search task for nine sessions over 3 weeks, exposing
half of the items 20 times more often than the other half. Thus,
by the end of the training, none of the items were novel, yet
their representations differed in terms of their familiarity. This
manipulation allows us to be more confident that the results
presented here are due to familiarity of the representation per
se rather than to its unitized existence or other confounding
factors.

Implications for theories of WM capacity

The finding that the strength of chunks affects WM capacity
has important implications for current theories of WM.
Current theories fall into three general cases: (a) decay-based,
(b) interference-based, and (c) resource-based theories (for
reviews, see Baddeley, 2012; Oberauer et al., 2016). We will
briefly discuss whether, how, and to what degree these theo-
ries might be adjusted to account for the chunk-strength effect
presented here and in Reder et al. (2016).

According to decay-based theories, currently active infor-
mation in WM decays over time, and unless it is reactivated
before it falls below a certain threshold, it becomes unavail-
able for further processing (e.g., Barrouillet, Bernardin, &
Camos, 2004; Camos, Lagner, & Barrouillet, 2009). Thus,
WM is seen as limited not by the number of items but by
how quickly their activation decays and by how often they
can be rehearsed/reactivated. If concurrent attentional de-
mands are low, then attentional-based reactivation can occur
more frequently, and it can prevent item activation from
decaying below threshold (Camos et al., 2009). Some decay-
based models might be able to partially account for our results

Table 2 Mean accuracy of digit recall to characters as a function of
condition

Frequency No substitution Substitution

1 step 2 steps 1 step 2 steps

High .66 .62 .78 .73

Low .62 .60 .70 .69

Table 3 Mean accuracy of character identification for trials that were
correctly solved

Frequency No substitution Substitution

1 step 2 steps 1 step 2 steps

High .78 .77 .87 .86

Low .73 .74 .82 .85

Table 4 Mean digit recall accuracy to characters for trials that were
correctly solved

Frequency No substitution Substitution

1 step 2 steps 1 step 2 steps

High .67 .62 .82 .78

Low .62 .61 .76 .78
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if they posit that familiarity affects either the decay rate, the
activation threshold, or the maximum level of activation for
each stimulus. If less familiar stimuli start with a lower acti-
vation level, decay faster, or are more difficult to reactivate,
then attentional/executive processes needed for their reactiva-
tion will likely be drawn away from the math task more often,
hurting solution performance as a result. One of these mech-
anisms might also explain why low-frequency characters are
less likely to be recognized and their corresponding digit
recalled—their activation is less likely to exceed the reactiva-
tion threshold.

In contrast to decay theories, interference-based theories
posit that representations do not decay with time, but that
attempting to simultaneously hold many such representations
active in WM creates interference between them due to com-
petition, confusion, or feature overlap (e.g., Oberauer,
Lewandowsky, Farrell, Jarrold, & Greaves, 2012). Within this
framework, one possibility is that items that are more familiar
have representations that are stronger or more distinct and are
thus less susceptible to interference. This assumption will like-
ly be able to account for the familiarity effects with theN-back
task (Reder et al., 2016), for the impaired recall of the charac-
ter–digit binding with low-frequency characters in the current
experiment, and for the performance difference in the equation
substitution conditions. Specifically, the representations of
low-frequency characters are more likely to interfere with
each other because of their weaker and less distinct represen-
tations, and this wouldmake it more difficult to substitute their
associated digits in the equation and to recall them afterwards.
However, it is less clear why greater interference between less
familiar characters held in WM would impair equation solu-
tion accuracy in the two-step no-substitution condition.5 In
this condition, the symbols that were being held in WM were
not used to solve the equation, so the interference on the in-
termediate results being held in WM should be equivalent in
both frequency conditions. Although it is true that subjects
had to maintain character–digit bindings even in the no-
substitution condition, it is not obvious how low-frequency
characters would cause more interference in solving equations
that did not involve using them.

Finally, resource-based approaches deserve special atten-
tion in this discussion because only a subset of these are com-
patible with our results. This class of theories attributes WM
limitations to the use of a shared pool of limited resources for
the active maintenance and manipulation of information.
Importantly, a recent debate in the literature concerns whether
this WM resource is discrete or continuous in nature (e.g.,
Donkin, Nosofsky, Gold, & Shiffrin, 2013; Van den Berg,

Awh, & Ma, 2014; Zhang & Luck, 2008). Slot-based theories
posit that WM can actively maintain a limited number of dis-
tinct representations by allocating them to discrete units/slots
(Donkin et al., 2013; Zhang & Luck, 2008). Although we will
not review here the relevant evidence for this debate, one thing
is worth pointing out: Slot-based theories are fundamentally
incompatible with the finding that WM performance is better
for stimuli that are more familiar. This is because, in slot-based
theories, the only thing that is supposed to limit performance
is the number of distinct representations that have to be main-
tained simultaneously. Yet, in both the current experiment and
in Reder et al. (2016), we held the number of chunks constant,
while we varied the amount of exposure they had in an inde-
pendent task.

Continuous resource theories, in contrast, can easily ac-
commodate these results (Reder et al., 2007). Our resource
theory posits that variable amounts of WM resources can be
allocated for the active maintenance of representations or for
executing cognitive processes over them. In line with this
view, we suggested in the introduction (1) that the encoding,
updating, and binding of stimuli to context, to other stimuli, or
to relational structures depends on a limited pool of WM re-
sources; (2) that these operations deplete more WM resources
for less familiar stimuli; and (3) that as a result of maintaining
or manipulating less familiar chunks of information, there are
less WM resources available for performing additional oper-
ations or for processing additional stimuli.

In summary, we believe that the chunk-strength findings
presented here and in Reder et al. (2016) might prove to be
among the key benchmark results that any theory of WM has
to be able to explain (for a recent review of such benchmark
findings, see Oberauer et al., 2016). Our results are incompat-
ible with slot-based resource theories and mostly compatible
with decay and interference theories, depending on their
implementation. However, these findings were only
predicted by the resource theory as presented here, and in a
computational model presented in Reder et al. (2007) and a
more complete model that is forthcoming.

Practical implications

Aside from informing theoretical accounts ofWM, the chunk-
strength effect can be potentially useful for improving instruc-
tion and educational practices. Prior research has suggested
that an effective way to optimize learning is to design instruc-
tional materials and procedures in such a way as to reduce
WM/cognitive load during knowledge and skill acquisition,
as postulated by Sweller and others (e.g., Clark, Nguyen, &
Sweller, 2011; Gerjets, Scheiter, & Catrambone, 2004; Gobet,
2005; Mayer, 2014; Pashler et al., 2007; Sweller, 1994).
Several helpful strategies have been proposed to aid in knowl-
edge acquisition, such as grouping single items into larger
units and semantically related clusters (Dehn, 2011), or

5 The effect might be small, but it is reliable, and its size is commensurate with
the effect in the two-step no-substitution condition in Anderson et al. (1996),
who manipulated the memory span (two vs. six digits concurrently in WM),
rather than the frequency of the items in WM.
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encouraging the formation of stable schemas of relationally
organized concepts in LTM (Gerjets et al., 2004; Gobet, 2005;
Pashler et al., 2007; Sweller, 1994). While schema induction
likely enhances student learning by reducing cognitive load,
our findings suggest that in order to achieve optimal learning
and problem-solving performance, it is not enough to simply
create such chunks and schemas—they have to be sufficiently
strengthened before students can move on to acquire addition-
al knowledge. Because highly familiar items require less WM
resources for processing, we suggest that students would like-
ly benefit from strengthening individual chunks before being
required to use them in solving complicated problems or be-
fore having to combine them in more complex structures
(Reder et al., 2016).
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